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Abstract 
Stack effect adversely affects heating loads in high-rise buildings due to the excess infiltration 
caused by the pressure differentials. Mitigating the effects phenomenon is crucial to achieve 
ambitious energy targets such as Canada’s commitment to COP21. A novel data-driven modelling 
approach is leveraged to predict if stack effect is problematic based on the weather for the case 
study building. The study investigates machine learning strategies by applying classification 
metrics to determine the most suited for stack effect modelling. It also provides the framework 
for a digital twin to predict and mitigate stack effect, serving as the foundation for the 
development of recommender algorithm, which will use the classification within the DT to test a 
range of potential control strategies and recommend the optimal approach (based on minimum 
energy cost to achieve stack effect control) to facility management staff. 

Keywords: Stack Effect, Machine Learning, BIM  

 

1 Introduction 
Stack effect is the pressure differential and resultant rapid upward air movement caused by 
natural convection (Wilson & Tamura, 1968). In conventional high-rise buildings, there are 
openings at the top (vents) and bottom (entrance), which allow cold (winter) or warm (summer) 
air to enter the building. The warmer air rises above the cold, resulting in a linear pressure 
differential distribution, as shown in Figure 1. 

Figure 1 Stack Effect in Heating Season Visualization based on Wilson & Tamura (1968) 
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���������������������ǡ�����������������������������ϐ�����������������������������������������������
plane, and increased ������ϐ������������������Ǥ�During the cooling season, the effect is reversed and 
�����������ϐ���������������������� as it can drive natural (passive) ventilation (Yu, et al., 2017). 
Stack effect is generally undesirable, however, and is estimated to contribute to 10.27% of the 
heating load in high-rise residential buildings (Yoon, et al., 2019), making its mitigation a 
�����ϐ������consideration for energy conservation. Occupant health and comfort is another key 
concern as the additional air movement due to stack effect causes unwanted noise in elevator 
shafts (Lovatt & Wilson, 1994), movement of pollutants such as airborne viruses (Lim, et al., 
2011), and smoke (Zhang, et al., 2006), alongside potential thermal comfort issues.  

���������������������������������������ϐ��������������Ǥ��hysics-based models have been used to 
simulate stack effect in case study buildings to investigate potential countermeasures (Lim, et al., 
2020) but are limited by: the need to perform large scale testing to acquire data such as air 
leakage, the large computational processing power required, and the resultant model complexity. 
With the application of data-driven techniques to other aspects of building performance, we 
believe there is promise in such an approach, however there is a paucity of such studies. This 
paper thus makes a novel contribution of a grey-box approach leveraging machine learning 
����������������ϐ����������������������predict stack effect. This builds on a previous grey-box 
model (G1) that used return air temperature as a proxy for thermal comfort issues arising from 
stack effect (Chang, et al., 2021), this time considering temperature differences between the duct-
���������������������������������������������������������ϐ�����������������Ǥ����������������
(G2) can thus identify high rates of ������ϐ��������� and uses this for stack effect prediction. In this 
paper, it is compared to G1, which was updated to extend its domain to the shoulder season. Data 
was gathered from a case study building: a high-�������ϐ������������������to, Canada, for which a 
Digital Twin (DT) is being developed. In the next phase of research, the stack effect model will be 
validated with data from ϐ����-installed differential pressure sensors and will be integrated into 
a recommender algorithm, which will test a series of potential control strategies for a given 
weather forecast and set of operating conditions to control the stack effect at a minimal energy 
and carbon cost. This project is being conducted in collaboration with facility management staff 
to ensure that the DT will provide actionable information.  

2 Literature Review  
��������������������������������������������������������ϐ���������������������������������������
similar. Based on the work of Chen (2009), stack effect modeling methods can be distilled as 
follows: multi-����������ǡ���������������ϐ��������������ȋ�	�Ȍǡ�������������������Ǥ�The multi-
�����������������ϐ���������������� ��������� ������������������ ������������������������� ���������
interconnected, along wit������������������������������������������������������������ϐ����(Axley, 
2007). Yu et al. (2017) leveraged the multi-zone model to simulate the effect of stack effect in 
their high-����� ��ϐ���� �����ǡ� ���� ���� �������� ��������������� �������� ��� ���������� ���� �����
effective mitigation strategy. CFD is provides more accurate results when compared to the multi-
�����������������������������ϐ��������������������������ǡ���������������������������omputational 
power requirements (Chen, 2009). Wong and Heryanto (2004) studied opportunities to enhance 
natural ventilation with stack effect by implementing a CFD model, but was limited to one 
apartment unit due to the high computational demands. Coupled models combine the multi-zone 
method with data-driven modeling, in order to utilize their respective strengths and compensate 
the weaknesses. Yoon et al. (2015) utilized the coupled method to model a multi-residential case 
study building, where the multi-zone was used as the base model, and unknown parameters such 
as air leakage areas was inferred through genetic algorithms. The resultant model produces more 
accurate results compared to the multi-zone model ���� �����ϐ�������� ������������� ����������Ǥ�
When modeling stack effect, key parameters to consider are the airtightness of the building, zone 
temperature, zone volume, air leakage areas, weather data, and the HVAC characteristics (Yoon, 
et al., 2015).  

A validated model to simulate stack effect in a case study building allows various mitigation 
strategies to be tested to evaluate their impact. Lim et al. (2020) performed a comprehensive 
study on available stack effect countermeasures and their interactions. They divided the 
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countermeasures into architectural solutions and mechanical solutions. Architectural solutions 
������ ��� ��������� ���� ��������� ������������� ���ϐ���� ��� ���� ��������� ��� ���������� ��������� ����
tightness, adding interior partitions, or otherwise compartmentalizing the building (Lim, et al., 
2020). These solutions are effective in reducing the potential air leakage area that allows for 
uncontrolled air movement (Yu, et al., 2004). Mechanical solutions utilize the HVAC system to 
pressurize spaces within the building to mitigate the pressure differentials causing to stack effect. 
Mechanical solutions are more feasible to implement as they don’t require costl�������ϐ����������
the building envelope (Tamblyn, 1991), however, the correct pressurization scheme has to be 
������ϐ���� ���� ����� ����� ������ ��������� ��� the wrong approach can amplify stack effect in 
unpressurized spaces (Lovatt & Wilson, 1994). 

Data-driven modeling is rapidly rising in popularity in research as they allow for the creation 
of accurate models, while reducing model complexity and computational cost compared to 
physics-based models. Data-driven modeling is also known as machine learning, is split into four 
categories: supervised learning, unsupervised learning, semi-supervised learning, and 
reinforcement learning (Molina-Solana, et al., 2017). In the context of this research, supervised 
learning methods were the most relevant as they map the inputs to the outputs based on a given 
dataset to develop a relationship between these parameters from statistical learning. There are 
numerous statistical learning algorithms to choose from, with each using a fundamentally 
different approach in building a model.  

Despite the value of data-driven modeling, a research gap still exists with respect to applying 
this approach to developing a stack effect model. As a result, this study had no direct 
methodological precedents, and thus broader building system fault detection and diagnosis 
(FDD) studies were reviewed to inform algorithm selection. Five potential algorithms were thus 
������ϐ���: Linear Discriminate Analysis (LDA), which has been used to classify faults in chiller 
operation (Li, et al., 2016); K-Nearest Neighbor (KNN), used to successfully diagnose multiple 
fault classes for solar PV systems (Madeti & Singh, 2018); Random Forest (RF) and Support Vector 
Machines (SVM), which both provided very good results for non-condensing boiler faults (Shohet, 
et al., 2020); and Multi-Level-Perceptron (MLP), also known as a feed forward approach for 
����ϐ���������������������ǡ�used ��������������������������������������������������������������ϐ����
buildings (Capozzoli, et al., 2015). 

3 Methodology  
The study adopted the traditional method of creating a predictive data-driven model of stack 
effect, which was integrated with BIM visualizations for use as a facilities management tool. 
Figure 2 ��������������������ϐ����for the G2 model. The steps have been split as follows: (1) Data 
Collection; (2) Data Visualization and Pre-processing; (3) Model Training; (4) Model Validation 
and Recalibration; (5) BIM Visualization and Integration 

Figure 2 Methodology Flow Chart 
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3.1 Data Collection  
Data was collected from a 223m case study building: a high-�������ϐ����������ʹʹ͵������ǡ������ͷ͸�
above-������ϐ��������������������ea of 123,422 m², located in Toronto, Canada. The 14th and 43rd 
ϐ����������������������������������, which service the lower and upper half of the building. For 
����������������������������ǡ��������������������������ϐ������ʹͻ����ͷͷǡ������������������������fers 
���ϐ������ʹ����ʹͺǤ�HVAC zoning is split into east and west for both the perimeter and interior core 
zones. Each zone is further split into a north and south subzone. The plaza is an expectation to 
rule as it only has the west and east zone designation.  

The key parameters to track were derived from Yoon et al. (2015)ǡ�����������ϐ�����������������
data points required to create a physics-based model for stack effect. Based on their work, the 
parameters for this research were distilled into the following categories: weather data, HVAC 
trends, and interior temperature. The variables captured from the sensor network are listed in 
Table 1. These variables were chosen as they are critical for creating a physics-based model, and 
did not require labour extensive testing. Building envelope air tightness, and leakage rates were 
also key parameters to create a multi-zone model but they were omitted as it was infeasible to 
measure these variables due to Covid-19 restrictions. Weather data was recorded from 
Tomorrow.io, a weather API (Tomorrow.io, 2020), while HVAC trends were pulled from Metasys, 
the building automation system (BAS) program. Pressure differential sensors data was not 
calibrated at this time due to delays related to Covid-19, but are planned to be implemented in 
future iterations of the this research. Data was collected from November 2020 to April 2021 to 
capture any seasonal variations from the heating season to the beginnings of the cooling season.   

 
Table 1 Data Collected for G2 Model Development 

Category  Parameter Unit Sensor/Support 
Program 

Weather Data  Exterior Temperature  °C Tomorrow.io 
Relative Humidity % 

Wind Speed km/h 
Wind Gust km/h 

Wind Direction ° 
HVAC Trend Supply Air Temperature °C Metasys 

Return Air Temperature °C 
Fan Flow Rate m3/s 

Interior Temperature Average Interior Temperature  
(based on VAV readings) 

°C 

3.2 Data Visualization and Pre-processing 
Data visualization was used to develop an understanding of the data behavior and identify any 
potential outliers, which was done in conjunction with data pre-processing. Data pre-processing 
is the stage right before model development, where the data is cleaned and resampled in order to 
create suitable dataset for machine learning. Data pre-processing was achieved through python 
using the pandas library (McKinney, 2011) for data manipulation. Outliers were removed based 
on the observations from the visualized data, and resampled to one minute intervals to keep the 
time series uniform for each data point. Missing values were linearly interpolated, and the 
resultant dataset was outputted onto an excel file.   

In previous work (Chang, et al., 2021), return air temperature (RAT) was used as the 
instrumental variable to detect stack effect-related thermal comfort issues. For this new work, 
���������������������������������������������������������������������ϐ�������������������������
duct-mounted return air temperature as a proxy to identify ������ϐ����������caused by stack effect. 
A range of temperature thresholds were considered for the lower and upper RAT, which is 
explained in the results. For the modeling results, t��������������������������������������ϐ����������
����������������ϐ�������������������������������������������ϐ���������, resulting in a temperature 
differential above 1°C indicating ���� ��ϐ���������� ���� ��� ������ ������ in the upper half of the 
building, and above 1ι�� ��� ��������� ���� ��ϐ�������������� ��� ������ ������� ��� the lower half of the 
building. These temperature thresholds were chosen based on expert judgment based on 
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envelope tightness, coupled with data observations to minimize noise generated from other 
�������������������������Ǥ�����������������ϐ���������������������in Table 2. 

 
Table 2 Label Classification for RAT as Proxy for Stack Effect 

 Upper RAT – Upper Avg Floor 
Temp  Difference < 1°C 

Upper RAT – Upper Avg Floor 
Temp Difference >= 1°C 

Lower RAT – Lower Avg Floor 
Temp Difference < 1°C 

Green - No air infiltration due to stack 
effect 

Green– Air exfiltration at upper half 
but no air infiltration on lower half 

Lower RAT – Lower Avg Floor 
Temp Difference >= 1°C 

Green –air infiltration but not 
exclusive to stack effect 

Red –Air infiltration and exfiltration 
due to stack effect 

3.3 Model Training  
The data-�������������������ϐ�������������������������������������������������������������������������
related issues in the case study building. The labels created based on the temperature difference 
�������� ���� �������� ϐ����� ������������ ���� ���� ������� ��� the output of the model, which 
���������������������������������ϐ�����������������������������������������������Ǥ�������������ǡ�����
the HVAC trend (except for RAT) listed in Table 1 served as the inputs of the model. The inputs 
were chosen since they have a physics-based relationship which will aid the model in learning 
process. �����������������������������������������������ϐ����ǡ���Ǯ�����������ǯ��������h was used 
for algorithm selection, whereby each algorithm was tested and ranked based on accuracy, recall, 
precision, and observations made from the confusion matrices.   

The dataset was split into 60% for training, 20% for validation, and 20% for testing. The 
models were trained and tested using data that spanned from March 2021, where the results of 
the G2 model were compared to the G1 model. To respect the temporal aspect of the data, the 
model is trained on data in the past, and predicts using a test set from the future. The model is 
trained and tuned using the training, and valid����������ǡ����������ϐ�����ʹͲΨ��������������ϐ�����
testing.  Each algorithm was trained and tested on the same dataset to avoid any biases in the 
results. Model training was implemented using python through the scikit-learn package that 
������ϐ���� ���� ����ϐlow (Pedregosa, et al., 2011). ��� ������ϐ���� ��� ���� ����������� ������ǡ� ����
following algorithms are best suited for modelling stack effect: LDA (Li, et al., 2016), KNN, RF, 
SVM (Shohet, et al., 2020), and MLP (Capozzoli, et al., 2015). 

3.4 Model Validation and Recalibration 
���� ������� ����� ���������� ������ ������������ ������ϐ�������� �������� ȋ
�ƴ���ǡ� ʹͲͳ͹Ȍ of 
recall/sensitivity, f1 score, precision, and accuracy. Accuracy calculates the percentage of correct 
predictions from the model, while recall, f1_score, and precision are used to measure the variance 
and biases in the results. They provide insight on the overall generalization of the model. No 
information rate (NIR), also known as null accuracy, is the accuracy a model would achieve if the 
largest class label was always picked. This was used a baseline to indicate if the model showed 
���������������������ϐ������ǡ����������������������������������������������������������������������
��������������������������������������������ϐ�������������Ǥ� 

 Based on the metrics, the hyperparameters of each model was recalibrated to optimize the 
cost function, and consequently the model accuracy.  The grid search technique was used which 
tests every possible set of hyperparameters for each algorithm to determine the best accuracy it 
can achieve with the training dataset. The downside to the grid search technique is the high 
computational cost as many iterations of each model is computed, but it is the most thorough 
method. Feature selection was done through eliminating features that contained a collinearity of 
0.97 or more, and data normalization were done to improve model performance.  After every 
algorithm has been optimized, the best model is chosen based on the accuracy, statistical 
�����ϐ������ǡ������������������������������������Ǥ� 
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Table 3 List of Tested Hyperparameters 

Algorithm Hyperparameter  Range Optimal for G1 Optimal for G2 
LDA Solver {svd, lsqr} Svd svd 
KNN n_neighbors {3,5,7} 3 7 
RF n_estimators  {25,50,100} 100 25 

max_depth {1,2,3} 3 3 
min_samples_split {2,5,7} 7 5 
min_samples_leaf {1,2,5} 1 2 

MLP Solver {lbfgs, sgd, adam} sgd adam 
SVM Kernel  {linear, rbf, poly, 

sigmoid} 
poly rbf 

C {1,10,50} 1 1 
Gamma  {scale, auto} auto auto 

Degree (for poly) {1,2,5} 2 1 

3.5 Digital Twin 
The DT (Figure 3) is currently under development and is based on an FM-BIM created in Autodesk 
Revit using Lean-Agile approach (McArthur & Bortoluzzi, 2018) to support the stack effect use 
case. As such, this model included the envelope components (walls, slabs, and openings), thermal 
zones, and all HVAC air-side equipment. 

Figure 3 Digital Twin of Case Study Building 

Because of the limited computational power within BIM, the DT pulls the BIM software, the model 
itself is a consumer of the data, with all data analytics undertaken using python and mapped into 
the DT using approach developed by Quinn et al (Quinn, et al., 2019), which transforms data from 
the data lake into nested tables, grouped by time, element ID, and point ID, respectively. This 
approach allows the desired time to be selected in a Dynamo interface for the model and all points 
to be updated with the latest data, including the predicted algorithm results and subsequent 
recommendations.  

4 Results 
Data was extracted from November 2020 to April 2021 to develop an understanding of the trends 
in the case study buildings. The results of the analysis are presented are organized as follows: (1) 
Data Visualization; (2) Model Development.  

4.1 Data Visualization  
Return air temperature from February 2021 and April 2021 were plotted against the outdoor air 
temperature to visualize the trends, shown in Figure 4. As illustrated in Figure 4 for February 
2021, the upper RAT remained relatively consistent throughout the month but the lower RAT saw 
�����ϐ���������������������������������������������������������Ǥ�The lower RAT had a higher 
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correlation with the exterior temperature than the upper RAT, which implied the presence of 
�����ϐ������������ϐ�����������������������������Ǥ�The upper RAT did not experience this behavior 
which indicated a presence of a constant heat source in the upper levels, providing evidence of 
stack effect based on RAT as a proxy. This was further validated by the thermal circuit model 
presented in the previous iteration of this research (Chang, et al., 2021). Figure 4 for the month 
of April 2021, visualizes the RAT and OAT as the weather gradually transitions to the cooling 
season.  The correlation between RAT and exterior temperature followed the same trend as in 
February, with the lower RAT correlating better. The trends in the lower RAT begin to remain 
more consistent as the outdoor air temperature increases. This observation reinforces the 
possibility of stack effect affecting the RAT as it expected the lower RAT will vary less during 
warmer weather due to smaller pressure differentials, and consequently less stack effect.  
 

 
Figure 4 Average RAT vs OAT – February 2021 (Left) and April 2021 (Right)                   

The temperature difference ����������������������������ϐ���������������e of the upper and 
lower zones are plotted on Figure 5. As illustrated in Figure 5 for February 2021, the lower half 
�������������������������ϐ����������������������������������������������, where a 1°C difference was 
chosen for the lower RAT ��������������������ϐ��������������������������������͵Ǥʹǡ to account for 
noise in the data. The temperature differentials during April 2021 showed good agreement with 
the observations from Figure 4 of the same month, as the differentials reduced in magnitude when 
the outdoor air temperature was greater.      

           
Figure 5 RAT - Floor Temp Difference – February 2021 (Left) and April 2021 (Right)         

4.2 Model Development 
����
ͳ�����
ʹ����������������������������������ϐ�����������������������������������������-driven 
model. The updated G1 model used the same input feature set as the G2 model {supply fan 
�����������ǡ�����ϐ��������ǡ����������ǡ�����������ǡ���������������������, relative humidity, hour, 
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day}. Both were trained and tested with the same data sets. As shown in Tables 4 & 5, all 
algorithms we�������������������������������������ϐ������������������������������������������������
with an accuracy of 92.2%. �����ϐ�������������������������������-only G1 results (Chang, et al., 
2021), most likely due to the greater difference between the training and testing datasets as the 
weather transitioned to the shoulder season. The results from the G2 model are presented in 
Table 5. MLP was deemed the best G2 model overall as it had high accuracy and f1_score which 
indicated good generalization capabilities. Conversely, LDA was the worst performer and did not 
���������������������������ϐ�������������Ǥ For the best performers of both models (SVM for G1 and 
��������
ʹȌǡ��������������������������������������������ϐ������������������������������������������
���������������������Ǥ��������������������������ϐ��������������������������������������������������
�����ϐ����������������������������son data points, and thus this was resampled to balance the 
classes in order to improve the recall of all algorithms. 
 
Table 4 Generation 1 (G1) Model Results 

Algorithm  LDA KNN RF MLP  SVM 
Accuracy 0.586  0.865  0.912  0.908  0.922  
Precision 0. 607 0.868  0.902  0.913  0.912  

Recall 0.613  0.839  0.925  0.888  0.933  
f1_score 0.584  0.850  0.909  0.898  0.919  

NIR 0.632 0.632 0.632 0.632 0.632 
 
Table 5 Generation 2 (G2) Model Results 

Algorithm  LDA KNN RF MLP  SVM 
Accuracy 0.565 0.934 0.898 0.955 0.928 
Precision 0.592 0.919 0.884 0.945 0.912 

Recall 0.600 0.947 0.919 0.959 0.941 
f1_score 0.562 0.929 0.892 0.951 0.922 

NIR 0.659 0.659 0.659 0.659 0.659 
 
To analyze the performance, the labels were plotted based on instances where the RAT indicated 
stack effect related issues which was the red label for both the G1 and G2 model. The other labels 
�����������ϐ��������������������������������������������������ose of this analysis. As shown in Figure 
6, using the 5°C lower RAT threshold that was initially proposed for the G2 model resulted in both 
�������������������������������������ϐ������������������������������������������������������������ǡ�
but differed when it came to raising the stack on stack effect issues. The confusion matrix showed 
����
ͳ�������������ϐ����16% more of the instances red than compared to the G2 model. As the 
���������������������������������ǡ�����������ϐ������������������
ʹ���������������y grew more 
���������������
ͳ��������������������ͳι�������������������������������ϐ���������������������identical. 
This is shown in Figure 6ǡ��������������ϐ���������������������������������7% difference. Based on 
these results the G1 model may be too sensitive to the noise in the dataset resulting in a higher 
percentage predictions classifying the instance as potential for stack effect related issues. As the 
G2 model uses a more robust approach, calculating the difference between the RAT and average 
ϐ������emperature, and using an appropriate temperature buffer some of this noise in the data 
may be mitigated for better model performance. Reviewing the time series plots of the G1 and G2 
labels (where 1 indicated stack effect issues and 0 meant no stack effect issues) showed that the 

ͳ������� ����������� ������ϐ���� ���������� ��� ��� ����������� frequently, especially during early 
March. It should also be noted that the majority of discrepancies occur during the operating hours 
on the weekday, which is further indication that the G1 model is sensitive to the noise generated 
from building occupancy.   
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Figure 6 G1-G2 Classification Matrix- 5°C Lower RAT (Left) and 1°C (Right) Lower RAT Thresholds        

5 Discussion & Conclusion 
Based on the results, the G2 model is a more robust framework for developing a data-driven 
model of stack effect based on RAT as a proxy when compared to the G1 model approach from 
the previous study. As shown in the confusion matrix, the G1 model is more prone to predicting 
instances where stack effect issues are arising. By using a 1°C temperature buffer to account for 
any noise in the dataset the G2 model reduced the number predictions resulting in stack effect 
related issues. Both the G1 and G2 models showed good results overall, with SVM being the best 
for the G1 and MLP for the G2. The high f1_score, precision, and recall also indicated that the 
algorithms showed good generalization of the model. The fact that KNN showed improved 
performance for the G2 model indicated greater separation between the classes, further 
reinforcing the hypothesis that the G2 model is a stronger approach moving forward due to the 
������������������������ϐ�����������������������������������������������Ǥ� 
 Due to delays related to Covid-19, the installed pressure differential sensors have yet to be 
calibrated in time for this publication but is planned for use in future work. Using the sensors, the 
G1 and G2 models will be validated through ������ϐ�������������������������������fferentials to 
gauge the severity of stack effect in the case study building. Another limitation was the lack of 
cooling season data available to test and train on, which will have a vastly different behavior when 
compared to the heating and shoulder seasons. By implementing more data into this process the 
generalization capabilities of these models can be improved in the future.  

This research expanded upon the possibility of using RAT as a proxy for stack effect by 
����������������������������������ϐ�������������������������������������������������������ϐ���������Ǥ�
MLP has proven to be the best algorithm during this round of testing, and could be potentially the 
best due to the ability to solve non-linear problems. As the framework for the digital twin is in 
place, future work will focus on validating the RAT as a proxy model with the differential pressure 
����Ǥ�������������������������ϐ�nal phase of this research in which the ������ϐ��������models will feed 
into the development of a recommender algorithm to create a stack effect mitigation tool for 
facilities management.  
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