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Abstract. Heat recovery chiller systems have significant strategic value to reduce building 

greenhouse gas emissions although this potential remains unrealized in practice. Real-time 

optimization using model-free reinforcement learning provides a potential solution to this 

challenge. A full-scale case study to implement reinforcement learning in a 6,000 m2 academic 

laboratory is planned. This paper presents the methodology used to translate historical data 

correlations and expert input from operations personnel into the development of the 

reinforcement learning agent and associated reward function. This approach will permit a more 

stable and robust implementation of model-free reinforcement learning and the methodology 

presented will allow operator-identified constraints to be translated into reward functions more 

broadly, allowing for generalization to similar heat recovery chiller systems. 

1.  Introduction 

Heat recovery chiller (HRC) systems permit simultaneous heating and cooling in buildings but their 

potential is unrealized in practice [1] as such systems often operate poorly or are not well understood, 

so they are often decommissioned by building operators [2]. Further, even when well-operated, 

optimization is extremely challenging due to the high degree of complexity required compared with 

standalone heating or cooling systems [3].  

As we face the challenges of the climate crisis, buildings present a significant opportunity to decrease 

GHG emissions (IPCC, 2018) and HRC systems offer such savings, particularly where electricity 

generation relies on fossil fuels. This paper engages with the challenge of HRC optimization by 

exploring the supporting infrastructure and preliminary analysis necessary to develop and implement 

reinforcement learning (RL) in a full-scale facility. 

Advances in reinforcement learning (RL) research to optimize HVAC applications demonstrate the 

high potential of the technology in building applications [4]. Compared with other ML techniques, RL 

is beneficial as it is an online learning method that can be implemented without a trained model [5]; this 

further permits its generalized application. To successfully implement RL, however, the appropriate 

reward function is critical. This paper presents insights on how to leverage operator expertise alongside 

historical data to develop this function, drawing from a full-scale HRC implementation at an academic 

facility. 

 

 



 

 

 

 

 

 

2.  Literature Review 

To understand both the value of RL for HRC, we begin by providing a detailed overview of HRC 

operation drawing from both the literature and the system apparatus. Next, we present insights drawn 

from RL implementation in other heating and cooling optimization studies, discussing its merits, 

potential risks, and technical challenges to be overcome, which shaped our methodological approach 

2.1.  Heat Recovery Chiller Operation 

HRC is a type of heat pump consisting of an evaporator section, which takes heat from the cooling 

system, and one or more condenser sections, which inject this heat into the heating system. When sized 

and operated correctly, these systems reduce the site energy use and improve load balancing [3]. A 

single condenser system [6] is the simplest form of HRC; in this system, the heat rejection from the 

cooling load is transferred to the heating loop via a heat exchanger providing pre-heating to a boiler 

loop. This allows heat rejection to lower temperatures to maximize this heat recovery. The HRC 

evaporator is installed in parallel with the chiller plant, which provides supplemental cooling as required. 

since HRC sizing is limited to the maximum cooling load where the heat rejection matches the base heat 

demand of the building [3]. 

The HRC operation is “confined” within an operating envelope [3] as follows. The HRC design 

capacity is the point at the intersection between the heating load and the heat rejection from the cooling 

load curves, as illustrated in Figure 1. At this point, a single control setpoint controls the HRC and both 

heating and cooling loads are equally prioritized. Below the associated outdoor air temperature (OAT), 

the heating system drops into a cooling-priority mode where the HRC load is driven by the evaporator 

leaving temperature (ELT) setpoint, dictated by the available cooling load for heat rejection. In such 

conditions, supplemental heating must be provided by the boiler system and the HRC condenser leaving 

temperature (CLT) setpoint has minimal effect. Similarly, above the design capacity OAT, the HRC is 

in heating-priority mode, driven by the CLT setpoint to meet the base heating load and supplemental 

cooling is required as the ELT setpoint has a minimum effect. 

 

   

 

Figure 1. Selection and Operating Areas for Simultaneous Heating and Cooling HRC [3] 

When this operating envelope is very large, HRC operation time is maximized but efficiency is 

suboptimal; when it is narrow, the converse is true. efficiency is maximized, but the operation time is 

sacrificed. HRC systems have many possible optimization parameters, such as the Phrc, Qc, COP, the 

natural gas offset, the greenhouse gas emissions (GHG), and the cost savings (CShrc) [6]. Overall, the 

CShrc is likely the most appropriate aspect to minimize [1] [3] [7]. This is achievable by minimizing the 

compressor power (Phrc) and maximizing the condenser side heat transfer (Qc). Where natural gas 

savings are prioritized, HRC manufacturers indicate the importance of ELT and CLT setpoints; the 



 

 

 

 

 

 

benefit of adjusting the CLT and increasing the Fhrc has been demonstrated in an academic study to result 

in savings of 43.9%, compared to the baseline [1]. 

2.2.  Reinforcement Learning  

RL is an area of Machine Learning (ML). ML is typically broadly sub-divided into three areas: 1 – 

supervised learning; 2 – unsupervised learning; 3 – RL. Supervised learning typically involves 

presenting an algorithm with labelled examples of data, that are used to train the underlying model. The 

model can then be used to make classification or regression predictions on un-labelled examples. 

Unsupervised learning involves discovering anomalies and patterns in the data rather than making 

predictions. 

RL, on the other hand, involves training an intelligent agent to undertake a sequence of actions in a 

defined environment. The intelligent agent, once presented with a specific environment state, performs 

actions and collects either rewards or penalties. The intelligent agent seeks to maximize the total reward 

– defined by a mathematical function. RL offers significant generalization benefits compared with 

supervised ML techniques as it does not necessarily require a model for training, and therefore can 

optimize the system without prior knowledge [5]. 

2.3.  Reinforcement Value of Reinforcement Learning for HVAC Optimization 

Several studies have reviewed the application of RL within the building's context, summarized in [4]. 

Those specific to HVAC applications tended to use energy, flexibility, and comfort as the most 

commonly used control objectives while the most common RL algorithms were value iteration and 

tabular Q-learning, with a handful of studies instead using fitted Q-iteration or, wire fitted neural 

networks, or Fuzzy Q-learning. Two studies are of direct relevance to HRC optimization. On the chilled 

water side, [5] demonstrated the value of an RL model-free methodology to reduce energy use while 

maintaining the comfort of building occupants [5]. This study’s results show that it was possible to 

converge an RL system over only in the summer season for a cooling system. On the heating side, [8] 

demonstrated the value of RL for predicting boiler combustion energy efficiency.  

RL is valuable for HRC optimization as it mimics the behaviour of expert operators who could use 

trial and error to optimize the operating envelope to maximize cost savings; in practice, this is limited 

to a narrow range of operation whereas the RL could virtually all possible operating conditions. The 

cyclic nature of HRC operation provides repeated opportunities for this learning, benefiting rapid 

training of the RL agent. Third, the redundancy of the HRC with primary heating and cooling systems 

reduces the risk of RL experimentation. Finally, RL can be used to transfer of the knowledge learned 

from one system to another. This paper presents a method to supper this transferability to support HRC 

optimization at scale. 

 

3.  Research Methodology 

The development of the RL implementation consisted of three steps: (1) analysis of the HRC system; 

(2) feature selection; and (3) RL agent development. 

3.1.  HRC Apparatus 

A single condenser system was used as the test apparatus, shown schematically in Figure 2 and its design 

temperatures and rated performance data are summarized in Table 1. Real-time data is collected from 

this facility Building Automation System (BAS), including the condenser hydronic glycol flow (Fhrcc), 

and HRC entering (EET and CET for evaporator and condenser, respectively) and leaving (ELT and 

CLT) temperatures. To supplement BAS data, a dedicated power meter (Siemens MD-BM3; +/- 0.01kW 

accuracy) to measure the HRC’s compressor power (Phrc) and ultrasonic flow meter (Dynasonics Badger 

Meter TFX-5000; +/-0.001 l/s accuracy) were integrated with the BAS. 



 

 

 

 

 

 

 

Figure 2. Single Condenser Heat Recovery Chiller System with variables indicated 

 

Table 1. Heat Recovery AHRI and actual performance [9] 

Design Cooling Performance Evaporator Condenser 

Load Capacity (kW) Compressor (kW) COP Flow Rate l/s ELT°C Fhrc l/s CET°C CLT°C  
100% 179.5 75.5 2.38 7.72  6.7 3.95 43.3 60.0 
50% 89.7 38.0 2.36 7.72  6.7 3.95 51.7 59.4 

ACTUAL COOLING PERFORMANCE   
Per Comp 75.7 37.2 2.035 7.72 6.7 4.6 NA 60.0 

3.2.  Feature Selection 

The desired features were identified based on the documentation of available data points, operator 

constraints, insights from the literature, and historical data analysis. Because the supplemental sensors 

were installed after the 2021 cooling season, only the heating season (OAT from -5°C to 17°C; cooling-

priority) performance was evaluated. In addition to the measured variables indicated in Figure 2, two 

control variables – the ELT and CLT setpoints – were also considered as features. For simplicity, Fhrcc 

was maintained at 4.6 l/s by modulating the pump speed.  

For the RL agent to take the best possible action, we need to determine the best candidate variables 

to represent the HRC’s state. To achieve this goal, we proceeded by feature selection on 15 variables 

trended in the BAS. Highly correlated variables were removed using a correlation matrix. Then, we 

trained a linear regression model to predict the cost-saving (CShrc) from the remaining 13 variables after 

z-normalization. We removed the non-significant variables (p-value>0.05), then we eliminated 

sequentially less significant variables. The best linear regression model provided an R2 score of 0.994 

with only 3 variables that are: Phrc, CET and CLT. Therefore, the HRC’s state will contain these variables 

in addition to the cost-saving (CShrc) and the number of operating compressors (Nbcomp). 

 

 



 

 

 

 

 

 

3.3.  Reward Function Development 

The development of the agent was based on insights from the literature, experience of the facility 

engineers and operators gained during normal operations and commissioning, and data visualization. In 

typical building applications, operators would override setpoints based on their experience of the system 

and do adjustments depending on seasons or operational issues. The goal of the RL is to mimic this 

behavior but doing so perfectly. The RL agent interaction is shown schematically in Figure 3 and reads 

and acts on the HRC system state every minute. 

 

Figure 3. RL Agent interaction with the environment 

Expert input facilitates efficient RL training while further minimizing risk. These were documented 

in the following operating constraints: (1) when the HRC is operating, at Nbcomp ≥ 1, the savings are 

maximized; (2) when the HRC is operating, at Nbcomp = 0, no savings are obtained and heat can migrate 

from the main heating loop to the condenser loop, creating energy losses. (3) when the HRC is operating, 

cycling from Nbcomp = 2 to Nbcomp = 0 compressors repeatedly indicates unstable operations and creates 

an unnecessary strain on the HRC and an unsteady operation. 

 

4.  Reward Function Development 

4.1.  Objective 

The goal of the RL is to find the best operating envelope at all times, that will maintain the HRC in 

operation in the most efficient way, therefore maximizing the cost savings. Equation 1 presents the 

hourly cost savings calculation for HRC operation compared to baseline operation (subscript b). To 

consider both GHG and energy impacts, carbon taxes have been included in energy costs. 

 

𝐶𝑆ℎ𝑟𝑐 = ((Nbcomp ∗ Phrc𝑏)–  Phrc) ∗ (𝑐𝑜𝑠𝑡electricity ) + (Qc – (Nbcomp ∗ Qc𝑏)) ∗

 (𝑐𝑜𝑠𝑡𝑛𝑎𝑡𝑢𝑟𝑎𝑙𝑔𝑎𝑠)   (1) 

This cost savings is the target value for optimization and was selected to consider the balance between 

energy (Phrc and Qc) and the GHG reduction; to achieve this, the system lift (defined as CLT-ELT) needs 

to be minimized [3] [7]. 

 

 



 

 

 

 

 

 

4.2.  Insights from Data Analysis 

Data analysis highlighted four concerns. First, when the CLT setpoint was too low (operating envelope 

too narrow), the chiller would cycle directly from 0 to 2 compressors as illustrated in Figure 4. This 

unstable operation could result in premature failure and must be avoided by using a harsh RL penalty 

for 0 chiller operation. Expert knowledge learned from the data. The data acquired gives an insight into 

the desired operation of the RL agent below the baseline. 

Second, the HRC pumps continue even when the HRC is not operating, resulting in a migration of 

heat from the boiler loop to the HRC loop and negative system capacity. Finally, the transient 

performance resulted in noise and improbable values in the measured data, aggravated by BAS-

induced data lags.  

 

 
Figure 4. Distributions and co-distributions of the pre-processed training data 

4.2.1.  Architecture & pseudo code.  

In the RL architecture depicted in Figure 5, the HRC is the environment that operates under an unknown 

model. It is observable through a state st reported every 30 seconds and controlled by the action at 

provided by the RL agent. A reward Rt is calculated from the environment and used by the RL agent to 

gradually improve its policy. The selection of the RL agent architecture is dictated by various 

considerations such as how much the agent knows about the environment’s dynamics, whether the 

interaction is episodic or not, and the nature of the action (discrete or continuous). In the HRC case, the 

model is unknown, and the actions are continuous (evaporator and condenser setpoints). Many stable 

architectures can be applied in this case such as the Advantage actor-critic A2C on Figure 5 [10] [11], 

DDPG [12] or SAC [13]. While the role of the actor’s network is to find the optimal policy by acting on 

the HRC (action at), the critic’s network evaluates the policy produced by the actor and provides 

feedback (TD error) to guide both networks to maximize the reward 𝑅𝑡 in subsequent interactions (see 

Table 2). 



 

 

 

 

 

 

Figure 5. RL agent architecture, adapted from [10, 11] 

 

RL agent nomenclature 

ϕ Critic’s network parameter st HRC state at instant t 

𝜃 Actor’s network parameter st+1 HRC state at instant t+1 

𝜋𝜃 Actor’s policy at Agent’s action at instant t 

J(.) Neural network loss function at+1 Agent’s action at instant t +1 

∇ Gradient operator Rt Reward obtained by the agent at instant t 

    

 

The reward function is given by the following equation: 

 

𝑅𝑡 = 𝜖 𝜌𝑡𝐶𝑆ℎ𝑟𝑐
𝑡 + (𝐶𝑆ℎ𝑟𝑐

𝑡 − 𝐶𝑆ℎ𝑟𝑐
𝑡−1) 

 

with 𝜌𝑡 = {
0   if 𝑁𝑏𝑐𝑜𝑚𝑝

𝑡 = 0 

1       otherwise
 

 

(2) 

The total reward 𝑅𝑡 is a linear combination of two terms. The first term is a product of the learning 

rate (𝜖), the limited number of operating compressors at time t (𝜌𝑡), and the total cost savings calculated 

at time t (𝐶𝑆ℎ𝑟𝑐
𝑡 ) to ensure that any actions resulting in cost savings receive positive reinforcement. 

The term 𝜌𝑡 which can be described as the limited number of operating compressors, can have two 

possible values. It is equal to 0 if the actual total number of operating compressors (𝑁𝑏𝑐𝑜𝑚𝑝
𝑡 ) is also 

equal to zero. It is limited to the maximum value of 1 in those cases when the actual number of operating 

compressors (𝑁𝑏𝑐𝑜𝑚𝑝
𝑡 ) is greater than or equal to 1. This is done to reflect the fact that operating more 

than 1 compressor does not typically result in additional cost savings. Furthermore, allowing 𝜌𝑡 to take 

on values greater than 1 would end up giving the first term of the reward function equation too much 

weight, making it less sensitive to changes in cost savings imparted by the most recent action. 

It was observed that when 0 compressors are operating, no cost savings are possible due to lack of 

heat exchange. The product of the limited number of compressors operating (𝜌𝑡) and the total 

instantaneous cost savings (𝐶𝑆ℎ𝑟𝑐
𝑡 ) describes this effect. If the total number of operating compressors 

drops to 0 (𝑁𝑏𝑐𝑜𝑚𝑝
𝑡  = 0), the first term of the reward function equation will be eliminated. If one or more 

compressors are operating, then this term will significantly influence the total value of the reward. 

𝑎𝑡 = ൬
𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑜𝑟_𝑆𝑇𝑃𝑇
𝐶𝑜𝑛𝑑𝑒𝑛𝑠𝑒𝑟_𝑆𝑇𝑃𝑇
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The learning rate hyperparameter (𝜖) will be typically set to a value between 0 and 1. It is used to 

control the extent to which the first term of the reward function equation influences the overall reward 

and prevents it from becoming too dominant in those situations when more than one compressor is 

operating. Small values of ϵ will make the reward function more sensitive to the effects of the latest 

action. Larger values of ϵ will make the reward function less sensitive to the effects of the latest action. 

Reducing sensitivity can help mitigate algorithm oscillation. 

The second term in the reward function equation is the difference between the current instantaneous 

cost savings calculated at time t (𝐶𝑆ℎ𝑟𝑐
𝑡 ), and the previous instantaneous cost savings calculated at time 

t-1 (𝐶𝑆ℎ𝑟𝑐
𝑡−1). In those situations when the current cost savings are lower than previous cost savings the 

agent will receive a lower reward. In those situations when the current cost savings are close to zero, or 

much lower than the previous cost savings, the second term of the equation will dominate the sum and 

will result in a negative reward being returned to the agent. 

 

Table 2. Actor-Critic’s algorithm pseudo-code overview 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

 

Initialize actor and critic network parameters  and  respectively 

for each step t: 

  Select an action in the state 𝑠𝑡 using the actor’s policy: 𝑎𝑡~𝜋𝜃(𝑠𝑡) 
  Take action 𝑎𝑡 and receive reward 𝑅𝑡, move to next state 𝑠𝑡+1 

  Compute policy gradient for the actor: ∇𝜃𝐽(𝜃) 
  Update the actor’s network parameter  using gradient descent 

  Compute the loss of the critic’s network 𝐽(𝜙) 
  Compute the gradient for the critic ∇𝜙𝐽(𝜙) 

  Update the critic’s network parameter  using gradient ascent 

end for 

 

The resultant action and reward table is summarized in Table 3. 

 

Table 3. RL actions and rewards 

Condition Potential Actions Reward Constraints 

CShrc st+1 < CShrc 

st 

Do nothing 

ELT Setpoint +0.56°C 

CLT Setpoint –0.56°C 

Negative reward 

4.4°C ≤ ELT ≤ 8.9°C 

48.9°C ≤ CLT ≤ 

60°C 

CLT ≥ HWT-SP+5°C; 

ELT and CLT 

setpoints may only 

be adjusted in 

increments of 1oF 

(0.56oC) 

 

CShrc st+1 = CShrc 

st 

Do nothing 

ELT Setpoint +0.56°C 

CLT Setpoint –0.56°C 

No reward 

CShrc st+1 > CShrc 

st 

Do nothing Positive reward 

Nbcomp st+1 = 0 

and Nbcomp st = 1 

ELT Setpoint -0.56°C 

CLT Setpoint +0.56°C 

Large negative 

reward 

Nbcomp st+1 = 0 

and Nbcomp st = 0 

ELT Setpoint -0.56°C 

CLT Setpoint +0.56°C 

No reward 

Nbcomp st+1 = 0 

and Nbcomp st = 2 

ELT Setpoint +/-

0.56°C 

CLT Setpoint +/–

0.56°C 

Very large 

negative reward 

 

 



 

 

 

 

 

 

5.  Discussion & Conclusion 

Using a model-free RL method for the HRC system is promising, especially for the HRC. Research on 

HVAC optimization is growing and this article helps to grow the knowledge-based around this subject.  

This paper presents the development of a reward function as informed by operator expert input and 

presents a generalized method to replicated this for other HRC systems, updated with system-specific 

constraints and operational parameters. 

5.1.  Limitations 

The context of data collection is the most significant limitation of this study. The case study data are 

acquired after the Covid-19 Pandemic, but yet, the occupancy is not typical to pre-pandemic, since 

building offices remain mostly vacant, with many non-lab employees working remotely. This has an 

impact on both the heating and cooling building load in office spaces. The HRC operations were 

disturbed from time to time due to maintenance as well, or planned shutdown on the cooling and heating 

system. Further, the additional sensor data only captured the cooling-priority mode and partial data at 

design condition (two compressors); having the HPM condition is necessary to establish the complete 

baseline for savings calculation baseline. Second, the transient operation of the HRC resulted in noisy 

and unexpected data and signal processing is required to ensure the RL agent is trained on appropriate 

data. In addition, two simplifications were used in the preliminary model. First, we did not evaluate the 

potential benefits of a variable Fhrcc to further optimize the chiller operation because the manufacturer 

recommends a constant Fhrcc for this machine. Second, only the average energy rate is considered in this 

study, to simplify the calculation. This means the fees and demand rate are blended and their segregation 

could further increase cost savings. 

5.2.  Future Research 

Implementation of the RL agent is tentatively scheduled for early spring of 2022. During this 

implementation, a parametric analysis will be completed to understand the impact of the cost of 

electricity, natural gas, and the carbon tax on the optimization of the operating setpoint. RL learning will 

also be evaluated to adjust or refine the reward function. The installation of a glycol reserve tank on the 

condenser side could also be used to further improve performance, serving as a damper to reduce the 

cycling process, further increasing the energy reduction from the system and controllability. 
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