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Abstract 
The automation of prefabricated construction imposes higher demands on construction process 
planning. To enable the construction behavior to be reliably executed by construction robots, it 
is necessary to plan the construction process more precisely. Simultaneously, to ensure 
construction safety, the construction policy also needs to be updated in real-time according to the 
construction environment changes to guarantee an optimized and collision-free construction 
process. We propose a deep reinforcement learning-based near real-time construction process 
planning framework for dynamic construction environments. As a test, we create a simple 
construction simulated environment and design a single component simulation in a dynamic 
construction environment. 

Keywords: Construction automation, Construction planning, Deep reinforcement learning 

 

1 Introduction 
As prefabricated buildings are increasingly being used in various building types, such as factories, 
housing, office, etc (Generalova, Generalov, & Kuznetsova, 2016), the construction method has 
also changed from traditional cast-in-place construction to prefabricated construction, where the 
components are produced in a factory and assembled on site. Due to prefabricated construction's 
modular and industrial features, robot-based construction has shown potential for the AEC 
industry (Bock, 2015). 
 In contrast to the factory environment, the on-site construction environment is complex and 
variable. Therefore, one of the essential challenges in realizing automated robotic construction is 
to allow the robots to independently adapt their construction tasks to the changing construction 
environment (Davila Delgado et al., 2019). As the traditional construction is mostly executed 
manually, on-site management is frequently done in terms of days or floors, with construction 
operations planned at a macro level, while the project manager adjusts specific construction tasks 
according to the specific construction circumstances (Jeong, Chang, Son, & Yi, 2016). 
Consequently, on-site construction management relies on more coarse of (digital) control than 
manufacturing assembly lines, which have much more fine-grained and automated construction 
actions (e.g., transport paths and assembly methods for each component). Furthermore, the 
precision required for robotic work is poorly satisfied by conventional on-site management. 
There is a demand for a method that can plan construction processes in response to site changes, 
thus providing construction robots with well-defined construction tasks. 
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 Currently, the most relevant research for on-site construction action is crane-related lift 
planning (Lin, Wu, Wang, Wang, & Gao, 2014). As one of the most important pieces of equipment 
in on-site construction, when the crane can be unmanned, it can be considered as a construction 
robot. Therefore, lift planning and optimization can be regarded as a problem of construction 
planning for construction robots. The current leading research for on-site lift planning (Zhang & 
Pan, 2020) is based on optimizing site layout, collision analysis in path planning and path 
planning optimization, etc.  
 However, the construction process often changes according to multiple factors (e.g., site 
layout changes, site environment changes). These changes often occur simultaneously, and it is 
difficult to achieve automation, because that requires a reasonable combination in real time 
according to the changes in the site environment with different component layouts (Zhang & Pan, 
2020). So we need a method that can flexiable adjust the robot's construction strategies (paths, 
construction methods, etc.) in real time depending on the changes in the environment.  
 As a type of AI-based method, reinforcement learning (RL) algorithms allow the agent to 
explore and exploit the environment and, through the feedback (rewards) received from the 
exploration and exploitation, accumulate experience to gain an optimal action policy. Deep 
reinforcement learning (DRL), as an algorithm that combines RL and deep learning, has greatly 
improved reinforcement learning algorithm's performance by computing the reinforcement 
learning output through neural networks and has displayed surpassing human performance in 
dealing with specific complex problems (Mnih et al., 2013). Thus, utilizing the features of DRL, we 
can attempt to introduce the DRL into the dynamic construction processes, and as a result make 
the robot better able to respond to its dynamic environment(s). 
 This paper implements deep reinforcement learning algorithms into construction process 
planning to achieve a framework for components’ self-organization with different site layouts in 
a changing construction environment for prefabricated construction. The purpose of this paper 
is to address the problem of the automatic construction process planning (path planning and 
collision analysis currently) for automated construction equipment (construction robots, crane, 
and etc.) in a dynamic site environment. The path obtained by self-organization of the 
components can be used as a result to control the construction robot (e.g. crane). Meanwhile, we 
designed a simple 3D construction simulation environment to test the framework's near real-
time adaptation in a changing environment for a single component.  

2 Background 
In this section, we brieϐly review the related work to lift planning and introduce the Q-learning 
algorithm which is the core algorithm in deep q networks (DQN) (Mnih et al., 2013). 

2.1 Lift planning and optimization 
Cranes, as one of the most important pieces of equipment on-site, achieves component 
transportation. So, most research of on-site construction planning for construction action is based 
on crane lift path planning.  

In 2002, Soltani (Soltani, Tawϐik, Goulermas, & Fernando, 2002) evaluated the feasibility of 
heuristic search algorithms in construction path planning. In the same year, based on the heuristic 
depth method, Reddy (Safouhi, Mouattamid, Hermann, & Hendi, 2011) proposed obstacle-free lift 
path planning. With the development of artiϐicial intelligence techniques, genetic algorithm-based 
methods (Cai, Cai, Chandrasekaran, & Zheng, 2016; Dutta, Cai, Huang, & Zheng, 2020), simulated 
annealing (K. Wu, Garcı́a de Soto, & Zhang, 2020) were applied in lift path planning. Heuristic-
based algorithms can optimize the motion path by exploring the global environment, but when 
the layout is changed, the path needs to be re-planned every time. 

Zhang (Zhang, Pan, & Zheng, 2019) proposed the construction process planning of tower 
cranes based on transfer learning in 2019. By creating a recognition model for the lifting process 
and training the neural networks, the corresponding lift planning can be derived according to the 
actual construction situation. However, the main limitation is that it requires a large amount of 
historical data for learning. Similarly, as a machine learning method, reinforcement learning has 
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been attempted to introduce component-based robot construction with a simple 2D environment 
(Zhu, Pauwels, & de Vries, 2020). 

The main limitation of the above described commonly-used intelligent algorithms in the ϐield 
of construction path planning is that when the layout of the yard or the construction environment 
changes, it is necessary to re-plan based on global information, and the previous planning 
information cannot be reused, which reduces the efϐiciency of planning. 

2.2 Value-based method reinforcement learning – Q learning 
Reinforcement learning is one of the machine learning methods, often expressed as Markov 
Decision Process (MDP) (Vrabie & Lewis, 2010), to make decisions partially under the control of 
a decision-maker in a partially random situation. As an extension of the MDP approach, 
reinforcement learning relies on reward and punishment values for the agent to learn and 
improve its actions in a deϐined environment. In reinforcement learning, the agent that needs to 
learn a policy is set in a given environment and it learns the policy by exploring and exploiting 
the environment through a certain number of episodes. At the beginning of each episode, the 
current environment is observed as a state, after which the agent performs an action based on 
the current environment that causes the agent to continue exploring or to fail. At the end of each 
episode, the agent updates the action set policy for the previous episodes based on the feedback 
from the reward, thus converging on the policy that makes the reward optimal. 
 As a value-based model-free reinforcement learning method, Q-learning optimizes the 
combination of actions that achieve the maximum reward by the method that updates the q-value 
of the action set for each episode (Bertsekas & Yu, 2012). The q-value is used to evaluate the value 
of each action under the current decision, where a larger q-value represents a higher value of the 
action. As an off-policy algorithm, Q-learning is used to explore the environment by adapting for 
the greedy algorithm. The agent is allowed to try actions without the maximum q-value while 
learning the policy; when the policy is updated, the agent must perform the action with the 
maximum q-value. 

3 Methods 
In prefabricated construction processes, we need the robot to accomplish a sequence work that 
involves transportation, positioning, and assembly of the components. To achieve automated 
construction, we need to provide the robot with explicit action instructions to execute. Thus, the 
construction requirements and path planning of the components can be regarded as action 
instructions for the robots. Here, we consider the automated robot construction as the self-
organization of the components. To realize the self-organization of components in a dynamic 
environment, we have developed a framework based on the DRL algorithm to generate the 
construction process of the components. Furthermore, we designed one experimental 
environment to test the feasibility of the framework for a number of scenarios, which are 
documented in Section 4. 

3.1 Simulated environment for construction processes 
To realize the simulation and visualization of the construction process, we built a simpliϐied 3D 
construction simulated environment using pygame and pyOpenGL (Figure 1), based on the 2D 
version in Zhu et al. (2020). The environment consists of a site, components and obstructions, 
allowing to customize the size of the site, the length of the obstructions and components, and the 
number of components. At the same time, we have established simple construction rules that the 
construction process must obey. The following two sections describe the setup of the simulated 
environment and the simpliϐied construction rules. 
3.1.1 Setup of the Simulation Environment 
The created simulation environment is shown in Figure 1. The basic units of this environment are 
voxels with length (X), width (Y) and height (Z) of one unit. Voxels can be combined to create 
three types of construction objects: sites, obstructions, and components. We also need to set the 
boundary of the environment and the construction objects are given spatial coordinates in the 
environment within the set boundary. 
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For the construction site itself, we deϐined a number of voxels in a horizontal slab with height 
one. Their type properties are set to "ground" and shown in gray to represent the site. The type 
properties of the other non-construction objects voxels are set to "air" and shown in wireframe 
(white) boxes (optionally not displayed) to represent the free building space. To distinguish the 
construction area from the yard area, we set the construction area in the site to 'construction 
area', which is displayed in blue. The obstructions and components must be placed above the site. 

We set the obstruction to black, which consists of a combination of multiple voxels. 
Obstructions are used to abstract all objects other than non-components that need to be avoided 
during component movement (e.g., equipment in the ϐield, vehicles, etc.). Obstructions are 
dynamic, which means that they can appear at any of the initial and target positions of the non-
objects within the boundaries of the site.  

The component is a combination of multiple voxels that are connected in an unidirectional 
manner (linear sequence of voxels). So in the environment, the length of the component can be 
customized and the section size is always 1x1 at the moment. The attributes of the component 
are id, type, initial position, target position, and construction state. The id is used to identify the 
uniqueness of the component. The type is used to describe the type of the component (e.g. site, 
obstruction, etc.). The initial position is the position of the component in the yard and is displayed 
as an orange line box. The target position is the ϐinal position of the component in the structure 
and is displayed as a pink wireframe box. The construction states are 'unbuilt', 'in transit', 
'arrived', and 'assembled'. In this environment, we simplify arrival and assembly as continuous 
actions; assembly is executed immediately after arrival. Thus, arrival and assembly are 
considered as one state. The 'unbuilt' state is represented by orange, 'in transit' by blue, 'arrived' 
by green, and 'assembled' by pink (see Figure 1(a-c).  

3.1.2 Simplified Construction Rules for Prefabrication 
To simulate the prefabricated construction, we deϐined the simulation environment as simpliϐied 
construction rules in three aspects: construction safety, construction behavior and construction 
process. We propose three rules for construction safety: 1. construction objects can not collide 
with each other, 2. components cannot move out of the construction area, 3. the initial position of 
components must be set in the yard area. 

During the construction process, we assign six actions to the component: up, down, left, right, 
front, and back. The component can execute only one of the six actions at one time, and each action 
moves the component by one base unit (one voxel in the environment) based on assigned action. 
Meanwhile, before the components enter 'in transit', to simulate the movements of the crane 
during construction, we will initialize the component positions. For example, the component will 
be erected for the column and moved up one basic unit in the Z direction. 

Figure 1. The simulated construction environment 
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Once each component is in 'assembled' state, the construction of that component is ϐinished; 
when all components are in 'assembled' state, the construction is ϐinished.  

3.2 Link Simulated environment to DRL 
In order to make the DRL algorithm embeddable in our simulation environment, we need to 
design the interface between prefabricated construction simulations and deep reinforcement 
learning. In this interface, the agent will learn the construction strategies by simulating the 
effective features in the environment. Therefore, we will design observations, actions, rewards 
and signals based on construction rules. 
3.2.1 Observation Space 
To transform the simulated environment information into valid features that can be used in DRL, 
we divide the original simulated environment information into two types: spatial information and 
object information and assign them to each basic unit (voxel). The spatial information includes 
the spatial coordinates (X, Y, Z) of each voxel in the environment. When the basic unit is 'air', the 
spatial coordinates are only (X, Y), and when construction objects appear, Z values are given to 
describe their height in space with states in object information. The object's information is a tuple 
with ϐive elements, which contains the features of the construction object. When the base unit is 
of type 'air', there are no construction objects at that position, and the object's information is a 
tuple of zeros. When the base unit is deϐined as 'site' or 'obstruction', only the initial position of 
the ϐive features is used to describe its height in space. When the base unit is of type 'component', 
it contains all ϐive features in its tuple. The elements are as follows: 

z Initial position: A scalar indicates the height (Zi) of the construction object in the 
environment. If the construction object is 'site' or 'obstruction', the position is ϐixed. If the 
construction object is 'component', the scalar includes the initial position for the 'unbuilt' 
state (Figure 1(a)). 

z Position in transit: A binary tensor represents the height (Zt) changes during the 
component in transportation. To avoid unnecessary over-exploration and to allow the 
policy to converge faster, we limited the actions. We set a feature to distinguish the 
number of actions of a component. The component must reach the target location in the 
environment with several steps less than X+Y+Z. Therefore, the maximum number of 
restricted steps of the component is X+Y+Z. When the number of steps of the component 
is less than this number, the tensor is [0, (Zt)] (Figure 1(b)(1)). When the number of steps 
of the component is greater than this number, the component is [1, (Zt)] (Figure 1(b)(2)). 

z Target position: A scalar indicates the height (Ztar) of the component's target position of 
height. 

z Arrived index: A booelan scalar is used to determine if the component has reached the 
target position or not. The scalar has value zero if the component has not reached the 
target position, and one if the component has reached the target position. 

z Assembled count index: This global index is used as a scalar that counts how many 
components are ϐinalized and 'assembled' (at target position). Every time a component 
is 'assembled' (arrived index = 1), this count index of assembled components is 
incremented with value one and re-assigned to the scalar (Figure 1(c)). 

3.2.2 Action Space 
As in the simulation environment, the component can perform six actions. Here we consider these 
six actions as six discrete choices, using six sequential independent integers (0-5) in an array to 
deϐine these six actions for the agent. Correspondingly, 0, 1, 2, 3, 4, 5 represents the six actions: 
forward, backward, left, right, up, and down. Each action moves a basic unit (voxel) in the 
direction ordered by the action. 
3.2.3 Reward and Done signal Design 
Generally, we use the dense reward policy (Z. Wu, Lian, Unhelkar, Tomizuka, & Schaal, 2020) to 
design our reward structure which means the agent will get a reward in each step. Only when the 
agent completes the task, it can get a positive reward; otherwise, any other action will get a 
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negative reward, and the agent's assignment is to ϐind the action policy that can get the maximum 
reward.  
 To converge the policy, we count the components so that the later the component is built, the 
bigger the reward will get when 'assembled' and the lower the penalty in the movement. To avoid 
over-exploration by the agent, we limit the maximum number of steps (𝑠) for the agent. When the 
agent's exploration exceeds the maximum number of steps, a ‘done’ signal is transmitted with 
value ‘True’, indicating that the episode is ϐinished and the ϐinal policy is not learned (no ϐinal 
reward earned). When all components are assembled, the same ‘done’ signal is also set to True, 
indicating that the episode is in the end and the ϐinal policy is learned (the ϐinal reward is earned). 
The reward design (R) is provided in equation (1). 

𝑅(௥଴) = ቐ
∑ ௥బ

ௌ೔
௦
଴ + ∑ 𝑛𝑆௜௡

௜ୀଵ , 𝑠 < 𝑙𝑖𝑚𝑖𝑡

∑ ଶ௥బ
ௌ೔

௦
଴ + ∑ 𝑛𝑆௜௡

௜ୀଵ , 𝑠 < 𝑙𝑖𝑚𝑖𝑡
 ( 1 ) 

Here, r0 represents the negative reward for each step and r0  �1 in practice; s represents the 
steps of the current action of the component; S represents the number of components; Si indicates 
the serial number of the current component being built (e.g., S3 for the third component being 
built, S3=3); n indicates the number of components, and the limit is the set limit number of steps. 

3.3 Deep Q Network (DQN)-based framework in a dynamic construction  
Based on the algorithm of DQN, we design a framework that can be used for near real-time 
construction simulation of dynamic construction environments. 
3.3.1 Deep Q Network 
DQN is a value-based deep reinforcement learning algorithm that combines deep neural networks 
and Q-learning. Q-learning algorithm is based on the markov decision process (MDP), which can 
select the action with a large q-value as the output according to the reward of the decision made 
by the agent to achieve the optimization of sequential actions. By combining with the deep neural 
network, instead of the traditional Q-learning method of querying the table to obtain the output 
of action, the q-value of each action is ϐitted by the neural network, which greatly improves the 
decision efϐiciency of Q-learning. The representation of the Q-value (𝑄(𝑠, 𝑎)) is shown in equation 
(2): 

𝑄(𝑠, 𝑎) = 𝐸𝑠௧~𝜀[𝑟 + 𝛾𝑚𝑎𝑥𝑄(𝑠௧, 𝑎௧)|𝑠, 𝑎] (2) 

where 𝑠௧  denotes the agent's state of the environment at time t; ε is the emulator which means 
that when the agent makes a decision, there is a small positive number 𝜀 of probability to select 
an unknown action randomly, leaving 1 - 𝜀 probability to select the action with the highest action 
value among the existing actions; γ is the learning rate which is used to control the rate of gradient 
descent; r is the reward obtained for that action, and 𝑄(𝑠௧, 𝑎௧) is the value of q for all possible 
combinations of situations in the next step. 

 
3.3.2 Structure of Framework 
Our framework has two layers, as Figure 2 displays, the initialization layer and the application 
layer, both of which use the same construction environment. We ϐirst enable the agent to learn 
the construction policy in the initialization layer, and then implement the update of the 
construction policy in the dynamic environment with obstructions through the application layer. 

In the initialization layer, the initial location of the components is randomly set at any yard 
location and no obstructions are arranged. This environment is used to train the components to 
plan the construction process in any layout automatically. When the initialization layer is 
completed, we save the trained neural network as the basic construction policy of the 
construction environment. In the learning process, we save the policy learned in the current 
episode every certain number of learning times, and test the success rate of the policy that can 
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accomplish the construction, run the current policy in the current environment a certain number 
of times, and end the learning when the success rate reaches the set requirement. 

In the application layer, we assume that the site layout has been completed, so the initial 
position of the components is designed. In order to simulate the possible site changes in the 
construction environment, we add obstructions to the route of the components. When the 
construction policy is not affected by the environment change, the results of the trained neural 
network are maintained for simulation, and when the obstructions affect the construction policy 
(collision occurred), the simulation is stopped and the trained neural network is re-trained with 
the practice environment as an observation—training until the agent learns a construction policy 
that meets the requirements and saves the updated neural network as the new policy. When the 
trained neural network is run in the practice environment for the ϐirst time, we need a small trial 
(10 times in practice) without obstructions to conϐirm the best policy for the practice layout. So, 
we will record the rewards of each episode and use the policy of the episodes with the highest 
reward to the simulation. 
 

4 Experiments 
We use Deep Q Network (DQN) with OpenAI's stable-baselines library as our DRL policy and 
design one experimental environment to test the construction simulation of one single column 
under our framework. 

4.1 Experimental Environment 
In our experimental environment, the site environment is X=15, Y=15, Z=6, the construction area 
is the light blue area as displayed in Fig. 3, and the column's length is 4.  
 In the initial environment (initialization layer), the initial positions of the components in each 
episode are set randomly in an arbitrary non-construction area environment. As shown in Figure 
3(a), the orange voxels represent the initial position of the column, and the pink wireframe voxels 
represent the target position of the column. 
 In the application environment, the initial positions of the components are set in a determined 
non-construction area environment and one or multiple obstructions of height 2 and length 3 will 
appear in the action path of the component.  As shown in Figure 3(b), the column is set at a ϐixed 
initial position and the trained neural network is imported into the current environment to get 
the construction path planned by the agent. After that, the obstruction is set according to that 

Figure 2. The framework of DQN-based construction process planning 
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path. Figure 3(b)(1) displays the unchanged construction environment, Figure 3(b)(2) shows the 
occurrence of one obstruction in the environment, Figure 3(b)(3) shows the occurrence of two 
horizontal obstructions, Figure 3(b)(4) shows the occurrence of one obstruction close to the 
target position. So, in short, 4 scenarios are tested within one and the same overall environment. 

4.2 Setup DQN 
For our experiments, we use the DQN policy and set the γ to 0.0005, the 𝜀 to 0.99. According to 
the experimental setting, we assign a step limit of 15 (site width) for the component, and the 
maximum number of steps for the agent in experiment 1 is 36. When the agent learning success 
rate reaches 100% in the initialization layer, we output this policy as our trained neural network. 
In the application layer, we select the episode with the largest reward in the 80% success rate 
(based on this policy, eight times successful construction for every ten tests) sample as the ϐinal 
construction policy. We test the success rate of the components every 2000 steps to determine 
whether the construction policy achieves an 80% success rate. 

 

4.3 Findings 
Figure 4 shows the different construction policies given after the DQN algorithm update in the 
changing environment. In deep reinforcement learning, the learning of policy by the agent is 
usually monitored by recording the rewards and success rate during the learning process. Here, 
we use the success rate to validate: 1. whether the agent can learn and update the construction 

Figure 3. The experimental environment for a single column 

Figure 4. Different construction policies in changing construction environments 
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policy, 2. compare the required steps for policy updates in different obstruction scenarios. 
 

4.4 Results 
The results of the success rate of the agent by testing every 2000 steps are shown in Figure 5. 
According to the success rate in Figure 5, we have the following results: 
1. We ϐind that based on the DQN method, the agent learned an appropriate construction policy 
in all scenarios, 
2. By comparing Figure 5(b) and Figure 5(d), we observe that the agent can learn the 
construction policy faster when the obstruction is closer to the target position, 
3. Through Figure 5(c), we notice that the learning steps of the agent become longer when the 
number of obstructions increases. 

4.5 Discussion  
Our framework implements near real-time construction process planning in the experimental 
environment. For a single component, the trained neural network can achieve automatic 
construction process planning under any layout within the environment, and when the 
environment changes, the agent can still update the construction policy and complete the 
construction autonomously. 

5 Conclusion 
In this paper, we propose an AI-based framework for construction process planning in dynamic 
environments, and we validate our framework in a simple 3D environment to achieve near real-
time construction process planning for a single component in a dynamic environment. We 
propose a framework based on the DRL algorithm that is introduced into the construction process. 
In a simpliϐied simulation environment, we train a neural network oriented to the construction 
process of a single component. With this trained neural network, the component’s transport path 
can be planned under any initial site layouts. Meanwhile, during the construction process, when 

Figure 5. The success rate of different environments 
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the change of site environment affects the component's transport path, the component's trained 
neural network will be updated according to the change of environment and a new transport path 
will be planned in real time. 
 While the research shows valuable preliminary results, the study suffers from the following 
limitations: 1. currently, we have tested the framework in a simple 3D simulation environment 
based on voxels, and further research is needed to extend the approach to BIM models 
(voxelization); 2. this experiment was performed only for a single component and the number of 
components needs to be increased; 3. the framework has high requirements for computational 
power, since in realistic construction scenarios, the framework needs to perform real-time 
calculations (within robot) on the changing environment and feedback the results. Therefore, 
computing power within robotic devices is one of the primary considerations affecting the 
efϐiciency of the framework. 
 Our future research is based on the above limitations: 1. to extend the framework to the BIM 
model; 2. to realize the construction process planning of multiple components and apply it to 
small-scale prefabricated structures. 
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