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Abstract. Deep Neural Networks (DNN) models have shown high potential in recognizing 

workers’ risky postures using data from wearable Inertial Measurement Units (IMUs). However, 

there is a data paucity challenge - DNN models require a large dataset with annotation for 

desirable performance. The research discussed in this paper proposes to address this problem 

through a data generation framework that leverages Generative Adversarial Network (GAN) to 

i) synthesize motion data, ii) augment training data, then iii) improve the recognition 

performance. Its potential was validated using naturalistic posture data of workers. Three GAN 

models were developed for data generation. A Train on Real and Test on Hybrid approach was 

used to quantitatively assess synthesized data and select sufficiently-trained GAN models. The 

performance of three commonly-used DNN models was compared after data augmentation. 

Results showed that the augmentation with GAN-synthesized data improved recognition 

accuracy by 1.2%-3% for varying postures. These findings suggest the feasibility of applying 

motion data augmentation with GAN models to advance automated construction safety 

monitoring. 

1.  Introduction 

Machine Learning (ML)-enhanced posture recognition based on Wearable Sensor (WS)-acquired 

motion data can be used to reduce the risk of injury on the job site. Construction workers executing 

manual-intensive tasks are highly susceptible to Musculoskeletal Disorders (MSDs) due to overexposure 

to awkward postures [1]. Automated posture recognition from WS could help mitigate MSDs through 

early detection of risk exposure. Applying data-driven models with wearable Inertial Measurement Units 

(IMUs) has demonstrated promising results for posture recognition among workers in several studies 

leveraging both ML models [2-4] and Deep Neural Networks (DNN) models [5-7]. DNN models, in 

particular, are becoming increasingly popular in Time Series Classification [8]. Some studies also 

demonstrate that DNN models show better recognition performance than conventional ML models for 

recognizing construction activities [5, 7, 9] 

The key to desirable DNN model performance is the availability of abundant labelled motion data 

[8, 10]. There is a prevailing data paucity challenge, which can lead to an overfitted DNN model with 

limited model generality. Obtaining labelled motion data have proven challenging because: 1) manual 

motion data annotation can be both inefficient and expensive in practice [10]; 2) data for emergent and 

unexpected events (e.g., accidentally fall) are especially hard to obtain [11], resulting in annotation 



 

 

 

 

 

 

scarcity and class imbalance, and; 3) sharing sensitive personal data when using WS may lead to privacy 

concerns and a reluctance among uses to share data [12].  

The challenge of data paucity could be largely addressed through augmenting WS-based posture 

data. One promising augmentation approach is applying learning-based generative models [8], which 

generate realistic fake data through learning the latent distribution of real data. The principle of 

adversarial training has led to a massively popular generative modelling framework known as 

Generative Adversarial Network (GAN). GAN is a type of DNN integrating both generator and 

discriminator [13]. The generator uses the sampled noise data as input to produce fake data that are 

similar to the real data distribution as much as possible. The discriminator takes both the generated fake 

data from the generator and real data, where the goal is to determine whether the input data are real or 

fake. Both the generator and discriminator are trained together by playing the zero-sum game until they 

respectively converge. Since its introduction, GAN has led the way in generating high-quality output 

and breakthroughs in image generation [14].  

GAN-based data generation has been successfully deployed in time-series data [1]. GAN-based 

sensory data generation focuses primally on augmenting sensory data (e.g., EEG, ECG, and IMUs) for 

improving patients’ health monitoring. A review of closely related studies has been provided in Table 

1. Deep Convolutional GAN (DCGAN) and Recurrent GAN (RGAN) are commonly used architectures 

for time-series data generation. DCGAN, designed for image generation, has demonstrated high 

potential in generating time-series data. Recurrent GAN [15] is designed specifically for generating 

time-series data. Comparing to regular GANs relying on full-connect layers alone, RGAN incorporates 

the recurrent layers and its variants, such as Long Short-Term Memory (LSTM) and Bi-directional 

LSTM, in generator and discriminator. RGAN frameworks have shown the ability to generate high-

quality time-series data. 

Review in Table 1 shows that evaluating time-series data produced by the generative model is a 

difficult task. This is due to the vague definition of “realistic” and impractical visual assessment. 

Alternative quantitative assessment can be done by evaluating the “utility” of generated data. For 

example, if a classification model trained on simulated data from GANs achieves comparable 

performance on testing data to that obtained through training with real data, then generated data can be 

deemed to be of high quality [16, 17]. Such an approach was proposed as Train on Simulated Test on 

Real (TSTR) [15]. Its use under different evaluation scenarios has been considered effective. The Train 

on Hybrid and Test on Real (THTR) approach is widely adopted in data augmentation. When the original 

training datasets are combined with the data generated from trained GAN models, they can be used as 

the augmented Hybrid dataset for model training. The effectiveness of the augmentation can be done by 

comparing trained models between THTR and TRTR (Train on Real Test on Real). 

 Table 1. Review of related studies. 

Study Sensory Data GAN Architecture Signal Quality Evaluation 
Augmentation 

Evaluation 

[12] 

IMUs 

RGAN (LSTM) Monitoring training loss NA 

[1] 
DCGAN & RGAN 

(BiLSTM/LSTM) 
Visual comparison a THTR 

[15] Medical Data RGAN (LSTM) Quantitative comparison TSTR 

[14] EEG RGAN (LSTM) Quantitative and visual THTR 

[20] 
ECG & EEG 

RGAN (LSTM) Visual comparison THTR 

[21] RGAN (LSTM) Quantitative and visual THTR 

[16] 

ECG 

RGAN (LSTM) Visual comparison THTR 

[22] RGAN (Bi-LSTM) Quantitative and visual NA 

[18] DCGAN Visual comparison THTR 

 
a Visually compared the generated data with real data. 



 

 

 

 

 

 

[23] DCGAN NA THTR 

[17] DCGAN Quantitative (TSTR) THTR 

 

The research discussed in this paper is directed at addressing the data paucity challenge associated 

with the use of DNN-based posture recognition models through the outlined data augmentation 

approach. The authors propose to use a data generation framework that leverages GAN-based generative 

models to synthesize IMUs-based motion data, augment training data, and improve the recognition 

performance of DNN models. The proposed approach was validated using naturalistic posture data 

obtained from workers on construction jobsites. Three GAN architectures were developed for data 

generation. A Train on Real Test on Hybrid (TRTH) approach was proposed to quantitatively assess the 

quality of synthesized data. The feasibility of data augmentation with GAN was assessed by comparing 

the performances of commonly used DNN models before and after data augmentation. In the following 

section, the authors describe the methodology that was used to conduct the research. The results obtained 

from experiments are then discussed, followed by the conclusion and future works. 

2.  Research Methodology 

2.1.  Motion Data Collection and Pre-Processing 

Seven construction workers are the subjects (S1-S7) in this study for motion data collection. Five IMUs 

sensors (Mbinet Lab Meta Motion C with units of three-axis accelerometer and gyroscope) were 

deployed on their hardhat (front), upper arm, chest center, right thigh, and right calf by sticking on the 

surface of cloth. Subjects performed their routine tasks for 20-30 minutes. Workers’ postures were 

videotaped as ground-truth for labeling motion data. Nine commonly used postures were identified, 

including Bending (BT), Kneeling (KN), Squatting (SQ), Standing (ST), Walking (WK), Transitional 

Movement (TR), and Work Overhead (WO).  

The collected motion data were down-sampled to 40 Hz and scaled to [-1, 1] using min-max 

normalization to address the unit difference across channels before being applied for training GAN 

models. Each data record was labeled with the video reference. This research used a 0.5-second window 

with 50% overlap for segmentation, resulting in 20 timestamps in a window. Each window was then 

annotated as the label of the majority data records it contained. Sensor output from five placements was 

combined, resulting in each window with 30 channels (five placements × two units/placement × three 

channels/unit). The collected motion data were pre-processed as 30,498 labeled windows with a 

dimension of 20 (data records) by 30 (channels). 

2.2.  Data Preparation for Experiment 

Pre-processed windows were split into train (40%), real-augmentation (40%), and test (20%) datasets 

under stratified random sampling – a consistent ratio of posture classes was used across all the datasets. 

The train dataset was used to develop both recognition and generation models for postures. The real-

augmentation dataset was combined with the train dataset to develop augmented posture recognition 

models. The latter was then used as the golden standard in the assessment of augmentation based on the 

use of generated data. All trained recognition models were evaluated on the test dataset to assess their 

performance before and after augmentation.  

2.3.  Setup for Posture Recognition Models 

LSTM-based models and their derivatives have demonstrated high performance in recognizing activities 

from construction workers [5-7]. The authors used three LSTM-based architectures to develop the 

posture recognition model - the basic LSTM model, Bi-directional LSTM model, and Convolutional 

LSTM model integrating convolutional layers for automated feature learning (see model detail in Figure 

1.). 



 

 

 

 

 

 

 

 
Figure 1. Comparison of model architecture. 

The key difference between the three models is the DNN layers. The base LSTM model used two 

stacked LSTM layers. The Bi-directional LSTM model substituted the LSTM as Bi-directional LSTM 

layers. A convolutional layer was stacked on the base LSTM model to construct the Convolutional 

LSTM model. LSTM and output layers were kept the same across three implemented models to evaluate 

performance improvement from modified LSTM architectures.  

The train dataset was further randomly split as 80% for training and 20% for validation, when training 

the recognition modelsb. In addition to Accuracy, Macro F1 Score was also used for evaluating 

classification performance, given the imbalanced dataset. The recognition model with the highest Macro 

F1 Score after all training epochs was saved and evaluated on the test dataset. Each recognition model 

was trained and assessed for five rounds with different training-validation splitting. The average 

recognition performance on the same test dataset was compared to evaluate the model performance. 

2.4.  Setup for the Posture Data Generation Models 

Both DCGAN and RGAN architectures were further adapted into three generative models, namely 

DCGAN model, 1DRGAN model, and 2DRGAN model, as shown in Figure 2. The ConvLSTM model 

was used as the discriminator in the three GAN architectures because it achieved higher recognition 

performance among the ones that were evaluated (see Figure 3.). The deployment of the ConvLSTM-

based discriminator also helped stabilize the GAN training more than the LSTM discriminator in 

empirical tests that were performed. The different performance of the generators for the three models is 

discussed further in subsequent paragraphs. 

The proposed DCGAN generator was based on a 200-element vector of Gaussian random numbers 

as input as suggested in related studies [18, 19]. The resulting dense layer converted the input vector 

into a 1D representation of motion data. Output from the dense layer was then reshaped into a 3D tensor, 

with dimensions set to 5 (length) by 15 (width) by 128 (layers). Two consecutive Conv2DTranspose 

layers were applied for upsampling, which produced the tensor with the dimension of 20 by 30 by 64. 

A Conv2D layer with a single kernel transformed the 3D tensor into a 20 by 30 2D output. The 

hyperbolic tangent (tanh) activation function was used to ensure that the values of output are within the 

range of [-1, 1], which was the same as constructed windows of motion data. 

 
b Recognition models were trained with a batch size of 300 for 300 epochs for minimizing the Categorical Cross 

Entropy as loss function. 



 

 

 

 

 

 

 
Figure 2. Comparison of GAN architectures 

The generator in 1DRGAN used the same input as that in DCGAN. The RGAN model setup 

described in Figure 2. followed the RGAN designed for bio-signal generation in [14, 15]. Two stacked 

LSTM layers were used to convert the input vector into temporal patterns. The dense layer converted 

the output from LSTM layers as the 1D representation. The tanh activation function was also used to 

bound the output value within [-1, 1]. Lastly, the 1 by 600 vector was reshaped into a 20 by 30 as a 

generated window. The 2DRGAN model was the same as 1DRGAN except that a 2D matrix (20 by 

200) of Gaussian random numbers is input, as performed in [15] to improve the generation of time-

series data. 

The authors also compared the GAN-based models with other learning-based generative models. 

Autoencoders (AE) and variational autoencoders (VAE), as used in Abdelfattah et al. [14]’s work, were 

deployed for benchmarking. Output from the trained decoders in AE and VAE were used as generated 

data – it had the same label as the input window. 

Table 2. Setup for training generative models. 

Generative Model Epoch Batch Sizec Loss Functiond 

DCGAN, 1DRGAN, 2DRGAN 

1000 

300 Minimax Loss derived from Binary Cross-Entropy 

AE 

VAE 
30 

Pixel-level Binary Cross-Entropy 

Pixel-level Binary Cross-Entropy+ KL Divergence 

The detailed model training setup for implemented generative models is summarized in Table 2. The 

generative models were trained for each posture because they were unconditional (they had no control 

of the label for generated data). 

 
c Half batch of generated fake data and randomly selected real data were feed into the discriminators of GAN-

based models to calculate the Binary Cross-Entropy. 
d For GAN-based model, it represents the loss function for discriminator. 

 



 

 

 

 

 

 

2.5.  Evaluating Generative Models 

2.5.1.  Quality assessment of generated motion data. The TRTH approach was used to assess the 

generated motion data quantitatively. The real data of a certain posture class in the test dataset were 

replaced by data generated from a trained generative model. If a trained recognition model maintained 

relatively high performance (measured by accuracy) when recognizing the replaced posture in the 

Hybrid dataset, the generated data were deemed to be realistic with close resemblance to the real data. 

The trained posture recognition model was used directly under the TRTH approach, which further 

reduced the computational efforts of model re-training when evaluating the generative models. The 

TRTH evaluation was conducted after every 100 training epochs for each generative model. The 

ConvLSTM model was selected as the classifier because it showed the highest performance among the 

tested recognition models. The TRTH evaluation process was repeated five times with different 

generated datasets. The average performance was computed to reduce the evaluation bias. 

2.5.2.  Evaluation of data augmentation. The entire train dataset was randomly split into two halves with 

stratification. The posture recognition model (trained on Train_Half_1 dataset) was evaluated using the 

test dataset, which was used as the baseline performance without augmentation. Motion data of a certain 

posture were then extracted from the Train_Half_2 subset and combined with Train_Half_1 dataset for 

re-training the recognition model. The trained model was evaluated against the test dataset as a baseline 

after augmentation with real data. Next, motion data for a given posture were generated from the trained 

generative models and used to augment the Train_Half_1 dataset. The recognition models were 

subsequently re-trained using augmented Train_Half_1 (include both generated and original 

Train_Half_1 datasets) and evaluated against the test dataset. The results represented the performance 

after augmentation with generated data. The ConvLSTM model was used for posture recognition as it 

showed the highest performance among the three tested recognition models. The ConvLSTM model 

demonstrated high recognition performance (with accuracy over 0.9) for the posture KN, SQ, and WO, 

as shown in Figure 3.-d. The authors selected the postures BT, ST, and WK for augmentation. The 

generative model showed the highest performance under the TRTH evaluation approach was identified 

from Figure 4. for each posture. The Macro F1 Score on the test dataset was compared before and after 

data augmentation. The score represents the effectiveness of data augmentation. The evaluation process 

was repeated five iterations using different generated datasets to reduce evaluation bias. 

3.  Findings and Discussion 

This study is aimed at addressing the data paucity challenge through a data generation framework that 

leverages GAN to i) synthesize motion data, ii) augment training data, and iii) improve the recognition 

performance. The following sections discuss the results from the evaluation of different recognition 

models and their performance after data augmentation. 

3.1.  Comparison of Recognition Models 

Results in Figure 3. have shown that the base LSTM model achieved a relatively high performance 

(Macro F1-0.873) when it was used to recognize six postures across seven different individuals. Both 

the modified BiLSTM and ConvLSTM further improved the recognition performance by an average of 

1.95% and 2.52%, respectively. A close examination of the confusion matrix shows that the ConvLSTM 

model has improved LSTM model’s performance in recognizing each posture.  

 



 

 

 

 

 

 

Figure 3. Performance comparison of recognition models. 

3.2.  Evaluate the Quality of Generated Data 

The evaluation of generative models during the training process is provided in Figure 4. The 1DRGAN 

tended to have a relatively stable performance improvement during the beginning of the training process 

before the quality of generated data deteriorated due to overtraining (e.g., the generated BT posture data 

from 1DRGAN after training over 500 epochs). The recognition performance on the Hybrid test dataset 

was comparable to the Real test dataset, which suggests that the quality of generated data is relatively 

high for “tricking” a well-trained classifier. 

 

 
Figure 4. Evaluation of generated data 

The 2DRAGN also generated high-quality motion data as 1DRGAN, while it showed instability over 

the training process, e.g., when being trained for posture BT. The DCGAN model required more training 

epochs to generate data of a similar quality to real data compared to the RGAN models on posture BT, 

ST, WK, and WO. The DCGAN model failed to generate the posture SQ. This is evident by that 

DCGAN showed low performance on Hybrid test data when generating SQ and no sign of performance 

improvement.  

Both AE and VAE models showed stable performance improvement during the training process. It 

also took less than 200 training epochs for the two models to learn how to generate high-quality motion 

data. However, both models failed to generate high-quality motion data for WK - the recognition 

performance on Hybrid dataset was not comparable to that on Real dataset. 

3.3.  Evaluation of Data Augmentation 

Results in Figure 5. show augmenting the training dataset with real motion data improved the model 

recognition performance for the three postures by a range of 4.5%-6.3%. The increased performance 

suggests that the data augmentation can effectively improve the performance of the DNN-based 

recognition model. Using the GAN-generated data for augmentation also improved the recognition for 

BT (by 3.0% using 1DRGAN) and WK (by 1.3% using DCGAN), respectively. These results suggest 

the feasibility of applying GAN-based models to augment limited training datasets. The highest model 

performance after augmentation for each of the tested postures was achieved by GAN-based models. 

The quality of GAN-generated motion data appeared to have outperformed those generated using the 

benchmark AE and VAE models. 

It is, however, essential to note the recognition performance for the posture ST deteriorated after 

augmenting with data from generative models. The decreased performance might be attributed to that 

the learned distribution of posture ST from generative models was not resembled to the real distribution. 

The low data quality of generated ST data becomes noise to the real data. In addition, none of the tested 

GAN-based models appeared to outperform the others in all the tested postures. The nature of motion 

data that can be generated from a certain type of GAN model will be investigated further in subsequent 

efforts. 



 

 

 

 

 

 

 
Figure 5. Evaluation of data augmentation. 

 

4.  Conclusions and Future Research 

The lack of a large, annotated dataset limits the application of Deep Neural Networks (DNN)-based 

recognition models. The authors propose to address this data paucity challenge through a Generative 

Adversarial Network (GAN)-based data augmentation framework. The effective use of this data 

augmentation approach was explored using real workers’ posture data. Initial results have demonstrated 

that i) Convolutional Long Short-Term Memory (LSTM) model achieved a higher recognition 

performance among the three tested LSTM-based recognition models; ii) the proposed Train on Real 

Test on Hybrid approach is appropriate for evaluating the quality of generated data and identifying a 

sufficiently trained Generative Adversarial Network model for data augmentation; iii) the performance 

of recognition model (Convolutional LSTM) improved by 1.3% and 3.0% for two of the three tested 

postures. However, the recognition for the standing posture was not improved after augmentation, which 

might be attributed to the low-quality of generated data. These results suggest that GAN-generated 

motion data could be effectively used to augment limited datasets thus improving the performance of 

DNN-based recognition models. 

It is, however, important to note that a sufficiently trained GAN model can still generate low-quality 

posture data. This could deteriorate the model’s recognition performance with respect to accuracy. The 

quality of GAN-generated data may be further improved through implementing the conditional GAN 

models to control the type of postures generated; and investigating the appropriate GAN architectures 

for varying postures. These will be explored in subsequent efforts. 
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