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Abstract 
Despite significant research effort, there is a still a lack of complete solutions for automated 
compliance checking of regulatory, normative, and contractual requirements pertaining to 
buildings. This is reflected in numerous studies and prototype implementations targeting 
exclusively prescriptive requirements with numeric, unambiguous data, rather than descriptive, 
vague information in descriptive, performance-based building codes. We argue that a formal, 
systematic, logic-based approach to tackle qualitative performance goals and design 
requirements is not only valuable, but also necessary for enabling traceable, transparent code 
checking applications, and reducing laborious, error-prone manual processing. To this end we 
investigate a dedicated spatial reasoner, ASP4BIM, specifically designed for tackling implicit, 
uncertain, and fallible human knowledge about building-specific rules and constraints, such as 
objects’	functions	and	structures,	and	occupants’	experiences	and	behavior. Through empirical 
evaluations with large-scale buildings and real-world code provisions, we show that our 
approach increases the number of requirements eligible for digital processing. 
 

Keywords: Automated Building Code Compliance Assessment, BIM-based Model Checking, 
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1 Challenges in implementing complete BIM-based model checking solutions 
BIM-based	Model	 Checking	 (BMC)	 is	 an	 excellent	 demonstration	 of	 atomization	 of	 numerous,	
disparate	 requirements	 and	 sporadic,	 competing	 implementation	 approaches.	 Despite	 a	
signiϐicant	 increase	 in	 BMC	 solutions	 and	 code	 checking	 applications,	 there	 is	 still	 a	 lack	 of	
systematic	 consideration	 of	 descriptive,	 performance-based	 building	 codes.	 As	 a	 result,	many	
software	systems	tend	to	claim	prematurely	full-scale	automation	while	they	do	not	support	the	
interpretation	of	qualitative	codes.	 

Study	 by	 (Dimyadi	 et	 al.,	 2016)	 shows	 the	 limited	 number	 of	 relevant	 rulesets	 for	model	
validation	 is	 a	major	 bottleneck	 in	 enabling	 automated	 code	 compliance	 assessment.	 From	 a	
practitioner’s	 perspective,	 rules-of-thumb	 are	 indispensable	 for	 assessing	 a	 building’s	
compliance	 but	 are	 rarely	 codiϔied.	 An	 automated	 BMC	 tool	 should	 also	 be	 able	 to	 detect	 and	
correct	minor	modelling	inconsistencies	and	discrepancies	that	are	hard	to	discover	by	humans,	
but	this	is	not	possible	when	a	software	system	presumes	a	building	model	is	perfectly	accurate	
and	 precise.	 The	 fundamental	 issue	 here	 is	 the	 seemingly	 incompatibility	 between	 human	
commonsense	that	is	implicit	and	fallible,	and	formal,	procedural	algorithms	that	are	unable	to	
deal	with	 fuzziness	and	uncertainty.	As	a	result,	 state-of-the	art	BMC	software	systems	mainly	
tackle	simple	geometry	problems	such	as	clash	detection	with	Boolean	logic	formulas.	There	is	
also	 a	 considerable	 focus	 on	 de	 facto	 reasoning	 and	 computational	 efϐiciency,	 so	 that	 the	
underlying	algorithm	is	often	riddled	with	ad-hoc	assumptions,	magic	numbers,	and	numerical	
tricks	to	speed	up	runtime.	 
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There	are	 two	 types	of	 rules:	prescriptive	 (such	as	 the	minimum	clearance	 for	wheelchair	
users	is	1500	mm)	and	descriptive	(such	as	well	illuminated,	close	to	parking,	large	enough,	etc.).	
Most	prescriptive	requirements	can	be	directly	implemented	in	BMC	solutions.	If	the	metrics	or	
dimensions	 elicited	 can	be	mapped	 to	a	property	or	attribute	 in	BIM,	 the	 requirement	 can	be	
translated	to	predicate	logic	propositions	based	on	Boolean	Algebra.	 

In	 contrast,	 performance-based	 requirements	 describe	 abstract	 design	 goals,	 rather	 than	
concrete	design	solutions.	They	evoke	human-centric	concepts	such	as	“easy	to	understand”	and	
“line	of	sight”	(Li,	Dimyadi,	et	al.,	2020)	that	are	 inherently	ambiguous	and	elusive.	This	paper	
aims	to	reconcile	the	gap	between	qualitative	performance	goals	and	individua	compliance	paths	
with	a	declarative	spatial	“reasoner”	based	on	non-monotonic	logic.	 

A	 study	 by	 (Hjelseth,	 2012)	 shows	 that	 43%	 of	 the	 ISO	 21542:2011	 standard	 cannot	 be	
directly	converted	into	computable	rules.	This	study	further proposes	methods	TX3	and TIO	for	
identifying	patterns	in	performance	goals,	which	increases	the	number	of	requirements	eligible	
for	 digital	 processing	 up	 to	 83%.	 However,	 the	 residual	 part	 still	 requires	 extensive	 expert	
knowledge	and	speciϐic	competencies	to	enable	full-scale	building	code	checking	applications. 

The	research	question	is	therefore:	RQ	-	Can	we	use	a	declarative	spatial	reasoner	to	improve	
the	implementation	of	performance-based	codes	in	BIM-based	Model	Checking	software? 

2 Methods for interpreting requirements into computable rules 

2.1 Challenges in assessing qualitative building codes 
Consider	the	following	building	code	from	New	Zealand:	“Accessible	route	shall	give	direct	access	
to	 the	 principal	 entrance	 to	 the	 building	 where	 practical”.	 Terms	 “direct”,	 “principal”,	 and	
“practical”	are	ambiguous.	A	building	can	be	missing	some	key	information	(such	as	the	primary	
function	 or	 activity	 of	 a	 space)	 to	 derive	 “accessible	 routes”.	 Knowledge	 about	 a	 building’s	
structure	and	usage	can	be	undocumented	but	are	necessary	to	determine	“direct	access”.	These	
aspects	are	essential	for	enabling	complete	code	checking	applications,	and	crucial	for	providing	
clear	arguments	and	explanations	for	a	particular	checking	result	(Pass,	Fail,	or	Undetermined). 

In	Figure	1,	we	illustrate	the	role	of	“Reasoner”	to	integrate	various	processes	and	knowledge	
related	to	automated	building	code	compliance	assessment.	Speciϐically,	the	reasoner	negotiates	
the	uncertainty	and	fuzziness	of	real-world	data,	information,	and	human	practices,	by	providing	
a	uniform	and	systematic	 approach	 to	encode	vague	and	elusive	natural	 language	 statements,	
inaccurate	and	incomplete	building	models,	and	implicit	and	fallible	human	commonsense	about	
objects,	structures,	functions,	and	behavior. 

 
Figure 1. The role of “Reasoner” to integrate different code checking processes and knowledge. 
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Several	 practical	 difϐiculties	 arise	 when	 a	 building	 model	 undergoes	 increasing	 levels	 of	
detailing,	 disparate	multi-disciplinary	modiϐications,	 and	 continuous	 revisions	 and	 updates	 in	
light	 of	 as-built	 information.	 This	 makes	 deductive-only	 query	 languages	 unsuitable	 as	 they	
presume	 deterministic	 and	 complete	 information	 and	 thus,	 fail	 to	 capture	 the	 dynamism	 and	
uncertainty	 intrinsic	to	building	models.	As	a	result,	adding	or	retracting	information	can	make	
the	program	increasingly	brittle	and	obscure,	limiting	the	overall	modiϐiability	and	extensibility. 

In	 the	 following,	 we	 formulate	 three	 desired	 properties	 in	 checking	 intricate,	 qualitative	
building	regulations	against	large,	complex	buildings:	 
P1 – Executing formalized codes in a computational optimized way without altering code semantics.  
P2	 –	 Introducing	 new	 information	 and	 knowledge	 without	 changing	 the	 control	 ϐlow	 of	 the	
underlying	checking	approach 
P3	–	Verifying	and	validating	checking	results	with	transparent	rulesets,	explicated	assumptions,	
and	motivating	literatures	that	document	and	explain	choices	of	interpretation	 

A	common	approach	for	addressing	P1	consists	of	incorporating	execution	concerns	into	rule	
formalization.	Code	experts	supplement	natural	language	provisions	with	additional	assumptions	
to	speed	up	runtime,	e.g.	a	patient’s	room	is	visible	from	a	nurse	station	bounded	by	a	common	
wall	(Solihin	&	Eastman,	2015).	Programmers	encode	knowledge	about	best	practices	in	the	form	
of	magic	numbers	(“close	to	parking”	is	translated	into	20m).	Building	experts	augment	models	
based	on	ad-hoc	rules	and	complex	schema	mapping,	e.g.	an	,IF:DOO	element	touching	a	concrete	
,IF6ODE	 element	 from	 above	 implies	 structural	 support	 (Bloch	 et	 al.,	 2019).	 Such	 an	 approach,	
however,	 creates	deeply	entangled	 rule	deϐinition	and	 rule	execution,	which	 tend	 to	prioritize	
easy	and	practical	software	implementation	over	preserving	code	semantics.	 

2.2 Enhancing a logic-based reasoning engine with space 
We	propose	to	address	the	limitations	of	current	approaches	by	pushing	down	execution	concerns	
to	a	dedicated	 logic-based	reasoner	 that	natively	understands	spatial	axioms	and	automatically	
applies	 spatial	 optimizations.	We	 argue	 that	 such	 a	 reasoner	 generates	 solutions	 that	 are,	 by	
construct,	 logically	 sound	 and	 spatially	 consistent,	 and	 is	 able	 to	 deal	 with	 numerous	 code	
provisions	 and	 large-scale	 building	 models	 in	 an	 efϐicient	 and	 scalable	 way1.	 In	 this	 way,	
regulation	experts	can	focus	exclusively	on	code	semantics	without	worrying	about	whether	the	
formalization	is	easy	and	practical	to	implement. 

To	 this	 end,	we	 elicit	 a	 knowledge-driven	AI	 subϐield,	 Declarative	 Problem	 Solving	 (DPS),	
where	 a	 user	 is	 only	 concerned	with	 describing	 a	 problem,	 rather	 than	 how	 the	 solver	 ϐinds	
solutions.	Historically,	DPS	is	inspired	by	various	forms	of	commonsense	reasoning,	particularly	
explanation	where	a	person	ϐills	in	the	gap	in	a	way	that	is	justiϐied	by	background	knowledge	(a	
hinged	door	can	open	either	to	the	left	or	right)	and	consistent	with	observations	(two	doors	do	
not	clash	during	operation).	 In	practice,	DSP	applications	extend	Boolean	Satisϐiability	(B-SAT)	
problems	with	domain-speciϐic	rules	and	constraints,	e.g.,	a	space	cannot	be	above	and	under	a	
slab	at	the	same	time.	 

Figure	2	 illustrates	a	 typical	DPS	 software	where	 the	 solver	 is	 enhanced	with	 background	
knowledge	 and	 human	 commonsense,	 so	 that	 a	 user	 can	 express	 their	 high-level	 queries	 and	
problems	 in	a	natural	 language	way	 that	 the	 solver	 can	natively	 interpret	 and	execute.	 In	 the	
context	of	assessing	building	compliance,	code	engineers	formalize	natural	language	statements	
as	logic	rules	and	constraints	(bathrooms	shall	have	privacy).	A	building	model	is	translated	into	
a	set	of	facts,	and	we	ϐill	in	incomplete	and	missing	information	by	default	assumptions	and	what-
if	 scenarios.	We	 use	 inference	 rules	 to	 derive	 implicit	model	 properties,	 supported	 by	 expert	
knowledge	about	affordance	and	behavior	(an	opaque	screen	of	1700mm	provides	visual	occlusion)	
and	human	understanding	about	object,	 space,	 relationships,	 and	hierarchy	 (the	entrance	of	a	
building	is	contained	in	the	ground	level). 

 
1 Our reasoner of choice, Answer Set Programming (ASP), is specifically designed for commonsense reasoning and NP-hard 
problems using modern Boolean SAT solving techniques such as DPLL (Calimeri et al., 2019; Gebser et al., 2016). 
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Figure 2. System architecture of knowledge-driven DPS software.  

3 Ontology mapping between regulation terms and building models 
We	 argue	 that	 a	 reasoner	 bridges	 the	 gap	 between	 high-level	 performance	 goals	 such	 as	
navigability	and	individual	compliance	paths	such	as	well-placed	signage	systems.	The	reasoner	
documents	 the	 mapping	 between	 qualitative	 concepts	 and	 low-level	 discrete	 metrics,	 by	
explicating	a	code	provision’s	context	and	scope.	The	reasoner	also	maintains	the	provenance	of	
disambiguating	 alternative	 deϐinitions	 so	 that	 the	 parametric	 models	 used	 for	 quantifying	
concepts	such	as	visibility	can	be	traced	back	to	reference	documents,	e.g.,	 the	visual	 ϐield	of	a	
normal	adult	spans	114°	in	the	horizontal	plane	(Kondyli	et	al.,	2017). 

Figure	3	shows	the	role	of	a	reasoner	in	separating	rule	deϐinition	from	rule	execution.	Legal	
experts	supplement	building	codes	with	implied	knowledge	about	their	purposes	and	functions,	
e.g.,	to	ensure	bathroom	privacy	or	structural	validity.	This	knowledge	is	motivated	by	reference	
documents	in	forms	of	metadata	or	hyperlinks,	e.g.,	the	movement	pattern	of	a	building	occupant	
is	computed	based	on	supporting	evidence	from	user	studies,	experiments,	or	behavioral	theories.	
In	this	way,	rule	interpretation	is	traceable	and	conϔigurable.	Building	experts	augment	building	
models	 with	 their	 usage	 and	 behavior,	 e.g.,	 routine	 activities	 and	 normal	 operations.	 This	
knowledge	can	be	asserted	or	hypothesized	based	on	prior	experiences	in	the	form	of	inference	
rules,	e.g.,	a	room	is	assigned	property	+DQGLFDS$FFHVVLEOH	if	it	has	a	minimum	width	of	1200mm.	In	
this	way,	rule	formalization	is	transparent	and	modiϔiable. 

 
Figure 3. The role of reasoner to bridge performance goals and compliance paths. 

3.1 Explicating design intents in rule interpretation 
Consider	the	following	code	provision	from	the	Swedish	National	Building	Regulation	(Boverkets	
byggregler):	“Ramps	shall	be	able	to	be	used	by	people	with	limited	mobility.	The	maximum	slope	
shall	 be	 no	 more	 than	 1:12”.	 This	 code	 consists	 of	 a	 descriptive	 part	 eliciting	 a	 user-centric	
requirement	of	ramps	(usable	to	people	with	limited	mobility)	and	a	prescriptive	part	dictating	
normative	dimensions	(1:12).	However,	such	combination	is	inherently	incongruous.	We	argue	
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that	qualitative	goals	 are	explicated	 into	quantitative	metrics,	but	 the	underlying	assumptions	
and	 scope	 of	 validity	 still	 remain	 tacit.	 For	 instance,	 the	 Norwegian	 Building	 Regulations	
(Byggteknisk	Forskrift)	requires	a	maximum	slope	of	1:20,	but	permits	1:12	for	sections	up	to	3.0	
m,	which	shows	that	compliance	paths	are	far	from	unique	and	exhaustive.	 

In	 fact,	 the	 intention	of	 this	 code	 falls	within	 two	major	design	 concerns,	 accessibility	 and	
safety,	to	ensure	that	a	ramp	is	not	too	steep	for	a	wheelchair	user	to	easily	and	safely	roll	up	and	
down.	Other	factors	inϐluencing	the	ramp’s	usability	include	a	person’s	weight	and	forces	applied	
on	 the	 hand	 rims,	 and	 the	 ramp’s	width	 and	 surface	 friction	 factors	 (Bennett	 et	 al.,	 2009).	 In	
contrast,	 a	 single	value	1:12	 fails	 to	 capture	 the	multitudes	and	 interdependencies	among	 the	
physical	and	perceptual	characteristics	of	ramps,	but	merely	provides	one	static	layout	with	little	
justiϐication.	As	a	result,	a	compliant	design	does	not	guarantee	usability	and	comfort	for	all	users	
in	all	building	use	scenarios,	e.g.,	a	hospital	patient	with	walking	aids	descending	a	crowded	ramp. 

This	example	motivates	the	separation	of	general	performance	goals	from	speciϔic	compliance	
paths,	to	allow	designers	to	focus	on	user-centric	design	requirement,	rather	than	rigid,	obscure	
dimensions	and	properties. 

3.2 Framework overview 
The	 above	 examples	 provide	 the	 basis	 for	 a	 uniform,	 coherent	 framework	 for	 interpreting	
performance-based	codes,	as	design	goals	and	intentions	can	be	qualitatively	interpreted	using	
terminologies	from	human	ergonomics	and	psychology,	and	later	quantitatively	computed	using	
discrete	 metrics	 and	 parameters	 from	 research	 evidence.	 In	 this	 way,	 we	 enable	 a	 modular,	
evidence-based	 interpretation	 of	 performance	 objectives,	 so	 that	 code	 semantics	 sustain	 the	
minimum	amount	of	alteration,	but	every	deliberate	choice	of	interpretation	is	documented	and	
can	be	traced	back	to	motivations	and	rationales. 

Figure	4	illustrates	our	proposed	mapping	between	building	domains	and	regulation	domains	
with	explicated	types	of	occupants,	actions,	and	situations.	From	left	to	right,	spatial	experiences	
of	a	person	performing	a	certain	task	 in	a	particular	situation	are	qualitatively	described	using	
parametric	 design	 principles	 from	 reference	 studies,	 e.g.,	 an	 observer	 behind	 a	 crowd	w.r.t	 a	
visual	cue	will	have	reduced	visibility	(Li,	Fitzgerald,	et	al.,	2020b).	From	right	to	left,	performance	
criteria	are	delineated	based	on	speciϐic	user	proϐiles,	e.g.,	the	accessibility	of	a	walking	adult	in	a	
wayϐinding	 scenario.	We	 explicitly	 do	 not	 intend	 to	be	 comprehensive,	 but	 aim	 to	 provide	 an	
extensible	and	conϐigurable	approach	for	content-based	transformation	of	descriptive	codes,	e.g.,	
a	user	can	customize	 it	with	their	 choice	of	parametrization,	and	adapt	 it	 to	speciϐic	use	cases	
(patients	with	dementia,	urban	transportation,	ϐire	evacuation,	etc.).	 

 

 
Figure 4. An ontological mapping between building domains and regulation domains   
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4 ASP4BIM – a declarative spatial reasoner 
ASP4BIM	is	our	logic-based	spatial	query	language	for	representing	and	reasoning	about	large,	
complex	 building	 models2.	 ASP4BIM	 handles	 quantitative	 spatial	 functions	 (area,	 union)	 and	
qualitative	spatial	relations	(size,	topology)	 in	a	reliable	and	efϐicient	way	with	state-of-the-art	
geometry	libraries.	ASP4BIM	is	seamlessly	integrated	into	our	proposed	workϐlow	as	a	dedicated	
spatial	reasoner	for	checking	formalized	rules	and	constraints	against	real-world	building	models	
as	shown	in	Figure	5.	ASP4BIM	natively	supports	spatial	ontologies	(e.g.,	a	window	is	embedded	
in	 its	 hosting	 wall)	 and	 building-speciϐic	 rules	 and	 constraints	 (e.g.,	 a	 window	 cannot	 be	
constructed	before	its	hosting	wall).	In	this	way,	every	inference	drawn	from	an	ASP4BIM	adheres	
to	human	commonsense	about	space,	people,	objects,	and	buildings.	 

 

 
Figure 5. Our proposed workflow for checking qualitative building codes with ASP4BIM 

 

ASP4BIM	has	its	theoretical	foundation	in	Answer	Set	Programming,	a	prominent	DSP	paradigm.	
ASP4BIM	 combines	 the	 expressiveness	 of	 ontology	 language	 and	 the	 veriϐiability	 of	 logic	
programming	(Eiter,	2007),	to	support	queries	and	analyses	about	occupant’s	experiences	and	
behavior	in	the	built	environment,	e.g.,	“Does	a	person	at	entrance	A	have	direct	movement	access	
to	 lecture	 hall	 B?”	 and	 “How	 is	 the	 visibility	 of	 sign	 S	 to	 an	 observer	 at	 P?”.	 ASP	 is	 speciϐically	
designed	 to	 handle	 combinatorial	 search,	 thus	 ASP4BIM	 is	 well	 suited	 for	 navigating	 a	 vast	
landscape	of	disparate,	numerous	performance-based	codes,	supporting	evidence	from	research	
literature,	and	expert	knowledge	about	occupants,	actions,	and	situations. 

ASP4BIM	is	distinct	from	other	spatial	query	languages	based	on	deductive	databases	such	as	
GeoSPARQL	(Battle	&	Kolas,	2012)	and	SHACL	(Stolk	&	McGlinn,	2020)	in	that: 

- it	is	a	three-valued	logic	system	suitable	for	commonsense	reasoning	tasks	such	as	default	
reasoning	(by	default,	assume	P	 is	True,	unless	we	can	prove	P	 is	False)	and	abductive	
reasoning	(if	hypothesis	H	contradicts	observation	O,	then	retract	H)	 

- its	declarative3	character	enables	a	clean,	modiϐiable,	and	extensible	rule	encoding 
- it	is	integrated	with	advanced	search	space	pruning	techniques4	to	navigate	a	large	search	

space	of	requirements,	conditions,	scope,	and	criteria 
Therefore,	ASP4BIM	is	able	to	handle	uncertainties	and	incompleteness	in	code	requirements	

and	building	models,	as	knowledge	can	be	continuously	updated	and	revised	without	changing	
the	program	structure	 (P2).	As	 rulesets	 can	be	easily	modiϐied,	ASP4BIM	 can	 support	 various	
design	applications	 such	as	 construction	 safety	 control,	 operational	management,	 value-based	
renovation,	etc.	with	empirical	presets	or	custom	parameters.	 
 ASP4BIM	is	designed	to	be	a	conϐigurable	and	modular	software	system,	that	maintains	the	
motivation	 and	 rationale	 behind	 rule	 interpretation	 in	 forms	 of	 reference	 documents	 (code	
deϐinitions,	guidebook,	research	ϐindings,	experimental	data,	etc.). In this way, compliance results 

 
2 ASP4BIM enhances previous declarative spatial reasoning systems CLP(QS) (Bhatt et al., 2011), ASPMT(QS) (Wałega et al., 
2017), and λProlog(QS) (Li et al., 2019) by providing non-monotonic reasoning capabilities about real-world buildings with 
numerous, complex semantic and geometric details. 
3 That is, the order in which ASP rules are defined does not matter.  
4 Such as back-jumping, lazy grounding (Bogaerts & Weinzierl, 2018), and conflict-driven constraint learning (Eiter et al., 2012). 
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can be explained and argued about based on supporting evidence, and can be verified by checking the 
correctness of explicated assumptions and hypotheses about code semantics and building data (P3). 

4.1 ASP semantics 
An	ASP4BIM	program	 is	 composed	of	 facts,	 rules,	 and	constraints.	 In	 the	 context	of	 reasoning	
about	buildings,	semantic	and	geometric	information	is	extracted	from	a	BIM	and	transformed	
into	ASP	facts,	e.g.,	objects	G��	and	G��	are	hinged	doors,	G��	serves	as	a	ϐire	exit,	and	G��	is	contained	
in	the	ground	level	(Line	1-2).	A	(deductive)	rule,	denoted	as	3��4��«�4Q,	states	that	3	must	hold	if	
4��«�4Q	hold,	such	as	a	space	is	an	accessible	route	if	it	has	property	KDQGLFDS$FFHVVLEOH	(Line	3).	A	
choice	rule,	denoted	as	�^3��«�3P`���4,	states	that	exactly	one	3L	such	that	��L�P	can	be	deduced	if	
4	holds,	e.g.,	a	hinged	door	can	either	swing	inwards	or	outwards	(Line	4).	A	constraint,	denoted	
as	��4��«�4Q,	states	that	4��«�4Q	cannot	be	jointly	True,	e.g.,	a	door	cannot	open	inwards	if	the	door	
is	a	ϐire	exit	due	to	safety	concerns	(Line	5). 
 

� GRRU�G�����GRRU�G�����W\SH�G����KLQJHG���W\SH�G����KLQJHG�� 
� ¿UH([LW�G�����FRQWDLQHG,Q�G����JURXQG/HYHO�� 
� DFFHVVLEOH5RXWH�6�����VSDFH�6���SURSHUW\�6��KDQGLFDS$FFHVVLEOH�� 
� �^VZLQJV��'��LQZDUGV���VZLQJV��'��RXWZDUGV�`�����GRRU�'���W\SH�'��KLQJHG�� 
� ���VZLQJV�'��LQZDUGV���GRRU�'���¿UHBH[LW�'�� 

 

Solving	an	ASP4BIM	program	consists	of	computing	the	logical	implications	of	facts	and	rules	that	
are	consistent	with	constraints.	Considering	the	above	program,	door	G��	must	swing	inwards	due	
to	the	constraint	in	Line	4,	so	ASP4BIM	generates	two	models,	a	ϐirst	one	where	door	G��	swings	
inwards	and	a	second	one	where	door	G��	swings	outwards.	 

If	we	add	an	additional	constraint	that	ground	level	doors	cannot	swing	outwards	in	order	to	
avoid	collision	with	pedestrians	and	vehicles	(Line	6),	ASP4BIM	generates	only	one	model	where	
G��	swings	inwards.	Furthermore,	if	a	space	V�	has	property	KDQGLFDS$FFHVVLEOH	and	is	bounded	by	G��	
(Line	7),	constraint	in	Line	8	is	checked,	and	we	derive	that	V�	is	an	access	route	from	Line	3.	This	
triggers	 Line	 8	 where	 we	 state	 that	 a	 door	 opening	 into	 an	 access	 route	 cannot	 intrude	 its	
minimum	 clear	 width	 of	 800mm	 (required	 by	 NZBC).	 The	 @-preϐixed	 function	PLQLPXP:LGWK	
calculates	the	minimum	width	of	V�	in	the	presence	of	a	fully-open	G��	and	returns	it	as	an	integer-
valued	constant	 in	Line	9.	 If	 the	minimum	width	of	 V�	 is	 less	 than	800mm,	Line	9	 concludes	a	
violation	of	code	provision	G�������.	Otherwise,	the	building	is	compliant	by	Line	10.	 

 

� ���VZLQJ�'��RXWZDUGV���GRRU�'���FRQWDLQHG,Q�'��JURXQGBOHYHO�� 
� VSDFH�V����SURSHUW\�V���KDQGLFDS$FFHVVLEOH���ERXQGHG%\�V���G���� 
� #PLQLPXP:LGWK�6��'���� 

��DFFHVV5RXWH�6���GRRU�'���ERXQGHGBE\�6��'���VZLQJV�LQZDUGV��'�� 
� YLRODWLRQ�G����������� 

��DFFHVV5RXWH�6���#PLQLPXP:LGWK�6��'�������� 
�� FRPSOLDQW����QRW�YLRODWLRQ�B�� 

 

ASP4BIM	is	a	three-valued	logic	system	with	3,	�3,	and	QRW	3	respectively	denoting	proposition	
P,	its	classical	negation,	and	failure	to	prove	3.	In	other	words,	ASP4BIM	embraces	the	open-world	
assumption,	and	postulates	that	knowledge	is	not	exact,	certain,	and	complete,	but	can	be	revised,	
rectiϐied,	and	retracted	in	light	of	new	observations	and	evidence. 

4.2 Reasoning about building codes in ASP4BIM 
We	provide	a	modular,	ϐlexible	encoding	with	ASP4BIM	with	independent	formulations	of	 four	
stages	from	a	Knowledge	Representation	and	Reasoning	(KR)	perspective:	 

Representing	 buildings	 in	 ASP4BIM.	 We	 parse	 a	 BIM	 or	 IFC	 model	 into	 a	 symbolic	
knowledge	base	that	stores	semantic	data	and	an	external	spatial	database	that	stores	geometric	
data.	 The	 knowledge	 base	 encodes	 BIM	 objects,	 properties,	 and	 relationships	 as	 ASP	 facts,	
identiϐied	 by	 the	 underlying	mapping	 schema	 (IFC4,	 bSDD,	 IfcOwl,	 etc.).	 The	 spatial	 database	
maintains	 a	 dynamic	 link	 between	 object	 IDs	 and	 their	 geometric	 representations	 (bounding	
boxes,	 3D	meshes,	 2D	 footprints,	 etc.)	 and	 is	 continuously	 invoked	 from	 symbolic	 ASP	 using	
predicate	 UHSU��	 to	update	the	geometry	database	with	newly	derived	objects,	 in	sync	with	ASP	
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solving.	In	the	following	snippet,	a	bathroom	object	gives	rise	to	a	visibility	space.	The	new	object	
is	 added	 to	 the	 spatial	 database	 and	 produces	 a	 fresh	 object	 ID	 that	 is	 used	 to	map	 it	 to	 its	
geometric	representation	in	Line	14. 

 

�� Repr(Id, GeomId) :- product(Id), GeomId = @geom_id(Id).  
�� defineNewObject(P, R) :-  

  bathroomObject(B), P = @newId(B), R = @visibilitySpace(B). 
�� visibilitySpace(P) :- defineNewObject(P, _). 
�� repr(P, R) :- defineNewObject(P, R). 

 

Encoding	performance	goals	in	ASP4BIM.	One	major	challenge	in	formalizing	normative	
texts	as	 logical	propositions	 is	 that	deontic	operators	(obligation,	permission,	prohibition,	and	
exception)	 can	 lead	 to	 redundant,	 inconsistent	 rulesets.	ASP4BIM	 tackles	 these	 issues	with	 its	
native	 three-value	 logic	 encodings.	 For	 instance,	 a	 requirement	 upon	 (QWLW\	 is	 encoded	 as	 a	
deductive	rule	that	ϐires	when	(QWLW\	satisϐies	FRQGLWLRQ	and	is	not	an	H[FHSWLRQ	of	U��	(Line	15).	Then	
it	sufϐices	to	state	that	an	instance	H�	is	an	H[FHSWLRQ	to	prevent	U��	(Line16)	from	ϐiring.	In	this	way,	
knowledge	can	be	asserted	or	retracted	by	adding	or	removing	this	simple	fact,	without	changing	
the	program	structure. 

 

�� applies(Entity, r12) :-  
  condition(Entity), not except(Entity, r12). 

�� except(e1, r12). 
 

Maintaining	 supporting	 evidences	 in	 ASP4BIM.	 Rationales	 behind	 a	 particular	 rule	
interpretation	and	evidence	behind	a	speciϐic	approach	to	parametrize	qualitative	concepts	are	
maintained	 in	ASP4BIM	as	modules.	Consider	the	 isovist	of	an	object,	we	use	visibility	space	 to	
denote	the	region	from	which	the	object	is	visible	to	a	person,	computed	as	the	isovist	clipped	by	
the	person’s	visual	range.	This	range	can	take	different	values	depending	on	the	type	of	occupants	
and	 their	 visual	 acuity,	 based	 on	 ophthalmology	 studies.	 In	 the	 following,	 we	 use	 preϐixed	
statement	�LQFOXGH	to	indicate	a	speciϐic	reference	literature	(Line	17),	which	“grounds”	predicate	
YLVXDO5DQJH��	with	a	speciϐic	value	',	 so	that	 the	visibility	space	 is	computed	by	 intersecting	the	
isovist	with	a	sphere	of	radius	',	centered	at	object	%	(Line	18). 
 

�� #include  
�� visibilitySpace(B, S) :- 

  bathroomObject(B), isovist(B, P), visualRange(D), @clip(P, D). 
 

Resolving	spatial	queries.	Querying-answering	in	ASP4BIM	consists	of	deriving	ASP	answer	
sets	(stable	models).	Each	answer	set	is	computed	by	assuming	some	hypotheses	are	True	(such	
as	a	hinged	door	swings	inwards)	and	checking	if	their	implications	lead	to	contradictions	with	
other	program	rules	(if	the	door	is	a	ϐire	exit	and	by	deϐinition	must	swing	outwards).	We	have	
integrated	 ASP	 with	 spatial	 ontologies	 so	 that	 ASP4BIM	 predicates	 (e.g.,	 inside	 and	 overlap)	
adhere	to	spatial	axioms	and	calculi	about	form,	orientation,	topology,	and	mereology	(Li,	et	al.,	
2020d).	We	have	also	enhanced	ASP4BIM	with	(general)	spatial	data	structures	such	as	Q-tree	
and	R-tree	for	reliable	and	efϐicient	results. 

 

Operational	performance	of	ASP4BIM	on	 large	BIMs. Table 1 shows runtime statistics of 
ASP4BIM from our previous case studies of assessing building codes on real-world BIMs (Li et al., 
2020a; Li et al., 2020c; Schultz et al., 2020). The codes demonstrate various degrees of descriptiveness. 
Our experiments showed that ASP4BIM is fast enough to run on large-scale BIMs and is compact5 
enough to be integrated into other applications. In all case studies ASP4BIM was able to generate 
hundreds of enhanced objects (such as visibility spaces) with clean, modifiable encodings, thus 
provides a modular, portable approach to building code checking by allowing numerous, competing 
interpretations of qualitative rules to run simultaneously and concurrently.  

 
 
 

 
5 ASP4BIM is available as a standalone Python module at https://github.com/libeidihuhuhu/ASP4BIM. 
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Table 1. Runtime performance of ASP4BIM in assessing code requirements. 

 

5 Discussion and conclusion remarks 
Implementing	complete	building	code	checking	applications	is	not	only	a	technical	challenge	per	
se,	but	is	philosophically	complex	and	intricate	from	a	process	and	workϐlow	perspective.	This	
paper	 reveals	 several	 hidden	 caveats	 and	 bottlenecks	 in	 technology-driven	 solutions	 as	 we	
cannot	presume	that	data	and	information	are	complete,	certain,	and	deterministic.	This	is	also	
reϐlected	 in	 different	 approaches	 adopted	 by	 human	 practitioners	 and	 software	 systems,	 the	
former	is	inherently	implicit	and	fallible,	while	the	latter	requires	formal,	exact	deϐinitions	and	
well-deϐined	procedures	to	execute.	 

Therefore,	we	propose	a	dedicated	spatial	reasoner	that	is	highly	complementary	to	current	
approaches	 for	 encoding,	 documenting,	 and	 maintaining	 diverse	 knowledge	 related	 to	
regulations,	buildings,	and	occupants.	We	do	not	advocate	for	the	elimination	of	ambiguity	and	
vagueness,	but	 the	co-existence	of	prescriptive	and	descriptive	codes,	and	a	systematic	way	of	
interpreting	and	motivating	performance	goals	and	design	solutions	using	research	evidence.	 

We	opt	for	a	transparent	and	traceable	code	checking	solution	with	a	focus	on	explanation	
and	 argumentation,	 in	 an	 effort	 to	 promote	 human-centric	 design	 and	 integrate	 compliance	
assessment	with	other	domains	such	as	decision	support,	assess	management,	building	permit	
approval,	compliance	audits,	etc. 

As	a	next	step,	we	are	investigating	the	applicability	of	ASP4BIM	with	entire	volumes	of	codes,	
regulations,	and	standards.	We	are	also	 investigating	the	 integration	of	ASP4BIM	with	existing	
code	checking	workϐlows	and	approaches	such	as	Linked	Data	(Pauwels	et	al.,	2011),	Semantic	
Web	(Bouzidi	et	al.,	2012),	BPMN	(Häußler	et	al.,	2021),	VCCL	(Preidel	&	Borrmann,	2015),	and	
Machine	 Learning	 (Zhang	&	 El-Gohary,	 2019).	 The	 idea	 is	 to	 combine	 the	 strength	 of	 diverse	
methods	 in	 terms	 of	 availability,	 veriϐiability,	 portability,	 and	 scalability	 to	 support	 a	 holistic	
understanding	 of	 building	 requirements,	 and	 to	 tackle	 the	 speciϐicity	 of	 multi-disciplinary	
knowledge	and	information.	 
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