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Abstract. Heat recovery chiller systems have significant strategic value to reduce building
greenhouse gas emissions although this potential remains unrealized in practice. Real-time
optimization using model-free reinforcement learning provides a potential solution to this
challenge. A full-scale case study to implement reinforcement learning in a 6,000 m? academic
laboratory is planned. This paper presents the methodology used to translate historical data
correlations and expert input from operations personnel into the development of the
reinforcement learning agent and associated reward function. This approach will permit a more
stable and robust implementation of model-free reinforcement learning and the methodology
presented will allow operator-identified constraints to be translated into reward functions more
broadly, allowing for generalization to similar heat recovery chiller systems.

1. Introduction

Heat recovery chiller (HRC) systems permit simultaneous heating and cooling in buildings but their
potential is unrealized in practice [1] as such systems often operate poorly or are not well understood,
so they are often decommissioned by building operators [2]. Further, even when well-operated,
optimization is extremely challenging due to the high degree of complexity required compared with
standalone heating or cooling systems [3].

As we face the challenges of the climate crisis, buildings present a significant opportunity to decrease
GHG emissions (IPCC, 2018) and HRC systems offer such savings, particularly where electricity
generation relies on fossil fuels. This paper engages with the challenge of HRC optimization by
exploring the supporting infrastructure and preliminary analysis necessary to develop and implement
reinforcement learning (RL) in a full-scale facility.

Advances in reinforcement learning (RL) research to optimize HVAC applications demonstrate the
high potential of the technology in building applications [4]. Compared with other ML techniques, RL
is beneficial as it is an online learning method that can be implemented without a trained model [5]; this
further permits its generalized application. To successfully implement RL, however, the appropriate
reward function is critical. This paper presents insights on how to leverage operator expertise alongside
historical data to develop this function, drawing from a full-scale HRC implementation at an academic
facility.



2. Literature Review

To understand both the value of RL for HRC, we begin by providing a detailed overview of HRC
operation drawing from both the literature and the system apparatus. Next, we present insights drawn
from RL implementation in other heating and cooling optimization studies, discussing its merits,
potential risks, and technical challenges to be overcome, which shaped our methodological approach

2.1. Heat Recovery Chiller Operation

HRC is a type of heat pump consisting of an evaporator section, which takes heat from the cooling
system, and one or more condenser sections, which inject this heat into the heating system. When sized
and operated correctly, these systems reduce the site energy use and improve load balancing [3]. A
single condenser system [6] is the simplest form of HRC; in this system, the heat rejection from the
cooling load is transferred to the heating loop via a heat exchanger providing pre-heating to a boiler
loop. This allows heat rejection to lower temperatures to maximize this heat recovery. The HRC
evaporator is installed in parallel with the chiller plant, which provides supplemental cooling as required.
since HRC sizing is limited to the maximum cooling load where the heat rejection matches the base heat
demand of the building [3].

The HRC operation is “confined” within an operating envelope [3] as follows. The HRC design
capacity is the point at the intersection between the heating load and the heat rejection from the cooling
load curves, as illustrated in Figure 1. At this point, a single control setpoint controls the HRC and both
heating and cooling loads are equally prioritized. Below the associated outdoor air temperature (OAT),
the heating system drops into a cooling-priority mode where the HRC load is driven by the evaporator
leaving temperature (ELT) setpoint, dictated by the available cooling load for heat rejection. In such
conditions, supplemental heating must be provided by the boiler system and the HRC condenser leaving
temperature (CLT) setpoint has minimal effect. Similarly, above the design capacity OAT, the HRC is
in heating-priority mode, driven by the CLT setpoint to meet the base heating load and supplemental
cooling is required as the ELT setpoint has a minimum effect.
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Figure 1. Selection and Operating Areas for Simultaneous Heating and Cooling HRC [3]

When this operating envelope is very large, HRC operation time is maximized but efficiency is
suboptimal; when it is narrow, the converse is true. efficiency is maximized, but the operation time is
sacrificed. HRC systems have many possible optimization parameters, such as the Pu., Qc, COP, the
natural gas offset, the greenhouse gas emissions (GHG), and the cost savings (CSi) [6]. Overall, the
CSir 1s likely the most appropriate aspect to minimize [1] [3] [7]. This is achievable by minimizing the
compressor power (Pw.) and maximizing the condenser side heat transfer (Q.). Where natural gas
savings are prioritized, HRC manufacturers indicate the importance of ELT and CLT setpoints; the



benefit of adjusting the CLT and increasing the Fi.c has been demonstrated in an academic study to result
in savings of 43.9%, compared to the baseline [1].

2.2. Reinforcement Learning

RL is an area of Machine Learning (ML). ML is typically broadly sub-divided into three areas: 1 —
supervised learning; 2 — unsupervised learning; 3 — RL. Supervised learning typically involves
presenting an algorithm with labelled examples of data, that are used to train the underlying model. The
model can then be used to make classification or regression predictions on un-labelled examples.
Unsupervised learning involves discovering anomalies and patterns in the data rather than making
predictions.

RL, on the other hand, involves training an intelligent agent to undertake a sequence of actions in a
defined environment. The intelligent agent, once presented with a specific environment state, performs
actions and collects either rewards or penalties. The intelligent agent seeks to maximize the total reward
— defined by a mathematical function. RL offers significant generalization benefits compared with
supervised ML techniques as it does not necessarily require a model for training, and therefore can
optimize the system without prior knowledge [5].

2.3. Reinforcement Value of Reinforcement Learning for HVAC Optimization

Several studies have reviewed the application of RL within the building's context, summarized in [4].
Those specific to HVAC applications tended to use energy, flexibility, and comfort as the most
commonly used control objectives while the most common RL algorithms were value iteration and
tabular Q-learning, with a handful of studies instead using fitted Q-iteration or, wire fitted neural
networks, or Fuzzy Q-learning. Two studies are of direct relevance to HRC optimization. On the chilled
water side, [5] demonstrated the value of an RL model-free methodology to reduce energy use while
maintaining the comfort of building occupants [5]. This study’s results show that it was possible to
converge an RL system over only in the summer season for a cooling system. On the heating side, [8]
demonstrated the value of RL for predicting boiler combustion energy efficiency.

RL is valuable for HRC optimization as it mimics the behaviour of expert operators who could use
trial and error to optimize the operating envelope to maximize cost savings; in practice, this is limited
to a narrow range of operation whereas the RL could virtually all possible operating conditions. The
cyclic nature of HRC operation provides repeated opportunities for this learning, benefiting rapid
training of the RL agent. Third, the redundancy of the HRC with primary heating and cooling systems
reduces the risk of RL experimentation. Finally, RL can be used to transfer of the knowledge learned
from one system to another. This paper presents a method to supper this transferability to support HRC
optimization at scale.

3. Research Methodology
The development of the RL implementation consisted of three steps: (1) analysis of the HRC system;
(2) feature selection; and (3) RL agent development.

3.1. HRC Apparatus

A single condenser system was used as the test apparatus, shown schematically in Figure 2 and its design
temperatures and rated performance data are summarized in Table 1. Real-time data is collected from
this facility Building Automation System (BAS), including the condenser hydronic glycol flow (Fircc),
and HRC entering (EET and CET for evaporator and condenser, respectively) and leaving (ELT and
CLT) temperatures. To supplement BAS data, a dedicated power meter (Siemens MD-BM3; +/- 0.01kW
accuracy) to measure the HRC’s compressor power (Pir) and ultrasonic flow meter (Dynasonics Badger
Meter TFX-5000; +/-0.001 1/s accuracy) were integrated with the BAS.
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Figure 2. Single Condenser Heat Recovery Chiller System with variables indicated

Table 1. Heat Recovery AHRI and actual performance [9]

Design Cooling Performance Evaporator Condenser
Load | Capacity (kW) Compressor (kW) COP  FlowRatells ELT°C Fhrclls CET°C CLT°C
100% | 179.5 75.5 2.38 7.72 6.7 3.95 43.3 60.0
50% | 89.7 38.0 2.36 7.72 6.7 3.95 51.7 59.4
ACTUAL COOLING PERFORMANCE |
Per Comp | 75.7 37.2 2.035 7.72 6.7 4.6 NA 60.0

3.2. Feature Selection

The desired features were identified based on the documentation of available data points, operator
constraints, insights from the literature, and historical data analysis. Because the supplemental sensors
were installed after the 2021 cooling season, only the heating season (OAT from -5°C to 17°C; cooling-
priority) performance was evaluated. In addition to the measured variables indicated in Figure 2, two
control variables — the ELT and CLT setpoints — were also considered as features. For simplicity, Fpcc
was maintained at 4.6 1/s by modulating the pump speed.

For the RL agent to take the best possible action, we need to determine the best candidate variables
to represent the HRC’s state. To achieve this goal, we proceeded by feature selection on 15 variables
trended in the BAS. Highly correlated variables were removed using a correlation matrix. Then, we
trained a linear regression model to predict the cost-saving (CShr) from the remaining 13 variables after
z-normalization. We removed the non-significant variables (p-value>0.05), then we eliminated
sequentially less significant variables. The best linear regression model provided an R2 score of 0.994
with only 3 variables that are: Py, CET and CLT. Therefore, the HRC’s state will contain these variables
in addition to the cost-saving (CSir) and the number of operating compressors (Nbcomp).



3.3. Reward Function Development

The development of the agent was based on insights from the literature, experience of the facility
engineers and operators gained during normal operations and commissioning, and data visualization. In
typical building applications, operators would override setpoints based on their experience of the system
and do adjustments depending on seasons or operational issues. The goal of the RL is to mimic this
behavior but doing so perfectly. The RL agent interaction is shown schematically in Figure 3 and reads
and acts on the HRC system state every minute.
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Figure 3. RL Agent interaction with the environment

Expert input facilitates efficient RL training while further minimizing risk. These were documented
in the following operating constraints: (1) when the HRC is operating, at Nbcomp > 1, the savings are
maximized; (2) when the HRC is operating, at Nbcomp = 0, no savings are obtained and heat can migrate
from the main heating loop to the condenser loop, creating energy losses. (3) when the HRC is operating,
cycling from Nbcomp = 2 to Nbeomp = 0 compressors repeatedly indicates unstable operations and creates
an unnecessary strain on the HRC and an unsteady operation.

4. Reward Function Development

4.1. Objective

The goal of the RL is to find the best operating envelope at all times, that will maintain the HRC in
operation in the most efficient way, therefore maximizing the cost savings. Equation 1 presents the
hourly cost savings calculation for HRC operation compared to baseline operation (subscript b). To
consider both GHG and energy impacts, carbon taxes have been included in energy costs.

CShrc = ((Nbcomp * Phrc;)- Phrc) * (COStelectricity) + (Qc - (Nbcomp * Qcp)) *

(COStnaturalgas) ( 1 )

This cost savings is the target value for optimization and was selected to consider the balance between
energy (Puwcand Q) and the GHG reduction; to achieve this, the system lift (defined as CLT-ELT) needs
to be minimized [3] [7].



4.2. Insights from Data Analysis

Data analysis highlighted four concerns. First, when the CLT setpoint was too low (operating envelope
too narrow), the chiller would cycle directly from 0 to 2 compressors as illustrated in Figure 4. This
unstable operation could result in premature failure and must be avoided by using a harsh RL penalty
for O chiller operation. Expert knowledge learned from the data. The data acquired gives an insight into
the desired operation of the RL agent below the baseline.

Second, the HRC pumps continue even when the HRC is not operating, resulting in a migration of
heat from the boiler loop to the HRC loop and negative system capacity. Finally, the transient
performance resulted in noise and improbable values in the measured data, aggravated by BAS-
induced data lags.
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Figure 4. Distributions and co-distributions of the pre-processed training data

4.2.1. Architecture & pseudo code.

In the RL architecture depicted in Figure 5, the HRC is the environment that operates under an unknown
model. It is observable through a state st reported every 30 seconds and controlled by the action at
provided by the RL agent. A reward Rt is calculated from the environment and used by the RL agent to
gradually improve its policy. The selection of the RL agent architecture is dictated by various
considerations such as how much the agent knows about the environment’s dynamics, whether the
interaction is episodic or not, and the nature of the action (discrete or continuous). In the HRC case, the
model is unknown, and the actions are continuous (evaporator and condenser setpoints). Many stable
architectures can be applied in this case such as the Advantage actor-critic A2C on Figure 5 [10] [11],
DDPG [12] or SAC [13]. While the role of the actor’s network is to find the optimal policy by acting on
the HRC (action at), the critic’s network evaluates the policy produced by the actor and provides

feedback (TD error) to guide both networks to maximize the reward R; in subsequent interactions (see
Table 2).
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Figure 5. RL agent architecture, adapted from [10, 11]
RL agent nomenclature
[0} Critic’s network parameter St HRC state at instant t
0 Actor’s network parameter St+1 HRC state at instant t+1
g Actor’s policy a; Agent’s action at instant t
J(@) Neural network loss function Aprl Agent’s action at instant t +1
v Gradient operator R; Reward obtained by the agent at instant t
The reward function is given by the following equation:
R, = cSt cst,.. —cstt 2
t = €pPt hrc+( hrc hrc) ()

with p, = {0 if Nbfomp = 0
1  otherwise

The total reward R, is a linear combination of two terms. The first term is a product of the learning
rate (€), the limited number of operating compressors at time t (p;), and the total cost savings calculated
at time t (CS}, ) to ensure that any actions resulting in cost savings receive positive reinforcement.

The term p; which can be described as the limited number of operating compressors, can have two
possible values. It is equal to 0 if the actual total number of operating compressors (N bgomp) is also
equal to zero. It is limited to the maximum value of 1 in those cases when the actual number of operating
compressors (N bgomp) is greater than or equal to 1. This is done to reflect the fact that operating more
than 1 compressor does not typically result in additional cost savings. Furthermore, allowing p, to take
on values greater than 1 would end up giving the first term of the reward function equation too much
weight, making it less sensitive to changes in cost savings imparted by the most recent action.

It was observed that when 0 compressors are operating, no cost savings are possible due to lack of
heat exchange. The product of the limited number of compressors operating (p;) and the total
instantaneous cost savings (CSf,.) describes this effect. If the total number of operating compressors
drops to 0 (N bgomp = 0), the first term of the reward function equation will be eliminated. If one or more
compressors are operating, then this term will significantly influence the total value of the reward.



The learning rate hyperparameter (¢) will be typically set to a value between 0 and 1. It is used to
control the extent to which the first term of the reward function equation influences the overall reward
and prevents it from becoming too dominant in those situations when more than one compressor is
operating. Small values of € will make the reward function more sensitive to the effects of the latest
action. Larger values of € will make the reward function less sensitive to the effects of the latest action.
Reducing sensitivity can help mitigate algorithm oscillation.

The second term in the reward function equation is the difference between the current instantaneous
cost savings calculated at time t (CSf,.), and the previous instantaneous cost savings calculated at time
t-1 (CS;2). In those situations when the current cost savings are lower than previous cost savings the
agent will receive a lower reward. In those situations when the current cost savings are close to zero, or
much lower than the previous cost savings, the second term of the equation will dominate the sum and
will result in a negative reward being returned to the agent.

Table 2. Actor-Critic’s algorithm pseudo-code overview

Initialize actor and critic network parameters 0 and ¢ respectively

for each step t:
Select an action in the state s, using the actor’s policy: a,~my(s.)
Take action a, and receive reward R,, move to next state s;,,
Compute policy gradient for the actor: V4j(0)
Update the actor’s network parameter 0 using gradient descent
Compute the loss of the critic’s network J(¢)
Compute the gradient for the critic V4/(¢)
Update the critic’s network parameter ¢ using gradient ascent

0 end for

HOoONOOTUDR~RWNE

The resultant action and reward table is summarized in Table 3.

Table 3. RL actions and rewards

Condition Potential Actions Reward Constraints
CShrc St+1 < CShrc Do nothing Negative reward
St ELT Setpoint +0.56°C
CLT Setpoint -0.56°C
CShrc st+1 = CShrc Do nothing No reward o o
st ELT Setpoint +0.56°C e S0
CLT Setpoint -0.56°C ' 60°C B
CShrc st+1 > CShrc Do nothing Positive reward | ~ 1> HWT-SP+5°C;
St ELT and CLT
Nbcomp St+1 = 0 ELT Setpoint -0.56°C Large negative setpoints may only
and Nbcomp St = 1 CLT Setpoint +0.56°C reward be adjusted in
Nbcomp St+1 = 0 ELT Setpoint -0.56°C No reward increments of 1°F
and Nbcomp st = 0 | CLT Setpoint +0.56°C (0.56°C)
Nbcomp St+1 = 0 ELT Setpoint +/- Very large
and Nbcomp St = 2 0.56°C negative reward

CLT Setpoint +/-
0.56°C




5. Discussion & Conclusion

Using a model-free RL method for the HRC system is promising, especially for the HRC. Research on
HVAC optimization is growing and this article helps to grow the knowledge-based around this subject.
This paper presents the development of a reward function as informed by operator expert input and
presents a generalized method to replicated this for other HRC systems, updated with system-specific
constraints and operational parameters.

5.1. Limitations

The context of data collection is the most significant limitation of this study. The case study data are
acquired after the Covid-19 Pandemic, but yet, the occupancy is not typical to pre-pandemic, since
building offices remain mostly vacant, with many non-lab employees working remotely. This has an
impact on both the heating and cooling building load in office spaces. The HRC operations were
disturbed from time to time due to maintenance as well, or planned shutdown on the cooling and heating
system. Further, the additional sensor data only captured the cooling-priority mode and partial data at
design condition (two compressors); having the HPM condition is necessary to establish the complete
baseline for savings calculation baseline. Second, the transient operation of the HRC resulted in noisy
and unexpected data and signal processing is required to ensure the RL agent is trained on appropriate
data. In addition, two simplifications were used in the preliminary model. First, we did not evaluate the
potential benefits of a variable Fur. to further optimize the chiller operation because the manufacturer
recommends a constant Fi. for this machine. Second, only the average energy rate is considered in this
study, to simplify the calculation. This means the fees and demand rate are blended and their segregation
could further increase cost savings.

5.2. Future Research

Implementation of the RL agent is tentatively scheduled for early spring of 2022. During this
implementation, a parametric analysis will be completed to understand the impact of the cost of
electricity, natural gas, and the carbon tax on the optimization of the operating setpoint. RL learning will
also be evaluated to adjust or refine the reward function. The installation of a glycol reserve tank on the
condenser side could also be used to further improve performance, serving as a damper to reduce the
cycling process, further increasing the energy reduction from the system and controllability.
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