A Common Configurator Framework for Distributed Design,
Collaboration and Verification Across the Full AEC Supply

Chain

Dr. Al Fisher

Buro Happold, United Kingdom
al.fisher@burohappold.com

Georgios Tsakiridis
Grimshaw Architects, United Kingdom
georgios.tsakiridis@grimshaw.global

Alessio Lombardi

Buro Happold, United Kingdom
alessio.lombardi@burohappold.com

Dr. Maz Ahmad

The Manufacturing Technology Centre, United Kingdom
maz.ahmad@the-mtc.org

Andy Watts

Grimshaw Architects, United Kingdom
andy.watts@grimshaw.global

Abstract. The wider AEC industry has recently seen a growing number of platform-based
approaches, focusing on the deployment of DFMA and industrialised construction. A common
aid to this approach is the digital configurator, a software platform that allows for users to
explore options with predefined constraints such as kits-of-parts. This paper argues that this
approach has fundamental limitations, in particular that (1) configurators are developed as
standalone products to context-specific problems and that (2) current implementations lack a
capability for downstream and upstream flows of information between design and construction
processes of a building. This research proposes an open-source Common Configurator
Framework that institutes a separation between the authoring of objects for the design
processes and rules applied in the verification processes; a consequent standardisation and
reuse of sets of parts (objects) and sets of rules (specifications) is demonstrated. Additionally,
this work formalises the decoupling of the downstream part verification process and the
upstream design requirements definition, so that a Common Specification-driven design and
manufacturing process becomes possible. The work is supported by a reference
implementation based on the proposed Framework with a series of case studies, prototypical

mailto:al.fisher@burohappold.com
mailto:georgios.tsakiridis@grimshaw.global
mailto:alessio.lombardi@burohappold.com
mailto:alessio.lombardi@burohappold.com
mailto:maz.ahmad@the-mtc.org
mailto:andy.watts@grimshaw.global

configurators and examples of verification/validation of pre-existing kits of parts against pre-
authored specifications.

1. Introduction

The digital construction configurator is a common aid for the industrialised construction project which
has gained traction in recent years. It allows a user to configure a construction project within a
predetermined set of constraints, such as a kit of parts, an associated set of rules, and contextual
factors. The wider AEC industry has recently seen a growing number of configurators being
developed and publicised by practices, technology start-ups, software developers and others.

Recent studies have proposed a split of AEC configurators into the three categories of Planning,
Design and Production, and observed that the large majority of the developed configurators falls into
the first and second categories (Cao et al., 2021). We argue that this concentration is largely due to the
nature of the work at early stages, which simplifies the structuring of a configurator, but also limits its
scope and capabilities. In fact, attempts towards the development of an all-encompassing tool, which
covers all the processes that take place in the AEC industry are often considered extremely
challenging, due to the range and diversification of activities in design construction (Jensen et al.,
2014).

Additionally, we observed that another critical point of existing AEC configurators is that they are
developed in isolation of each other, often failing to recognize each other, therefore creating ad-hoc
solutions to meet a specific, one-off need, with a limited leverage of existing functionality.

Our proposal was developed under the Construction Innovation Hub, a UK-Innovate government-
funded initiative and targets these two issues by developing:

. A Common Configurator Framework (CCF), providing a common data schema on which
multiple configurators can be built, with the capability of passing data from one configurator to the
next. The CCF enables the implementation of configurators at all stages of the construction process —
planning, design and production — moving away from the concept of an all-encompassing tool to an
interconnected, modular suite of implementations that can work together to reach wider scope.

. A reference implementation of a chain of configurators, built following the above CCEF,
demonstrating the concept of interconnected configurators working across the supply chain.

2. Review of Configurators and platform-based design approaches in the AEC industry

The term “Configurator” is used broadly to encompass a variety of tools, interfaces and workflows,
used to simplify the creation of complex systems, which is done by allowing users to select
components from a set of alternatives - generally referred to as a kit-of-parts - in order to meet the
end-users’ needs and requirements (Cao et al., 2021). Examples range from bespoke standalone
desktop applications, web hosted apps or platforms, as well as extensions to existing proprietary
technology and software, like plugins to other tools commonly used for design, delivery, and
manufacturing. The configurator fulfils customer needs through the display and selection of products
and delivery or production methods, enabling different levels of freedom.

Some authors (Haug et al., 2012; Cao et al., 2021) have proposed different implementation paths
for Configurators under various Customer Order Decoupling Points (CODP). The CODP is a term
describing the process or point in the supply chain where the activities are no longer driven by
individual orders. The behaviour of processes upstream and downstream of the Customer Order

Decoupling Point is different: upstream processes are driven by forecast based planning information;
downstream processes are instead driven by actual customer orders. The Open Reference Supply
Chain Operations Domain formalizes these differences into several CODP strategies that are reflected
in possible implementation paths for Configurators. This work considered in particular the following
two common strategies:

- Engineer to Order (ETO): this enables customer-driven requirements — typically unknown or
not designed at the time of product design/engineering — to be recorded on the order, therefore having
the design/engineering finalized as part of the execution of the order. This is reflected in a
Configurator implementation path which is founded on the definition of rules for the design and
manufacturing.

- Configure to Order (CTO): the configuration of the product is part of the ordering process,
and the product is therefore made after the order is received, entered and validated. Typical CTO
processes work with modular products and with a menu-driven configuration process, with limited
choices; non-menu-driven configuration processes are typically classified as Engineer-to-Order
processes.

Recently, the need for configuration tools in the AEC industry has also been recognised by
significant client bodies. For instance, the UK’s Transforming Infrastructure Performance policy paper
sets a focus on the implementation of a platform approach for social infrastructure, by highlighting
that the technical solution for such an approach should include a digital catalogue, a set of “rules” and
configuration tools. Such client-based interest has been anticipated in the industry through the
development of several AEC commercial configurators:

- Project Frog, 2016: Focuses on interior design.

- Testfit, 2017: data-driven approach to smart urban planning.

- Archistar, 2018: assess and design construction sites.

- SpaceMaker, 2019: early-stage planning and design of real estate sites.

- PRISM, 2019: design of precision manufactured housing for London, UK.

- Hypar, 2019: platform for designing and sharing building systems.

It has been observed that these and other configurators can be fit into three main categories
depending on the project phase that they mainly target. The Project Planning phase (1), targeted by
Archistar and SpaceMaker, is largely the most tackled, as the speculative nature of early-stage
planning is leaves the most space for configurators to show their benefits. For example, customers can
be driven through the process of creating their desired apartment by real estate developers well before
construction is under way. Furthermore, algorithms can be employed at this stage for early-stage,
indicative estimates of performance indicators, which can later inform the actual design process. The
Project Design phase (2) is also a widely applied situation for configurators; in this case, AEC
professionals collaborate on e.g., detailed building models configured with pre-defined modules, and
generally the outputs are converted to actionable data models, such as BIM models, that can be used
for further development or analysis; Project Frog is an example of this. Finally, the Project Production
phase (3) is where configurators are still largely absent. The aim in this case is generally to achieve
mass customisation before the manufacturing process; typical outputs can be 3D BIM models, along
with related data for fabrication machines, permit drawings and material listings.

Whilst most of the Configurators observed fit in specific project phase categories, some
commercial configurators have taken an integrated approach across the planning and design process.
For example, PRISM and Hypar propose to encompass the various stages of design, although they still
fix certain decisions upfront: PRISM focuses on London housing, while Testfit mainly works on the
urban planning scale. Few studies explore the appropriate theoretical foundation for truly integrated
configurators (Cao et al., 2021), and all commercial configurators work in isolation from each other,
without leveraging or integrating functionality that could be extracted from different implementations.

This gives the opportunity for the definition of a Common Configurator Framework that can help
uniform the approaches to similar problems, enable inter-configurator communication and effectively
tackle problems that encompass all stages of the construction process.

3. A Framework approach to Configurator design

In order to define a common understanding and an agreed definition of the term configurator within
the context of industrialised design, manufacturing and construction within the AEC industry, we
propose the definition of a configurator as: a typical process of Input - Computation — Output used to
derive planning, design and manufacturing options constrained within a predetermined solution space
(domain or kit-of-parts) and possibly controlled though a User Interface and Graphical Views.

[Script

Objects Objects

@& =D

Specifications

Specifications

Computation

Figure 1. A Configurator: a typical process of Input - Computation — Output.

A configurator, as described above, is therefore a flexible mechanism for enabling wide
engagement and interaction with a process from many individuals at different stage of the construction
process. This can empower stakeholders across a project team, increasing collaboration and sharing
know-how across traditional discipline/organizational boundaries. It is thus the potential for such
configurators to be both easy to use and reusable, embed (and therefore make accessible) expertise and
user requirements, and hence greatly increase the potential for automation. This poses some key
challenges.

A first challenge is the transparent and robust communication of design assumptions and
constraints between parties (and hence configurators), in addition to design data. A model that relies
on sharing decentralized know-how must incorporate a mechanism for also sharing the appropriate
and valid application of this know-how. We address this aspect by formalizing Objects and Object
Specifications, which encode design data and design requirements in a Common Object Schema that
allows any configurator that is part of the Framework to inter-communicate. This additionally enables
distributed Verification and Validation to be achieved at transparently and robustly at scale.

Another key challenge is scalability. It is important to consider multiple stakeholder’s user-
requirements, whilst also designing for continuous reuse, customization and incorporation of future
requirements or logic. Furthermore, a key characteristic of any configurator is that it embeds technical
expertise. Reflecting on the highly distributed and wide-spread expert knowledge base that our
industry relies upon, effective knowledge and know-how capture across all aspects of a project from
conception to fabrication and operation is not a feasibly achievable task for a single team or limited
number of individuals. It is therefore possible to conclude that a “single configurator” product cannot
sufficiently address every detailed user requirement from all parties; instead, we suggest that a

scalable and distributed embedding and sharing of expertise can be obtained via a new approach that
allows many configurators to connect together. In order to address this, this work refines the definition
of Configurator, so that modularity and interoperability become possible.

--------------- Q- G
2
S;ipl
\:/

I. User Input User Input
3: Adaplation Adaptation
e CEED-

=l (= Il Object Specifications Object Specificationy SR =l =

= RO R - G- @

Computation >

Input Verification
<
Output Verification

Figure 2. Configurator internal structure with its
components labelled with numbers: (1) User Interface,
(2) Script, (3) Adaptation, (4) Graphical View

The User interface is the module that is directly available to the User and that offers direct control
over the inner logic of the configurator. This contrasts with the Script, which is imagined as a “black
box” to the user; the script essentially contains the logic that performs the main computations of the
configurator. Notice that the script performs some adaptation of the inputs and outputs: in order to
allow complete freedom over the language of the script, we ask that the script becomes responsible for
the adaptation of the format of the data — the object common schema — into the format that is
consumable by the Configurator. Finally, the Graphical View provides another direct interaction with
users, imagined as completely independent from the Ul, allowing full freedom of choice between
different software solutions for Ul and output.

3.1. Objects in the Common Configurator Frameworks

We introduce the concept of objects as one of the core components in the framework necessary to
facilitate exchange of information. An object is defined as any structured data (an agreed list of
Properties, with Values) used to represent part of the product being configured. These objects (or
collections of data) can then be shared in such a way that the configurator can operate upon them.
Examples of objects could be anything from ducts, walls, beams, fagade panels or component
connections; products such as switches or light fittings; to abstract entities like levels or grids or
indeed entire buildings.

The properties of objects can be anything from quantifiable metrics — such as length, height, mass,
performance criteria like U-value, resistance to fire spread, global warming potential, etc. — through to
less intrinsic quantities, such as cost or time. Object instances are taken by the Configurator as an
input, to then potentially be configured or validated as part of its process of computation, and then
finally the Configurator can also return new objects as part of its output.

LY 5 O

I8/ 58/ 08/
(LA A

&

Figure 3. “Objects” can be defined
representing building components as
above, as well non-physical or
abstract concepts such as grids,
spaces or locations etc.

Following an Object-Oriented approach in formalising structured data within the framework, an
Object is defined as a concrete instance of a certain Object Schema populated with specific Property
Values such that it represents a specific element of the building or design. The framework itself places
no constraints on the selection of schemas or ontological conventions other than that any selected
schema must be consistent between the Objects and the Specifications utilised within any given chain
of configurators. Thus, any classification system can be exploited, provided it can be used to define an
unambiguous predefined set of entities (referred to here as objects) with named data fields (or
properties).

Table 1. Example of properties for a “Column” object schema

Property name Description Possible values
Centreline Geometrical centre line denoting the column position and axis e.g., any Line
Cross section Cross section of the column along the entire length e.g., 300x500 mm
Material Material the column is composed of e.g., Concrete
Material Grade Grade of the material the column is composed of e.g., C25/30

For example, the “Column” schema can be given in JSON format, which is language-agnostic. In
fact, the schema may in theory be defined using any language such as C# or JavaScript for instance:

1A
2 : {..}, // some geometrical object describing the centreline
3 : “390x500”,
4 : “Concrete”,
5 1 “C25/30”
6 }

Figure 4. An example of a Column object in JSON format.

The properties are populated with values.

By leveraging this strategy, the Framework allows interchange to/from a variety of different
Configurators, regardless of their internal implementation. This is a key concept, reinforced by the
requirement of a Common Object Schema that allows coordination between different stakeholders
across different trades.

1 public class
2 A
3 public Centreline {get; set;}
4 public CrossSection {get; set;}
5 public Material {get; set;}
6 public MaterialGrade {get; set;}
7}

Figure 5. An example of a Column

schema in C#. This Column schema

gives instances of Column objects

3.2. Object Specifications in the Common Configurator Framework

One of the core components in the framework necessary to facilitate exchange of information is the
concept of Objects Specifications. An object specification defines a set of allowable values and
constraints for the object’s properties. This enables verification of object instances to be performed
against the encoded predefined checks — determining if the instance of the object meets the
specification and is valid or not.

The main objectives here are to formalize the concept of an Object Specification in a way that enables
clear and easy authoring, maximises human readability during both the authoring, maximises human
readability during the reviewing of both the object specifications and the results of the verification,
maximises transparency and traceability of checks being performed to allow easy identification of any
issues such as rules not respected, and what went wrong as well as conformation of compliance where
that is the case.

A potential approach to a programmatic definition of a Specification compatible with the proposed
Framework can be described as conditions that objects must respect. Thus, there is a way for the
Specification to distinguish between the objects that must comply with the given Conditions (rules)
and other objects that do not need to comply with those Conditions.

In other words, there must be a way for the Specification to filter the objects that must be verified.
Once we have identified the objects that must be verified, the Filtered Objects, a condition can be
applied to them, and they can be checked against this condition. We can say that a condition is simply
a rule, which does not specify who (or what) is to respect this rule.

Filter Condition Check Condition

A
(—H r \

“Is a Column” “must be shorter than 3 meters”

Figure 6. By decoupling the rule
from the targets of the rule, we can
see that this specification can be
composed by two conditions: a filter
condition that returns the “who”
(Columns), followed by a check
condition that gives the actual
verification rule (shorter than)

There are two main features derived from the decoupling of the target of the rule from the rule itself.
First, we maximise the modularity and reusability in the framework, including the ability to very
transparently identify and reference individual rules in any specification or indeed have many rules
applied to the same singular target. Second, we can then define who is to respect some rule by using
another rule to define this target. This second point is critical to enable the specificity and control of
targeted specification authoring and application necessary for use at scale on complex building
projects. In conclusion, we can say that an Object Specification is defined as:

Object Specifications = Filter Conditions + Check Conditions

This effectively can be seen as a sort of “two-step” data validation process: first a filter (or set of
filters) that returns the objects that should be checked, with second the checking rule(s) to be applied.

3.3. Defining a common Specification

The task of formalisation of a common mechanism for performing verification is important to enable
adoption of industrialised processes at scale. In addition, defining a means to communicate the
verification requirements or assumptions is needed for transparency, integrity and thus engagement
across the many distributed parties essential in any supply chain.

In our framework we define a common Object Specification as a compact mechanism to encode
rules that given objects can be checked against. These rules must be encoded in such a way that they
can be read and understood by both human authors, checkers, and reviewers as well as directly
actionable by a compatible digital configurator. Thus, a process of object verification can be
performed with confidence by any party or tool that has access to sets of objects and specifications.

By structuring logical conditions and rules in this way, Object Specifications can thus be authored
targeting any level of Component, Sub-Assembly, Interfaces between Sub-Assemblies or indeed
against the overall Building or Project itself. The latter of which is a mechanism for encoding
verifiable project level requirements as identified by the integrators, design team or client as part of
the process of defining the need.

VERIFICATION
RESULTS

QOBJECTS

2o
0

OBJECT SPECIFICATIONS

v

FILTER CONDITIONS
“ALL PANELS"

CHECK CONDITIONS
“Uvalue £ 1"

/s

Figure 7. Illustration of an Object Specification as defined
in our Configurator Framework. The combination of a Filter
Condition followed by a Check Condition to enable
transparent verification of objects. Here demonstrating
verification of a fagade panel based on its thermal insulating
performance.

4. A Framework approach to Configurator design

The main theoretical contribution of the Framework towards the achievement of a Common
Specification-driven design and manufacturing process is the formalisation of a decoupling between
the downstream part verification process and the upstream design requirements definition. With a
standard now established for distributed authoring and communication of both objects and object
specifications, a critical new capability for the project team is now unlocked. That is the practice of
recursive Verification and Validation (V&V) across an entire building or project. As illustrated in the
figure below, a cascade of specification authorship targeting the various hierarchies of elements allows
generation of a set of “coordinated specifications™ as the output of a Design Requirements Process.
These specifications in turn form the input to the Parts Verification stage of the project design and
delivery process. This conceptual split between the design requirements definition and then
verification against these specifications familiar form a Systems Engineering approach to design leads
to two types of configurators: Design Configurators - generating a coordinated set of specifications
and Part Configurators - operating on those provided specifications to ensure a fully verified and final
design instance is defined.

os DCc [+r4 PC PEQ
‘Object Specifications Design Configurators Coordinated Zone Part Configurators Pre-Engineered Objects
(PCS Kit of Rules) Specifications (PCS Kits of Parts)

Campanent
Varification

Figure 8. Design Configurators and Part Configurators
interacting through common set of Coordinated Zone
Specifications. The key feature to note here in this framework is
the powerful decoupling of the downstream part verification
process and the upstream definition of the design requirements.
It is by communicating through these central Coordinated Zone
Specifications that future extensibility and full flexibility across
the supply chain is enabled.

This defined process of Part Configuration can therefore support a move to industrialised
manufacturing, greater standardisation, and alternative production methodologies and
ultimately adoption of a platform construction system approach to design procurement.
Specifically, Part Configurators can utilise the Object Specification inputs to drive decision
making and selection/optimisation of the parts themselves — rather than just simple part
verification. Contrast engineer-to-order with configure-to-order in the figure below.

Engineer To Order (ETO) Configure To Order (CTO)

GEEs = =

Object to be assessed Verification Result Object Specification Selected object best
+ + satisfying specification

Object Specification Pre-engineered objects

00 O

1

Figure 9. Engineer to Order, an object representing
a proposed part is assessed against the required
specification with the outcome being a verification
result of either pass or fail. Configure to Order, the
best performing part is selected from a library of
pre-assessed parts with the output being a
compliant object

5. A Reference Implementation of the Common Configurator Framework (CCF)

Whilst the need for connecting many discrete configurators has been recognised above, a
reference implementation of the CCF has been the preliminary vehicle to test the main
concept with three aims in mind. First, to demonstrate the configurator interconnectivity
approach against practical applications proposed by both the Hub and the wider design
streams. Second, the work must highlight the robustness of the Framework specification and
the flexibility of the Digital Configurator approach. Finally, the reference implementation is
to demonstrate how the Hub’s platform-based design approach to both design requirements
definition and subassembly and Part procurement processes can be facilitated.

In order to meet the aims, a set of discrete and distinct configurators, object specifications
and encoded design decisions were implemented, as a strategic representative sample of the
Hub requirements. The implementation of the configurators was based on the following
observations. A complex design (i.e., a building) can be seen as a heterogeneous set of objects
to which rules can be applied. This conceptualization allows to define rules for the global
design while targeting individual objects (e.g., performance requirements for a modular
facade system, while meeting the overall building embodied carbon requirements, etc.).

On these bases, the implementation of the Common Configurator Framework facilitated
the critical chaining of individual configurators within different workflows, communicating
through a centralized repository of coordinated Object Specifications. The many different
configurators were intertwined in a non-linear way, representative of a typical platform-based
design approach. Thanks to this interconnection, and by coordinating the specifications
spatially, the framework implementation achieved the decoupling of the upstream design
process from the Subassembly and Part procurement process. This allowed to exchange
potential design components that could be verified and validated against centralized

performance requirements. The same centralized specifications were equally used to target
objects across a variety of customisable workflows, allowing for flexibility in the process.

6. Conclusions, Limitations, and Future Research

This work proposed a Common Configurator Framework (CFF) that facilitates design and
manufacturing best practice. The framework leverages a generalised approach via
implemented Objects, Object Specifications and interconnected Configurators; it enables and
encourages a modular and incremental implementation of a digital platform construction
system, extendable with further modules over time. Therefore, the work allows any
configurator developed in accordance with or adjusted to adopt the CCF to be truly integrated
with any other CCF configurator. This in turns enables true integrated approaches to both
Design and Construction workflows. The work demonstrates how this approach can enable an
incremental transformation of the construction industry, by progressively moving towards a
platform construction system model, utilising simultaneously Configure to Order, Engineer to
Order and traditional methods across both sub-assemblies and different components of the
same project.

At the same time, a number of factors that limit the adoption potential of the CCF have
been identified. In terms of governance, further work and collaborations are needed to
facilitate the encoding of specifications and objects. This would benefit from the
standardisation and streamlining of the verification process of parts, through the introduction
and adoption of Product Data Templates (PDTs) and the adoption of dedicated PDT and
product instancing authoring tools, which derive from an industry-wide consensus framework.
A potential limitation towards that direction would be the current inconsistency of the
digitalisation process and the level of digital literacy across the AEC industry. In parallel, the
adoption of the proposed encoding of Rules should be driven by further work on the
Rulebook. Rules can be extracted and encoded as Specifications, as described, by
distinguishing Filter Conditions and Check Conditions. This encoding will enable the
targeting of any heterogeneous set of objects and the flexible decoupling of configurators and
workflows.

Furthermore, from a technical standpoint, the CCF would benefit from case studies that
explore the relationships between human-driven and automated Validation and Verification
processes. This would allow to address a wider spectrum of scenarios, and of increasing
complexity, going beyond the simple numeric verification of certain parameters; for example,
how the acoustic performance of an interface between a curtain wall and its supporting
structural frame is affected by different design choices.

References

[1] CaoJ and Hal DI 2019 An Overview of Configurations for Industrialized Construction:
Typologies, Customer Requirements, and Technical Approaches, (2019 European
Conference on Computing in Construction, July 2019), 295-303.

[2] CaoJ et al,, 2021 ‘Cross-Phase Product Configurator for Modular Buildings Using Kit-of-
Parts’, Automation in Construction 123 (March): 103437.

[3] Haug A, Hvam L and Mortensen N H 2012 Definition and Evaluation of Product

Configurator Development Strategies, Computers in Industry 63, no. 5 (June): 471-81.
[4] Smiding E, Gerth R and Jensen P 2016 Developing Product Configurators in the AEC

[5]

[6]

(8]
[9]

Industry’, in ICCREM 2016 (International Conference on Construction and Real
Estate Management, Edmonton, Canada: American Society of Civil Engineers), 135-45.

Jensen P et al. 2014 Developing Products in Product Platforms in the AEC Industry, in Computing
in Civil and Building Engineering (2014 International Conference on Computing in Civil
and Building Engineering, Orlando, Florida, United States: American Society of Civil
Engineers, 2014), 1062—69.

Jensen P 2014 Configuration of Platform Architectures in Construction (Luled University of
Technology).

Haug A, Hvam L and Mortensen N H 2012 Definition and Evaluation of Product
Configurator Development Strategies, Computers in Industry 63, no. 5 (June): 471-81.

Open Reference, Customer Order Decoupling Point (CODP), https://orwiki.org/t:CODP, last
visited 14/01/2022.

UK Infrastructure and Projects Authority, Transforming Infrastructure Performance: Roadmap
to 2030, 13 September 2021, https://www.gov.uk/government/publications/transforming-
infrastructure-performance-roadmap-to-2030/transforming-infrastructure-performance-
roadmap-to-2030, last accessed 14/01/2022.

	3.1. Objects in the Common Configurator Frameworks
	3.2. Object Specifications in the Common Configurator Framework
	3.3. Defining a common Specification

