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 Abstract. Earthwork excavator, as an all-terrain and high-efficiency earthwork excavation 
equipment, has been widely used in earthwork sites. It is very necessary to analyze the work 
of earthmoving excavator by means of machine vision. In this paper, the action segmentation 
method based on long video was applied to the analysis and recogniton of the excavator’s 
action, and compared with other two current best action segmentation models using the real 
construction site video. Firstly, the sequence features of the excavator’s work video obtained 
at the cnstruction site was extracted through 3D convolution method, and then two differernt 
networks with the extracted sequence features were trained and tested. The experimental 
results showed that the average frame accuracy of MS-TCN model and ASRF model in 
excavator action segmentation were 82.6490% and 86.1042% respectively. However, for the 
recognition task under different working environment, the performance of the two models is 
quite different. The experimental results manifest that the motion segmentation model based 
on long video reached good results in excavator motion recognition in earthmoving operation. 
And it is helpful to analyze the long video working behavior sequence of excavator. This 
research contributes to the identification of critical elements that explains serial action and to 
the development of a new application scenario for vision-based behavior segmentation 
network. Additionally, the results of this study were helpful to automatically analyze the 
working efficiency and monitor the productivity of earthmoving excavators. Using this kind of 
data-driven decision can improve the work efficiency of earthmoving excavator and promote 
the project progress. 
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1      Introduction 

Earthmoving operations are necessary parts, such as dam construction, infrastructure work, road 

construction, and airport construction. In these operations, earth materials, such as soil, are dug from 

the ground and transferred from one location to another location. Most of the construction activities in 

these operations are driven by heavy equipment (Mahmood, B et al.2022). As a kind of all-terrain 



   

 

construction machinery, earthmoving excavators can be adapted to all kinds of poor working 

environment, and now has become an indispensable engineering equipment in many construction sites. 

Furthermore, an excavation construction site is a complex system with a high dynamics and 

instantaneity. It is a unique unstructured environment, just like any other construction sites 

(Naghshbandi, S. N et al. 2021). The operation of earthmoving equipment in complex and dynamic 

excavation sites will cause many safety risks and may result in accidental damages, such as worker 

casualties, equipment damage or property loss (Francis, R and  Bekera, B 2014).To make full use of 

excavators’ capabilities and improve the safety of earthmoving operations, it is essential to recognize 

their operation types continuously such as ‘Bucket Digging’, ‘Dumping Bucket’, ‘Turning’, ‘Moving’, 

and ‘Stopping’; through continuous monitoring of excavator operations, field managers can obtain 

detailed information about their operational efficiency and measure operational indicators such as cycle 

time , dele time and direct rate of operation (Golparvar-Fard, M et al. 2013). Based on these indicators, 

site managers not only can monitor whether the excavator operates normally, but also can estimate the 

time and cost required to complete repeated earthmoving operations to improve the efficiency of 

earthmoving operations (Kim, J et al. 2018); for instance, the time required for a given project can be 

computed based on 1) the average cycle time for excavating and transporting a certain amount of soil 

and 2) the total amount of soil to be excavated and transported. Then, site managers can make 

important decisions related to the project such as resource allocation, work planning and scheduling, 

and operator training based on the quantitative results and the associated analysis (Kim, J et al. 2019). 

This data-driven decision making can provide opportunities to improve operational efficiency and to 

complete engineering projects. 

2      Literature Review 

Video has long been used as an effective and inexpensive technology for productivity analysis on 

construction sites. However, as schedules of modern construction projects become more and more 

compressed, the fast and efficient characteristics of video analysis are in sharp contrast to the heavy 

work of intensive manual review process, and there is a greater demand for various production 

activities of video analysis on construction sites (Gong, J and Caldas, C. H 2010). Therefore, 

construction sites urgently need an efficient automated supervision method to improve site construction 

safety and improve work efficiency (Chi, S et al. 2009). One of the most widely used technologies 

today is an Internet-of-Things-based (IoT-based) system. The IoT-based approaches involve attaching 

electronic sensors to target objects and their components, collecting continuous point locations of the 

sensors, and analysing the physical motions of the equipment, acceleration, velocity, and orientation 

(Kim, H et al. 2018; Yang, K et al. 2017; Ahn, C. R et al. 2015; Akhavian, R and Behzadan, A. H 2016; 

Vahdatikhaki, F et al. 2015). However, during excavation, the working device probably collide with 

soil or rock, which may damage the sensor on excavators. 

In recent years, convolutional neural network has made great progress in machine vision and has 

become a research hotpot in the field of artificial intelligence (Shi, Y et al. 2021). In 2018, a model was 

proposed, which can automatically identify distributed feature representations of data and the problem 

of manually designing features in conventional machine learning had been solved (Huang, L. W et al. 

2018). Since the working state of earthmoving excavators is mostly a series of sequential actions, some 

researchers use action recognition based on pictures or video clips to identify the actions of excavators 

respectively, and then combine multiple actions according to the sequence logic of the actions of 

excavators to obtain the combined actions of a long-time sequence (Kim, J et al. 2019; Gong, J et al. 

2011; Chi, S and Caldas, C. H 2011; Chi, S and Caldas, C. H 2012; Kim, H et al. 2018). However, the 

application of long video-based action segmentation technology for excavators' action segmentation 

can better analyse its temporal action, eliminating the process of multi-action combination according to 



   

 

the timing logic of action. The traditional method of long video action segmentation mainly divided 

into two steps, by getting framewise probabilities and then putting them to high-level temporal models, 

recent approaches use temporal convolutions to directly classify the video frames (Farha, Y. A and 

Gall, J. 2019). In this research, Because of the excellent performance of these two networks in human 

motion segmentation and their lightweight models, we applied Multi-Stage Temporal Convolutional 

Network (MS-TCN++) and Action Segment Refinement Framework (ASRF) to the excavator action 

segmentation respectively, and compared the performance of the two methods (Li, S. J et al. 2020; 

Ishikawa, Y et al. 2021). 

3      Research Methodology 

In this study, we first adopted the 3D convolution method to preprocess the site video data and extracts 

its temporal features. Then we input the extracted temporal features into Multi-Stage Temporal 

Convolutional Network (MS-TCN++) and Action Segment Refinement Framework (ASRF) for 

training respectively, and compare the performance of the two networks. 

To improve the data quality, first we clip the collected video, discarding the missing fragments of the 

target and too much interference. Then clip the video into segments of one minute to two minutes long, 

and all video segments contain multiple tag actions. After that, we input the clipped videos into the 

C3D network to extract its temporal features. 

3.1 Features Extraction 

In this section, features extraction is needed in order to realized long video process. To extract the 

temporal characteristics of video data, this paper adapted one of the most popular and outstanding 

object detection models, Convolutional 3D(C3D) (Tran, D et al. 2015). This model was proposed by 

Tran, D and has been used extensively in action recognition. The network structure used for feature 

extraction of excavators is shown in Fig.1. Compared to 2D ConvNet, 3D ConvNet is implemented 

through 3D filter and 3D pooling layer, so it can better model temporal information. In 3D ConvNet, 

convolution is performed simultaneously in space and temporal, while 2D ConvNet only performs 

convolution in space. The 2D convolution output of one image is an image, and the 2D convolution 

output of multiple images is an image too. Therefore, 2D ConvNet loses the time information of the 

input signal, while 3D ConvNet convolutes in temporal while convoluting in space. It retains the 

temporal information of the input signal, resulting in the input volume.  

To extract C3D features, the original long video is divided in to 16-frame long clips with 8 frames 

overlapping between two consecutive clips. These clips are transferred to C3D network to extract 3D 

features. These 3D features are averaged to form a 2048-dim video descriptor which is then followed 

by an L2-normalization. Then we combine the 3D features of these clips according to the timing to 

obtain the temporal features of the whole video. The shape of the temporal feature of each video is 

2048*k (k is the number of frames of the video).  

Figure 1. Convolutional 3D(C3D) Network Structure 



   

 

3.2    Excavator Action Segmentation via Temporal Convolutional Network 

In this part, we use MS-TCN++ and ASRF to recognize and segment actions of excavator working 

videos, which are obtained from different perspectives and different working environments. In the 

work of excavator, our classification of excavators’ operation types is mainly divided into five kinds, 

namely ‘digging’, ‘dumping’, ‘swinging’, ‘moving’, and ‘stopping’. In the actual working process, the 

‘digging’ and ‘dumping’ are generally connected with the ‘swinging’. In order to better segment these 

two kinds of jointed action, we used the same discriminant method to segment the jointed out of these 

two kinds of actions in the calibration data set. Our method was that when we segmented and 

recognized these two kinds of actions, we mainly focused on whether there was contact between the 

action interaction between the bucket and the excavated material. When there is no contact between the 

bucket and the excavated material, we define it as the end of the ‘digging’ and the beginning of the 

‘swinging’. Similarly, when the bucket releases the excavated material, we defined the moment when 

the bucket becomes empty as the end of the ‘dumping’ and the beginning of the next action. 

3.2.1    Multi-Stage Temporal Convolutional Network for Excavator’s Action Segmentation 

First, we trained the MS-TCN++ model with a portion of the temporal features extracted from the 

video. The MS-TCN++ model consists of single stage TCN(SS-TCN) and multi-stage TCN(MS-TCN). 

The single stage consists of only temporal convolution layers, and pooling layers are not used in order 

not to reduce the temporal resolution. Also, to avoid limiting the size of input, the single stage dose not 

use the fully connected layers. The specific operations are shown in figure 2 

 

 

 

 

 

 

 

 

 

 
 

The first layer of SS-TCN is a 1*1 convolution layer, which aims to adjust the dimension of input 

temporal features to match the number of network feature maps. Then, this layer is followed by several 

dilated 1D convolution layers whose dilation factor is doubled at each layer. And a ReLU activation 

layer is added in front of each dilation convolution layer. The specific process can be described as 

follows: 

                                                                                                                                                                                  

(1) 

                                                                                                            (2) 

 

where Hl is the output of layer l, ∗ denotes the convolution operator, Wd ∈R3×D×D are the weights of the 

dilated convolution filters with kernel size 3 and D is the number of convolutional filters, W ∈ R1×D×D 

are the weights of a 1 × 1 convolution, and bd, b∈RD are bias vectors. The dual dilated convolution in 

SS-TCN can not only obtain a large perception field with fewer layers but also give lower layers a 

larger receptive field, which can reduce the complexity of the model and prevent over-fitting in the 

Figure 2. Overview of MS-TCN++ 



   

 

training process. The output of SS-TCN is used as the input of MS-TCN, whose effect is an 

incremental refinement of the predictions from the previous stages. 

3.2.2    Action Segment Refinement Framework for Excavator’s Action Segmentation 

In this section, we introduce the approach for action segmentation named Action Segment Refinement 

Framework (ASRF) which proposed by Yuchi Ishikawa. The model structure is shown in figure 3. The 

Action Segment Refinement Framework (ASRF) consists of a long-term feature extractor, an Action 

Segmentation Branch (ASB) and a Boundary Regression Branch (BRB). The specific process is that 

the video temporal features are first input into a long-term feature extractor, which provides shared 

features for the following Action Segment Branch and Boundary Regression Branch. Then the two 

branches output the frame-based action classification results and boundary probability respectively 

according to the shared features. First, Long-Term feature extractor is composed of temporal 

convolutional network with dilation convolution. Such network structure enables it to have full 

temporal resolution and obtain a larger visual field of perception. Its function is to obtain long-term 

dependence between action segments and extract rich features of videos for the following branches. 

Long-term features derived from Long-Term feature extractor are fed into Action Segment Branch to 

predict frame-based action classes. In order to better capture time dependence, identify action 

fragments, and prevent over-segmentation errors, simple Multi-Stage TCN is mainly used in Action 

segment Branch to carry out preliminary refinement of prediction results. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Overview of Action Segment Refinement Framework 

Although the superposition of TCNs improves the performance of motion segmentation, over-

segmentation errors still exist in the prediction. To solve this problem, we input the long-term features 

into the Boundary Regression Branch (BRB). The main work of BRB is to return the motion boundary 

probability in the video, and then refine the motion segmentation result in Action Segmentation Branch 

(ASB) by using the motion boundary probability. 

4      Findings and Discussion 

In order to compare the abilities of the two models, we identified three different excavator working 

scenes with the trained network, namely, the video shooting is stable and the key part of the excavator 

is not covered, the video shooting is stable but the key part of the excavator is covered, and the video 

shooting is unstable. From this we can determine which model is more practical. For the authenticity of 

the experiment, we collected the video of excavator work from the actual earthmoving operation site. 

All videos are captured using the same smartphone. Since the excavator in the video is carrying out 

earthwork, the operation type pf each frame of the excavator in the video can be marked. In order to 



   

 

consider various influences in the actual situation, the videos we collected were divided into the three 

categories mentioned above. We collected a total of about 60 minutes of video data, and the video ratio 

of three different excavator working scenes was about 2:1:1. The video resolution is 480×640 pixels 

and the frame rate is 30 fps for a total of 6480,000 frames of video data. We took 7/10 of the video data 

of various types as the training set, and the rest as the test set to test the training results of the model. 

The specific results and analysis are as follows. Table 1 shows the experimental results of MS-TCN2 

and ASRF for excavator action segmentation respectively. In terms of the accuracy of action 

segmentation, the average recognition accuracy of MS-TCN2 is 82.6490%, edit score is 86.9949, F1 

score is {90, 90, 70}. The frame accuracy of ASRF is slightly higher than that of MS-TCN, reaching 

86.1042%. The edit score and F1 score of ASRF are slightly lower than those of MS-TCN2, which are 

83.0808 and {88.5, 82.6, 75.4} respectively. 

Table 1. Comparison of Excavator’s Behavior Segmentation Performance between MS-TCN2 and ASRF 

Methods 

Evaluations 

Acc Edit F1@ {10,25,50} 

MS-TCN2 82.6490 86.9949 90, 90, 70.0 

ASRF 86.1042 83.0808 88.5, 82.6, 75.4 

 

By comparing the performance of the two models in three different scenes, when the shooting is stable 

and the key parts of the excavator are not blocked, the performance of the two models in excavator 

action segmentation is relatively good and the frame accuracy reach over 90%, as shown in Figure 4. 

When the shooting is stable, but the key part of the excavator is blocked. Compared with ASRF, the 

performance of MS-TCN is very poor, with more action recognition errors and over-segmentation, as 

shown in Figure5. In addition, we found that in unstable shooting scenes, both models had action 

identification errors and over-segmentation, and the accuracy of excavator action segmentation was 

very low, as shown in Figure 6. 

 

Figure 4. Long video segmentation result when video is stable and excavators are not blocked. 

 



   

 

Figure 5. Long video segmentation result when video is stable and excavators are blocked 

 

Figure 6. Long video segmentation result when video is unstable 

 

5      Conclusions and Further Research 

This paper applies long video action segmentation method to excavator action segmentation and 

recognition. The performance of two long video action segmentation methods in earthwork excavation 

is compared. Both methods performed well in the stable shooting with no shelter of the excavator. In 

addition, the study found that when the video shooting was stable but the excavator was slightly 

shielded, the ASRF model could still identify the excavator action type well with its advantages of the 

boundary regression branch. When the excavator is slightly blocked, the efficiency of the MS-TCN 

model in accurately identifying the action of the earthmoving excavator is reduced. And the two 

models have higher requirements on the stability of video shooting. 

In the actual construction site application, based on the long video to identify the working state of 

excavator, can automatically calculate the working time of earthmoving excavator of various types of 

work, analysis of the root cause of productivity deviation. For example, the longer duration of “swing” 

action may indicate that the excavator rotates at a large angle, which is one of the most critical factors 

to increase the mining operation cycle and reduce the mining efficiency. In addition, a long “digging” 

action of excavation may indicate the operating environment, such as high soil strength and great 

difficulty in excavation. And if it is found that “stopping” action frequently occurs in the work of 

earthmoving excavator, it may indicate that the arrangement of muck transport vehicle needs to be 

adjusted. These identification results can help the construction managers to train operators, arrange 

work and adjust the whole project strategy in time to improve the efficiency of earthmoving excavators. 
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