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Abstract. Deep Neural Networks (DNN) models have shown high potential in recognizing
workers’ risky postures using data from wearable Inertial Measurement Units (IMUs). However,
there is a data paucity challenge - DNN models require a large dataset with annotation for
desirable performance. The research discussed in this paper proposes to address this problem
through a data generation framework that leverages Generative Adversarial Network (GAN) to
i) synthesize motion data, ii) augment training data, then iii) improve the recognition
performance. Its potential was validated using naturalistic posture data of workers. Three GAN
models were developed for data generation. A Train on Real and Test on Hybrid approach was
used to quantitatively assess synthesized data and select sufficiently-trained GAN models. The
performance of three commonly-used DNN models was compared after data augmentation.
Results showed that the augmentation with GAN-synthesized data improved recognition
accuracy by 1.2%-3% for varying postures. These findings suggest the feasibility of applying
motion data augmentation with GAN models to advance automated construction safety
monitoring.

1. Introduction

Machine Learning (ML)-enhanced posture recognition based on Wearable Sensor (WS)-acquired
motion data can be used to reduce the risk of injury on the job site. Construction workers executing
manual-intensive tasks are highly susceptible to Musculoskeletal Disorders (MSDs) due to overexposure
to awkward postures [1]. Automated posture recognition from WS could help mitigate MSDs through
early detection of risk exposure. Applying data-driven models with wearable Inertial Measurement Units
(IMUs) has demonstrated promising results for posture recognition among workers in several studies
leveraging both ML models [2-4] and Deep Neural Networks (DNN) models [5-7]. DNN models, in
particular, are becoming increasingly popular in Time Series Classification [8]. Some studies also
demonstrate that DNN models show better recognition performance than conventional ML models for
recognizing construction activities [5, 7, 9]

The key to desirable DNN model performance is the availability of abundant labelled motion data
[8, 10]. There is a prevailing data paucity challenge, which can lead to an overfitted DNN model with
limited model generality. Obtaining labelled motion data have proven challenging because: 1) manual
motion data annotation can be both inefficient and expensive in practice [10]; 2) data for emergent and
unexpected events (e.g., accidentally fall) are especially hard to obtain [11], resulting in annotation



scarcity and class imbalance, and; 3) sharing sensitive personal data when using WS may lead to privacy
concerns and a reluctance among uses to share data [12].

The challenge of data paucity could be largely addressed through augmenting WS-based posture
data. One promising augmentation approach is applying learning-based generative models [8], which
generate realistic fake data through learning the latent distribution of real data. The principle of
adversarial training has led to a massively popular generative modelling framework known as
Generative Adversarial Network (GAN). GAN is a type of DNN integrating both generator and
discriminator [13]. The generator uses the sampled noise data as input to produce fake data that are
similar to the real data distribution as much as possible. The discriminator takes both the generated fake
data from the generator and real data, where the goal is to determine whether the input data are real or
fake. Both the generator and discriminator are trained together by playing the zero-sum game until they
respectively converge. Since its introduction, GAN has led the way in generating high-quality output
and breakthroughs in image generation [14].

GAN-based data generation has been successfully deployed in time-series data [1]. GAN-based
sensory data generation focuses primally on augmenting sensory data (e.g., EEG, ECG, and IMUs) for
improving patients’ health monitoring. A review of closely related studies has been provided in Table
1. Deep Convolutional GAN (DCGAN) and Recurrent GAN (RGAN) are commonly used architectures
for time-series data generation. DCGAN, designed for image generation, has demonstrated high
potential in generating time-series data. Recurrent GAN [15] is designed specifically for generating
time-series data. Comparing to regular GANs relying on full-connect layers alone, RGAN incorporates
the recurrent layers and its variants, such as Long Short-Term Memory (LSTM) and Bi-directional
LSTM, in generator and discriminator. RGAN frameworks have shown the ability to generate high-
quality time-series data.

Review in Table 1 shows that evaluating time-series data produced by the generative model is a
difficult task. This is due to the vague definition of “realistic”’ and impractical visual assessment.
Alternative quantitative assessment can be done by evaluating the “utility” of generated data. For
example, if a classification model trained on simulated data from GANs achieves comparable
performance on testing data to that obtained through training with real data, then generated data can be
deemed to be of high quality [16, 17]. Such an approach was proposed as Train on Simulated Test on
Real (TSTR) [15]. Its use under different evaluation scenarios has been considered effective. The Train
on Hybrid and Test on Real (THTR) approach is widely adopted in data augmentation. When the original
training datasets are combined with the data generated from trained GAN models, they can be used as
the augmented Hybrid dataset for model training. The effectiveness of the augmentation can be done by
comparing trained models between THTR and TRTR (Train on Real Test on Real).

Table 1. Review of related studies.

. . . . Augmentation

Study  Sensory Data  GAN Architecture  Signal Quality Evaluation Evaluation

12 RGAN (LSTM) Monitoring training loss NA

IMUs DCGAN & RGAN . .

[1] (BILSTM/LSTM) Visual comparison THTR
[15] Medical Data RGAN (LSTM) Quantitative comparison TSTR
[14] EEG RGAN (LSTM) Quantitative and visual THTR
[20] RGAN (LSTM) Visual comparison THTR
[21] ECG & EEG RGAN (LSTM) Quantitative and visual THTR

16 RGAN (LSTM) Visual comparison THTR

22 ECG RGAN (Bi-LSTM)  Quantitative and visual NA
[18] DCGAN Visual comparison THTR

2 Visually compared the generated data with real data.



[23] DCGAN NA THTR
[17] DCGAN Quantitative (TSTR) THTR

The research discussed in this paper is directed at addressing the data paucity challenge associated
with the use of DNN-based posture recognition models through the outlined data augmentation
approach. The authors propose to use a data generation framework that leverages GAN-based generative
models to synthesize IMUs-based motion data, augment training data, and improve the recognition
performance of DNN models. The proposed approach was validated using naturalistic posture data
obtained from workers on construction jobsites. Three GAN architectures were developed for data
generation. A Train on Real Test on Hybrid (TRTH) approach was proposed to quantitatively assess the
quality of synthesized data. The feasibility of data augmentation with GAN was assessed by comparing
the performances of commonly used DNN models before and after data augmentation. In the following
section, the authors describe the methodology that was used to conduct the research. The results obtained
from experiments are then discussed, followed by the conclusion and future works.

2. Research Methodology

2.1. Motion Data Collection and Pre-Processing

Seven construction workers are the subjects (S1-S7) in this study for motion data collection. Five IMUs
sensors (Mbinet Lab Meta Motion C with units of three-axis accelerometer and gyroscope) were
deployed on their hardhat (front), upper arm, chest center, right thigh, and right calf by sticking on the
surface of cloth. Subjects performed their routine tasks for 20-30 minutes. Workers’ postures were
videotaped as ground-truth for labeling motion data. Nine commonly used postures were identified,
including Bending (BT), Kneeling (KN), Squatting (SQ), Standing (ST), Walking (WK), Transitional
Movement (TR), and Work Overhead (WO).

The collected motion data were down-sampled to 40 Hz and scaled to [-1, 1] using min-max
normalization to address the unit difference across channels before being applied for training GAN
models. Each data record was labeled with the video reference. This research used a 0.5-second window
with 50% overlap for segmentation, resulting in 20 timestamps in a window. Each window was then
annotated as the label of the majority data records it contained. Sensor output from five placements was
combined, resulting in each window with 30 channels (five placements % two units/placement % three
channels/unit). The collected motion data were pre-processed as 30,498 labeled windows with a
dimension of 20 (data records) by 30 (channels).

2.2. Data Preparation for Experiment

Pre-processed windows were split into train (40%), real-augmentation (40%), and test (20%) datasets
under stratified random sampling — a consistent ratio of posture classes was used across all the datasets.
The train dataset was used to develop both recognition and generation models for postures. The real-
augmentation dataset was combined with the train dataset to develop augmented posture recognition
models. The latter was then used as the golden standard in the assessment of augmentation based on the
use of generated data. All trained recognition models were evaluated on the test dataset to assess their
performance before and after augmentation.

2.3. Setup for Posture Recognition Models

LSTM-based models and their derivatives have demonstrated high performance in recognizing activities
from construction workers [5-7]. The authors used three LSTM-based architectures to develop the
posture recognition model - the basic LSTM model, Bi-directional LSTM model, and Convolutional
LSTM model integrating convolutional layers for automated feature learning (see model detail in Figure

1).
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Figure 1. Comparison of model architecture.

The key difference between the three models is the DNN layers. The base LSTM model used two
stacked LSTM layers. The Bi-directional LSTM model substituted the LSTM as Bi-directional LSTM
layers. A convolutional layer was stacked on the base LSTM model to construct the Convolutional
LSTM model. LSTM and output layers were kept the same across three implemented models to evaluate
performance improvement from modified LSTM architectures.

The train dataset was further randomly split as 80% for training and 20% for validation, when training
the recognition models®. In addition to Accuracy, Macro F1 Score was also used for evaluating
classification performance, given the imbalanced dataset. The recognition model with the highest Macro
F1 Score after all training epochs was saved and evaluated on the test dataset. Each recognition model
was trained and assessed for five rounds with different training-validation splitting. The average
recognition performance on the same test dataset was compared to evaluate the model performance.

2.4. Setup for the Posture Data Generation Models

Both DCGAN and RGAN architectures were further adapted into three generative models, namely
DCGAN model, IDRGAN model, and 2DRGAN model, as shown in Figure 2. The ConvLSTM model
was used as the discriminator in the three GAN architectures because it achieved higher recognition
performance among the ones that were evaluated (see Figure 3.). The deployment of the ConvLSTM-
based discriminator also helped stabilize the GAN training more than the LSTM discriminator in
empirical tests that were performed. The different performance of the generators for the three models is
discussed further in subsequent paragraphs.

The proposed DCGAN generator was based on a 200-eclement vector of Gaussian random numbers
as input as suggested in related studies [18, 19]. The resulting dense layer converted the input vector
into a 1D representation of motion data. Output from the dense layer was then reshaped into a 3D tensor,
with dimensions set to 5 (length) by 15 (width) by 128 (layers). Two consecutive Conv2DTranspose
layers were applied for upsampling, which produced the tensor with the dimension of 20 by 30 by 64.
A Conv2D layer with a single kernel transformed the 3D tensor into a 20 by 30 2D output. The
hyperbolic tangent (tanh) activation function was used to ensure that the values of output are within the
range of [-1, 1], which was the same as constructed windows of motion data.

b Recognition models were trained with a batch size of 300 for 300 epochs for minimizing the Categorical Cross
Entropy as loss function.
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Figure 2. Comparison of GAN architectures

The generator in IDRGAN used the same input as that in DCGAN. The RGAN model setup
described in Figure 2. followed the RGAN designed for bio-signal generation in [14, 15]. Two stacked
LSTM layers were used to convert the input vector into temporal patterns. The dense layer converted
the output from LSTM layers as the 1D representation. The tanh activation function was also used to
bound the output value within [-1, 1]. Lastly, the 1 by 600 vector was reshaped into a 20 by 30 as a
generated window. The 2DRGAN model was the same as IDRGAN except that a 2D matrix (20 by
200) of Gaussian random numbers is input, as performed in [15] to improve the generation of time-

series data.

The authors also compared the GAN-based models with other learning-based generative models.
Autoencoders (AE) and variational autoencoders (VAE), as used in Abdelfattah et al. [14]’s work, were
deployed for benchmarking. Output from the trained decoders in AE and VAE were used as generated
data — it had the same label as the input window.

Table 2. Setup for training generative models.

Generative Model

Epoch Batch Size® Loss Function!

DCGAN, 1DRGAN, 2DRGAN

300 Minimax Loss derived from Binary Cross-Entropy

AE
VAE

1000 Pixel-level Binary Cross-Entropy
30

Pixel-level Binary Cross-Entropy+ KL Divergence

The detailed model training setup for implemented generative models is summarized in Table 2. The
generative models were trained for each posture because they were unconditional (they had no control

of the label for generated data).

¢ Half batch of generated fake data and randomly selected real data were feed into the discriminators of GAN-

based models to calculate the Binary Cross-Entropy.
4 For GAN-based model, it represents the loss function for discriminator.



2.5. Evaluating Generative Models

2.5.1. Quality assessment of generated motion data. The TRTH approach was used to assess the
generated motion data quantitatively. The real data of a certain posture class in the test dataset were
replaced by data generated from a trained generative model. If a trained recognition model maintained
relatively high performance (measured by accuracy) when recognizing the replaced posture in the
Hybrid dataset, the generated data were deemed to be realistic with close resemblance to the real data.
The trained posture recognition model was used directly under the TRTH approach, which further
reduced the computational efforts of model re-training when evaluating the generative models. The
TRTH evaluation was conducted after every 100 training epochs for each generative model. The
ConvLSTM model was selected as the classifier because it showed the highest performance among the
tested recognition models. The TRTH evaluation process was repeated five times with different
generated datasets. The average performance was computed to reduce the evaluation bias.

2.5.2. Evaluation of data augmentation. The entire train dataset was randomly split into two halves with
stratification. The posture recognition model (trained on Train_Half 1 dataset) was evaluated using the
test dataset, which was used as the baseline performance without augmentation. Motion data of a certain
posture were then extracted from the Train Half 2 subset and combined with Train Half 1 dataset for
re-training the recognition model. The trained model was evaluated against the test dataset as a baseline
after augmentation with real data. Next, motion data for a given posture were generated from the trained
generative models and used to augment the Train Half 1 dataset. The recognition models were
subsequently re-trained using augmented Train Half 1 (include both generated and original
Train Half 1 datasets) and evaluated against the test dataset. The results represented the performance
after augmentation with generated data. The ConvLSTM model was used for posture recognition as it
showed the highest performance among the three tested recognition models. The ConvLSTM model
demonstrated high recognition performance (with accuracy over 0.9) for the posture KN, SQ, and WO,
as shown in Figure 3.-d. The authors selected the postures BT, ST, and WK for augmentation. The
generative model showed the highest performance under the TRTH evaluation approach was identified
from Figure 4. for each posture. The Macro F1 Score on the test dataset was compared before and after
data augmentation. The score represents the effectiveness of data augmentation. The evaluation process
was repeated five iterations using different generated datasets to reduce evaluation bias.

3. Findings and Discussion

This study is aimed at addressing the data paucity challenge through a data generation framework that
leverages GAN to i) synthesize motion data, ii) augment training data, and iii) improve the recognition
performance. The following sections discuss the results from the evaluation of different recognition
models and their performance after data augmentation.

3.1. Comparison of Recognition Models

Results in Figure 3. have shown that the base LSTM model achieved a relatively high performance
(Macro F1-0.873) when it was used to recognize six postures across seven different individuals. Both
the modified BiILSTM and ConvLSTM further improved the recognition performance by an average of
1.95% and 2.52%, respectively. A close examination of the confusion matrix shows that the ConvLSTM
model has improved LSTM model’s performance in recognizing each posture.

LsT™M Bi-LSTM
Metric
08g — MacroF1Score +,_,_,—-J-”’//’l
: Accuracy

S o088
g

0.87

0.86

LSTM BILSTM ConvLSTM

Model redicted labels Predicted labels



Figure 3. Performance comparison of recognition models.

3.2. Evaluate the Quality of Generated Data

The evaluation of generative models during the training process is provided in Figure 4. The IDRGAN
tended to have a relatively stable performance improvement during the beginning of the training process
before the quality of generated data deteriorated due to overtraining (e.g., the generated BT posture data
from 1DRGAN after training over 500 epochs). The recognition performance on the Hybrid test dataset
was comparable to the Real test dataset, which suggests that the quality of generated data is relatively
high for “tricking” a well-trained classifier.
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Figure 4. Evaluation of generated data

The 2DRAGN also generated high-quality motion data as IDRGAN, while it showed instability over
the training process, €.g., when being trained for posture BT. The DCGAN model required more training
epochs to generate data of a similar quality to real data compared to the RGAN models on posture BT,
ST, WK, and WO. The DCGAN model failed to generate the posture SQ. This is evident by that
DCGAN showed low performance on Hybrid test data when generating SQ and no sign of performance
improvement.

Both AE and VAE models showed stable performance improvement during the training process. It
also took less than 200 training epochs for the two models to learn how to generate high-quality motion
data. However, both models failed to generate high-quality motion data for WK - the recognition
performance on Hybrid dataset was not comparable to that on Real dataset.

3.3. Evaluation of Data Augmentation

Results in Figure 5. show augmenting the training dataset with real motion data improved the model
recognition performance for the three postures by a range of 4.5%-6.3%. The increased performance
suggests that the data augmentation can effectively improve the performance of the DNN-based
recognition model. Using the GAN-generated data for augmentation also improved the recognition for
BT (by 3.0% using IDRGAN) and WK (by 1.3% using DCGAN), respectively. These results suggest
the feasibility of applying GAN-based models to augment limited training datasets. The highest model
performance after augmentation for each of the tested postures was achieved by GAN-based models.
The quality of GAN-generated motion data appeared to have outperformed those generated using the
benchmark AE and VAE models.

It is, however, essential to note the recognition performance for the posture ST deteriorated after
augmenting with data from generative models. The decreased performance might be attributed to that
the learned distribution of posture ST from generative models was not resembled to the real distribution.
The low data quality of generated ST data becomes noise to the real data. In addition, none of the tested
GAN-based models appeared to outperform the others in all the tested postures. The nature of motion
data that can be generated from a certain type of GAN model will be investigated further in subsequent
efforts.
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Figure 5. Evaluation of data augmentation.

4. Conclusions and Future Research

The lack of a large, annotated dataset limits the application of Deep Neural Networks (DNN)-based
recognition models. The authors propose to address this data paucity challenge through a Generative
Adversarial Network (GAN)-based data augmentation framework. The effective use of this data
augmentation approach was explored using real workers’ posture data. Initial results have demonstrated
that i) Convolutional Long Short-Term Memory (LSTM) model achieved a higher recognition
performance among the three tested LSTM-based recognition models; ii) the proposed Train on Real
Test on Hybrid approach is appropriate for evaluating the quality of generated data and identifying a
sufficiently trained Generative Adversarial Network model for data augmentation; iii) the performance
of recognition model (Convolutional LSTM) improved by 1.3% and 3.0% for two of the three tested
postures. However, the recognition for the standing posture was not improved after augmentation, which
might be attributed to the low-quality of generated data. These results suggest that GAN-generated
motion data could be effectively used to augment limited datasets thus improving the performance of
DNN-based recognition models.

It is, however, important to note that a sufficiently trained GAN model can still generate low-quality
posture data. This could deteriorate the model’s recognition performance with respect to accuracy. The
quality of GAN-generated data may be further improved through implementing the conditional GAN
models to control the type of postures generated; and investigating the appropriate GAN architectures
for varying postures. These will be explored in subsequent efforts.
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