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Abstract. The emergence of the digital twin concept can potentially change the way people
manage built assets thoroughly. This is because the semantics-based model and linked data
approach behind the digital twin, as the successor of classical BIM, provide strong capability in
integrating data from fragmented and heterogeneous sources and thus enable better-informed
decision-making. Taking buildings as the case, this paper demonstrates the ontology-based
Information Management Framework and elaborates on the process to integrate data through a
common data model. Specifically, the Foundation Data Model (FDM) representing the operation
of buildings and embedded systems is developed and two patterns of integration architecture are
compared. To conceptualise all the essential entities and relationships, the building topology
ontology and BRICK ontology are reused and merged to serve as a feasible FDM. According to
the characteristic of asset management services that digital twins support, two integration
architectures are compared, including the data warehouse approach and the mediator approach.
A case study is presented to elaborate on the implementation of these two approaches and their
applicability. This work sets out the standardised and modularised paradigms for discovering,
fetching, and integrating data from disparate sources with different data curation manners.

1. Introduction

As an emerging concept, digital twins have been adopted to save costs and improve reliabilities in many
different industries, such as manufacturing, transportation, as well as Architecture, Engineering and
Construction (AEC) industry. Although there is no consensus about the definition of a digital twin yet,
the digital twin functionally acts as a set of virtual information constructs that fully describes the
potential or actual physical product from micro atomic level to macro geometrical level [1]. Leveraging
machine learning and artificial intelligence, the digital twin can deliver real-time monitoring, prediction,
optimisation and better-informed decision-making based on the ubiquitous data and information from
disparate sources. As the foundation of the digital twin, the information management process is
discussed in this paper. In the AEC sector, digital twins should integrate all useful information of built
assets (e.g., infrastructure, buildings, embedded systems, and components) throughout their entire
lifecycle, from design, construction, operation, maintenance ultimately to decommissioning [2].
Particularly, the operation phase represents the most prolonged and costly phase of an asset’s lifecycle.
Therefore, growing attention has been allocated to implementing digital twins dynamically to digest the



heterogeneous information from distributed sources for supporting asset management services during
operation.

The digital twin, in the AEC domain, is based on and was originated from Building Information
Modelling (BIM) for managing information. Since the proposal of the Industry Foundation Classes
(IFC), the information exchange and integration between segregated data silos are greatly enhanced [3].
The additional BIM dimensions, from 3D to nD, create a static and closed data environment where data
from various application domains (e.g., cost, material) are correlated to the 3D geometric model on
object levels. However, the BIM approach as a file-oriented exchange process that relies on Model View
Definition (MVD) implemented ad-hoc [4] is not flexible enough for the current prevailing fast-
changing and web-based information exchange landscape. Alternative to the legacy format, the linked
data approach based on semantic web formats (e.g., Resource Description Framework-RDF or Web
Ontology Language-OWL) is considered more suitable to combine different graphs of information due
to their expressiveness, flexibility and queryability in representation [2]. More importantly, in addition
to static data like geometric, topological, product data and other metadata properties, dynamic
information such as data streams from Internet of Things (IoT) devices greatly enriches as-is information
by providing real-time status from the actual operations. With the extensive adoption of IoT devices and
Artificial Intelligence (Al) technologies for built assets, the ontology-driven linked data approach
unlocks additional values: 1) creating a dynamic and web-like data environment capable of integrating
and making the best use of streaming data [5]; 2) representing learned data associations amenable to
machine learning algorithms [6]; and 3) allowing declarative inference as opposed to procedural coding.

The AEC and Facility Management (FM) industry is a highly fragmented data-intensive project-
based industry, depending on many different professions and firms. Despite the strong data sharing
intention, it remains challenging for various companies, mainly SMEs, to aggregate disparate data
distributed across files due to trust, privacy, ownership, curation and other issues. The Centre for Digital
Built Britain released a report entitled “the pathway towards an information management framework”
in 2020 [7], which sets out the guidelines for technical standards, processes and interoperability
frameworks to integrate and utilise multi-source machine-interpretable data, targeting BIM Maturity
Level 3. The so-called Information Management Framework (IMF) specifies the patterns of integration
architecture that aligns diverse information, static and dynamic, from various sources overlapping to get
a holistic picture of the built assets [8]. The pattern, alongside the Foundation Data Model (FDM) and
Reference Data Libraries (RDL), defines the digital twin. The FDM provide a consistent high-level
ontology describing the general concepts and relationships independent of a domain problem, while the
RDL points out the controlled vocabularies subject to the FDM in diverse domains, such as sensor,
observation, sample or actuator. Leal et al [9] summarised the commonly used industry data models and
reference data libraries identified through the Construction Innovation Hub survey, as shown in Figure
1.

The report outlines the pathway towards an integrated and web-like environment encapsulating data
across complex heterogeneous systems, but does not specify the implementation approach. Taking
buildings as the target, this paper aims to review potential practical implementations of IMF for
establishing building digital twins, and elaborate on the ontology-based processes to extract, transform
and integrate various data through a common data model and reference data libraries.

2. Literature review

2.1. Ontologies for buildings and embedded systems

A stable semantic basis serves as the backbone of building digital twins. In this regard, an array of
ontologies has been developed to standardise the representations of general and domain concepts and
definitions of buildings. According to the “level of generality”, these ontologies can be roughly
categorised into: 1) core ontologies, also known as upper or foundational ontologies, which define the
complete structure of concepts (e.g., stories, zones, etc.), relationships and properties, independent of
related to a generic domain or use case; 2) domain ontologies that further describe the entities, classes
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Figure 1. Industry data models and reference data libraries by application area [9].

or other information related to a generic domain or use case (e.g., Flow Systems Ontology).
Corresponding to the IMF, the FDM should be built upon core ontologies, as the basis for ensuring
consistent data across massive structured and unstructured sources. Once the information of a building
is formally represented using a common and shared language (i.e., FDM), it becomes understandable
not only by humans but also by automated computer agents, improving the effectiveness of information
representation and retrieval processes.

A building is a typical complex system, composed of not only structural components (e.g., walls,
beams, columns, floors, roofs), but also a diverse range of Mechanical, Electrical, and Plumbing (MEP)
facilities. To properly represent such a complex system, a comprehensive FDM is needed to convey
diversified information, geometric and non-geometric, spatial element and element, architectural and
systematic, with different Levels of Detail (LOD) and fidelity. Typically, two large clusters of ontologies
can be found, one situated in the building topology modelling, and the other in the building MEP systems
[e.g., Heating, Ventilation and Air Conditioning (HVAC) system].

First, regarding building topology modelling, Building Topology Ontology (BOT) is developed to
represent the core topology of the building, including not only the zones, elements, and their interfaces,
but also how they are related to each other (intersection, adjacency, containment) [10]. Designed to be
lightweight, the BOT gets rid of the complex hierarchies when compared with its competitors like
ifcOWL. Based on the BOT, several extended domain ontologies are proposed. These ontologies enrich
the vocabularies related to the products and elements, sometimes including their properties. For
example, there are Building Product Ontology (BPO), the smaller Building Element Ontology (BEO)
and MEP ontology simplified from IFC, and SAREF4BLDG ontology extended from the Smart
Appliances REFerence Ontology (SAREF) ontology. Geometric representations, seen as reference data,
can be linked to the central ontology [11]. To an extent, these ontologies can be combined with Semantic
Sensor Network (SSN) ontology or similar ones to incorporate observations and actuations of facilities
(e.g., sensors, thermostats). Second, for the building MEP systems, instead of focusing on the actual
building topology, or on the specific building products, the representation of the building systems and
sensing points is highlighted. Despite that IFC is theoretically capable of representing these systems, it
is often found to be insufficiently detailed by the engineers. The BRICK ontology and Haystack tagging
ontology have been proposed to model specific object types and properties for building MEP facilities



[12]. Of particular difficulty in this domain are flows, devices states, control logics, and sensor data
streams.

To guarantee the completeness of the building FDM, it is necessary to merge several complementary
ontologies for well-expressing buildings and systems, provided that no strong semantic conflicts are
included, and the appropriate information management strategy is followed to avoid redundancy
amongst certain ontologies. Reusing the existing ontologies is key in efficiently developing high-quality
ontologies, because it reduces the time and effort for the conceptualisation from scratch and increases
the quality of the merged ontologies by reusing knowledge that has already been validated.

2.2. Integration of multi-source data

Ample benefits are contained in integrating operational data streams residing in disparate sources [e.g.,
Building Management/Automation Systems (BMS/BAS), IoT sensors, wearables] and heterogeneous
formats for the building performance analysis. Each data source can have its own governing body,
probably appearing in different data formats, data schemas, semantics, and with different access
authorisation mechanisms. To turn heterogeneous data into organised information and ultimately into
systematised knowledge, it is necessary to build semantic correspondences between data streams and
static building contextual data in FDM [5]. Furthermore, fetching data freely and readily from
fragmented and heterogeneous sources is desired, not sacrificing the autonomy of individual data
sources. This paper argues that two main integration architectures can be distinguished, namely the data
warehouse approach and the mediator approach (see Figure 2).
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Figure 2. Architectures for integrating multi-source data streams.

2.2.1. Data warehouse approach. By assembling diverse data sources into a centralised data
warehouse, this approach fulfils the often-needed data cleansing, customisation, reformatting and
integration requirements through a process of Extraction, Transformation, and Loading (ETL). For
example, Gokce and Gokge [13] designed a data warehouse system, classifying and categorising
energy consumption data in a building management system using the information collected from BIM.
The advantage of the data warehouse approach is that the data in the warehouse are readily accessible,
and free from potential duplications, and semantic inconsistency thanks to the data cleansing and data
quality evaluation before entering the warehouse. However, the data owners yield their control of data,
relying on a centralised authority ensuring appropriate maintenance, use, update, and revocation of
data [8]. Moreover, given the increasing size of dynamic building data and the storage overhead of
repeated values, the centralised data warehouse has to auto-scale to meet the need.



2.2.2. Mediator approach. Instead of ingesting all data into a persistent location, the mediator
approach directly fetches data remaining in their original data sources through the Mediator-Wrapper
architecture. To deal with the prevalent heterogeneity and dynamic nature of the data sources, the
wrappers access each data source, retrieving and exporting data along with the source data schema,
while the mediator transforms the retrieved data into a unified and global data schema that is
sufficiently rich to accommodate heterogeneous data. For instance, Shahinmoghadam and Motamedi
[14] proposed an ontology-based mediation mechanism to realise the integration of BIM and IoT data,
by rewriting queries with reference to the ontology mapping between the entities of the BIM or [oT
ontology-based schemas and the global ontology-based schema. Essentially, it is close to the system
integration approach, in which individual systems are combined through APIs. While keeping the
anatomy of each system, a layer of content negotiation is enabled to map multi-source data. The
advantage of the mediator approach is that the underlying data sources are decoupled, and the
autonomy of individual data sources is maintained to the maximum. New data sources can be easily
plugged into the ecosystem. However, the lack of reconciliation means that there could be
inconsistency and redundancy issues for data stored in separate sources.

3. Research method

Effective information management for built assets needs to deal with several challenges, among which
data integration of heterogeneous data from autonomous sources is an important premise for follow-up
data analysis and decision-making. In accordance with the IMF defined by Hetherington and West [7],
this paper proposes a candidate Foundation Data Model (FDM) by merging the BOT and BRICK
ontologies in OWL, which can complementarily represent building topologies and MEP facilities [15].
Of course, this is not the only choice. The appropriate FDM can be established if the set of ontologies
(two or more) can and only represent all the most basic entities and relationships that exist in buildings
and systems. Note that no building product ontologies or sensor observation ontologies are included in
the FDM. This is because the domain-specific knowledge (e.g., the attributes of the product) can be
expressed in Reference Data Libraries (RDL) to avoid schema overhead as long as they can be easily
linked to the core data structure of FDM. Based on the proposed small and generic FDM, the hybrid use
of data integration architectures is recommended, weighing the pros and cons of the data warechouse
approach and the mediator approach and picking up the right one according to the specific asset
management service it supports.

To get an expressive ontology from BOT and BRICK, the inconsistencies and redundancies between
these two ontologies need to be handled. The Building Topology Ontology, developed by the W3C
Linked Building Data Community Group (W3 LBD CGQG), has demonstrated its strong capability in
defining commonly reoccurring design patterns in the Architecture, Engineering, Construction and
Facility Management (AEC/FM) domain. While the design of BRICK ontology focused on defining the
physical, logical, and virtual building assets with an emphasis on building operations. To match BOT
and BRICK ontologies, Schneider [16] defined the schema level alignments of BOT and BRICK in
terms of both classes and object properties. The semantic subsumption is defined to align associate
concepts in BOT and BRICK. For example, the brick:Location is considered as a specialisation of
bot:Zone, and the semantics of brick:hasPart is specialised from bot:containsZone and
bot:hasSubElement. Through ontology matching, the semantic heterogeneity in BOT and BRICK is
solved, and the merged ontology can represent the target building and systems more precisely and
flexibly. The high-level terminology of the merged ontology is illustrated in Figure 3.

With a unified core ontology, the integration of data from disparate sources is enabled through a
hybrid integration architecture. As the aim of data integration is to support corresponding building asset
management services, the selection of integration architecture should take the characteristic of service
into consideration.

e For services that run in real-time, such as monitoring the indoor thermal comfort, the ETL
process needs to be implemented to continuously clean and restructure data from
heterogeneous sources (e.g., operative temperature, relative humidity) and finally load into
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Figure 3. Illustration of the main classes in the merged ontology for FDM.

the data warehouse for analysis. Typically, the manipulation of data streams during ETL
integrates the auxiliary metadata from FDM augmented into the original datarow, so that the
data become self-contained and can be analysed without referring to external descriptions.

e For services that are delivered periodically (e.g., monthly, quarterly, or yearly), like the

evaluation of the building Energy Use Intensity (EUI), the mediator-wrapper approach is
more appropriate considering that the calculation of system-level energy performance
indicators requires aggregated data across multiple time scales. The mediator is responsible
for providing the ontology mapping and semantic correspondences between the entities in
the FDM (e.g., sensor) and the equivalent entities in the local database for data streams (e.g.,
time series from the specific sensor).

4. Case study

The Alan Reece building at the West Cambridge site of the University of Cambridge is used as the
digital twin pilot. The Alan Reece building is a 3-storey building and stands over a 40,000-square-foot
comprehensive area, including spaces for teaching, office, research, laboratory, canteen etc. Figure 4 (a)
shows the 3D view of the Alan Reece building. To compare the integration architectures, two space
management services are highlighted, including indoor thermal comfort monitoring and Lighting Power
Density (LPD) evaluation.

According to the ASHRAE 55 standard published by the American Society of Heating,
Refrigerating, and Air-Conditioning Engineers, thermal comfort is specified by the combination
of various environmental and personal factors, like air temperature, humidity, and metabolic
rate. Here, for demonstration purposes, we simplify this service to continuously monitor the
indoor air temperature. As recommended by the University thermal comfort policy, the indoor
temperature should be maintained within the range of 19 to 21 °C during the heating season.
The BS EN12464-1:2021, published by the British Standard Institution (BSI), specifies the
lighting requirements for indoor workplaces to guarantee visual comfort. Under the premise of
satisfying these requirements, the ASHRAE 90.1 standard provides engineering guidelines for
minimum energy performance and energy code requirements. For the office spaces, the lighting
power allowance is set to be 0.70 W/sf. The purpose of the LPD evaluation is to make sure the
building is operated in an energy-efficient way.

Using a seminar room (i.e., Seminar Room 3) in the pilot building, this section demonstrates the
implementation of services for this space with the help of digital twin technologies, from the perspective
of data integration. The sliced FDM associated with the Seminar Room 3 (SR3) is shown in Figure 4
(b). In term of the dynamic data sources, the BMS, controlling the MEP systems, is installed in the
building and archive its data into a MySQL database. Furthermore, the Monnit wireless sensors that
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Figure 4. BIM model of the Alan Reece building and the sliced FDM associated with SR3.

communicate over the 868 MHz radio frequency are installed in the building with a 1-minute heartbeat,
measuring temperature, humidity, carbon dioxide concentration and other environmental parameters.

In the first case, the data warehouse approach is adopted to realise the continuous monitoring of the
room temperature. Data streams from Monnit sensors are extracted, transformed, and loaded to the tables
in AWS DynamoDB, as shown in Table 1. To handle the time series generated by sensors, one table is
created every single day, provisioned with the required write and read capacity. By the end of the day,
a new table is created. As the last day ends, the data streams are redirected to the new table, and the
provisioned write capacity of the last table is reduced to the minimum. This is because only the sensor
data with today’s date would be dumped into the table. Furthermore, the provisioned read capacity of
older tables should be reduced stepwise as they age, since today’s sensor data is accessed most
frequently, yesterday's much less frequently, and then older data rarely. Conceptually, sensor data
belongs to the equipment or location that the sensor monitors, instead of the sensor itself, which is only
the provider of such reading. To make data self-contained and self-explanatory, the object that the sensor
monitors is augmented into the datarow during the ETL process. For fast querying, the object is set as
the local secondary index of the table. The Monnit temperature sensor with the identity of Temp 384025
is installed in the SR3. To enable thermal comfort monitoring, the required query can be translated as
“Return temperature values from the sensors installed at the Seminar Room 3”. Instead of finding the
identity of the sensor located in the SR3, Listing 1 shows the target query which directly searches for
those datarows belonging to the object “SeminarRoom3”.

In the second case, the mediator approach is used to integrate data needed for evaluating the LPD of
the controlled lighting zone that SR3 belongs. The LPD is defined as watts of lighting per square foot
of room floor area. To calculate the LPD, the sizes of all the spaces within the lighting zone, including
SR3, as well as the corresponding submetering readings recorded through BMS need to be retrieved.
This case can be viewed as a data integration scenario, where a high-level query is posed through the
mediator with reference to the FDM, and then the query is reformulated into sub-queries through
wrappers over multi-sources, like the MySQL database where BMS data is archived. The required query



Table 1. Design of data schema using AWS DynamoDB.
Current Table: 01/10/2022 (Today)

Primary Key Attribute
SensorID Time Object Value Unit
Temp 384023 09:12:22.058 SeminarRoom?2 19.65 °C
Temp 384025 | 09:12:37.002 | SeminarRoom3 20.03 °C
Temp_ 384025 | 09:12:36.590 | SeminarRoom3 20.02 °C

Older Tables: 01/09/2022, ...

SensorID Time Object Value Unit

Listing 1 Query the Current table in DynomoDB using AWS SDK for .NET

1 AmazonDynamoDBClient client = new AmazonDynamoDBClient();

2 var request = new QueryRequest

3

4 TableName = "Current",

5 IndexName: "ObjectMeasured",

6 KeyConditionExpression = "Object = :v_object",

7 ExpressionAttributeValues = new Dictionary<string, AttributeValue> {
8 {":v_object", new AttributeValue { S = "SeminarRoom3" }}}

9 }s

10 var response = client.Query(request);

to realise the LPD evaluation can be translated as “Return submetering readings for the lighting zone
that the Seminar Room 3 belongs to, along with all the spaces contained in this zone and their sizes”.
The SPARQL query in Listing 2 is used on the mediator to determine the spaces and submeter using the
native vocabularies defined in the merged ontology. Using the correspondences between the FDM and
MySQL (e.g., through naming conventions), the retrieved submeter name can be translated into its
counterpart in MySQL. In this way, the submetering readings associated with SR3 can be queried locally
in the MySQL database. Regarding the size of each space, ontologies like OPM (Ontology for Property
Management) can easily attach properties and their temporal evolutions to the elements and spaces in a
building. Therefore, instead of keeping the size as a property of space in the FDM, the size information

expressed in OPM can be retrieved as reference data stored in the RDL to avoid over-complicating the
FDM.

Listing 2 SPARQL query on mediator with reference to the FDM

1 SELECT ?lightZ ?sp ?subM

2 WHERE {

3 ?lightZ a brick:Lighting Zone .

4 ?sp a bot:Space .

5 ?subM a brick:Electrical Meter .

6 ?d a brick:Luminaire .

7 ?lightZ bot:hasSpace arb:SeminarRoom3 .
8 ?lightZ bot:hasSpace 7sp .

9 ?7d brick:feeds ?lightZ .



10 2d brick:hasPoint ?subM .
11 }

5. Conclusion

Being highly fragmented, data-intensive and project-based, the AEC/FM sector lacks collaborations
between parties due to the challenges in data sharing and integration. Recent efforts in building digital
twin aim to establish a dynamic and web-like data environment using linked data approaches, where
building data from disparate sources, static and dynamic, become interoperable. Knowledge reuse is the
cornerstone for ontology modelling. In accordance with the ontology-based Information Management
Framework, the BOT and BRICK ontologies are reused and merged to serve as a feasible Foundation
Data Model, making the ontological commitments explicit for buildings and their systems. Two different
integration architectures are compared, which fetch data through the FDM from disparate sources and
Reference Data Libraries. The data warehouse approach and the mediator approach are found to be
preferable in different cases according to the specific characteristic of the asset management service
provided. Faced with the “data marketplace” of built assets with decentralised data curation, this work
informs the most feasible ways to discover, fetch, integrate and utilise data from disparate sources under
an ontology-based Information Management Framework. In terms of future work, considering that
voluminous data does not always produce high-quality analytical results, studies on evaluating the
quality of integrated data will be conducted to gain the full potential of data integration.
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