
 
 
 
 
 
 

Neural Semantic Parsing of Building Regulations for 
Compliance Checking 

S Fuchs1, M Witbrock1, J Dimyadi2,1 and R Amor1 

1 School of Computer Science, The University of Auckland, Auckland, New Zealand 
2 CAS Limited, Auckland, New Zealand 
 

sffc348@aucklanduni.ac.nz, m.witbrock@auckland.ac.nz, jdimyadi@cas.net.nz, 
trebor@cs.auckland.ac.nz  

Abstract. Computerising building regulations to allow reasoning is one of the main challenges 
in automated compliance checking in the built environment. While there has been a long 
history of translating regulations manually, in recent years, natural language processing (NLP) 
has been used to support or automate this task. While rule- and ontology-based information 
extraction and transformation approaches have achieved accurate translations for narrow 
domains and specific regulation types, machine learning (ML) promises increased scalability 
and adaptability to new regulation styles. Since ML usually requires many annotated examples 
as training data, we take advantage of the long history of building code computerisation and 
use a corpus of manually translated regulations to train a transformer-based encoder-decoder 
model. Given a relatively small corpus, the model learns to predict the logical structure and 
extracts entities and relations reasonably well. While the translation quality is not adequate to 
fully automate the process, the model shows the potential to serve as an auto-completion 
system and to identify manually translated regulations that need to be reviewed. 

1.  Introduction 
Automated compliance checking (ACC) has been an active research area in the building domain for 
the last 50 years [1]. To automatically check a building design for compliance against relevant codes, 
one needs both the design information and the codes in a computable form. However, regulations are 
especially difficult to interpret and encode due to their complex structure, inherent ambiguity, and 
domain terminology. Most approaches to formalising building codes have been manual, semi-
automated or rule-based. While the manual and semi-automated approaches can achieve high-quality 
translations, they are not free from human errors, biases and personal preferences for translation styles, 
which cannot be completely prevented even by using extensive translation guidelines. Similar 
problems occur with fully automated rule-based translation systems. Since the rules are based on a 
selection of development texts, applying them to unseen regulation types is likely to result in 
erroneous translations. The more types, styles, and topics to be supported, the more rules are required, 
and the likelihood of contradictions and overspecified rules increases. 

In contrast, ML-based approaches can benefit from more diverse training samples to draw better 
distinctions and abstractions. The translation process is usually split into separate tasks such as text 
segmentation, named entity extraction and relation extraction. Those tasks can be efficiently annotated 
and learned with traditional ML. While separate tasks are easier to learn, they can introduce multiple 



 
 
 
 
 
 

sources of errors. Errors introduced early in the pipeline might have cascading effects and skew the 
entire translation. In recent years, the ML community has been moving towards building end-to-end 
solutions for complex tasks and learning multiple tasks with a single model to benefit from task 
similarities and shared knowledge [2]. This approach can also be found in the semantic parsing 
literature. Even for complex parsing tasks, highly complex parsing strategies have been replaced by 
attention-based deep learning architectures. For example, the BART model [3] used in SPRING [4] 
allows bi-directional translation from and into Abstract Meaning Representation (AMR) [5], a graph-
based semantic representation. 

We hypothesise that transformer-based models [6] allow end-to-end translation of building 
regulations into a formal representation similar to SPRING for Text-to-AMR. With several countries 
having their laws translated manually, we utilise such a corpus as a training set to translate new 
regulations automatically instead of going through the time- and cost-intensive manual process. 

2.  Related Work 

2.1.  Formal building code representations 
Numerous studies evaluated different data formats based on their suitability for representing building 
regulations and facilitating ACC [7]. This started with decision tables in Fenves [8] and advanced to 
SWRL, FOL, RIF, LKIF, RuleML, LegalRuleML, and more. Since selecting and evaluating a suitable 
representation shall not be the focus of this research, only the main criteria of availability, readability, 
and reasoning capability need to be fulfilled. 

This work focuses on the New Zealand Building Code (NZBC). While it is a performance-based 
specification for buildings, the accompanying Acceptable Solutions and Verification Methods provide 
a prescriptive means to comply with those specifications. Sixteen Acceptable Solutions, covering the 
categories ‘Stability’, ‘Protection from Fire’, ‘Access’, ‘Moisture’, and ‘Services and Facilities’, were 
manually translated into LegalRuleML (LRML) by Dimyadi et al. [9] (availability). LRML is an 
XML-based format (readability) extending RuleML with operators necessary to represent regulation 
specific characteristics such as deontic concepts (e.g., permission, obligation, prohibition) and 
defeasibility. An example of this format is presented in Listing 1. Wyner and Governatori [10] showed 
that LRML can be transformed into defeasible logic (reasoning capability), a non-monotonic logic that 
allows for prioritising one rule over another to represent exceptions and restrictions. 

Listing 1. LRML representation for Section 1.1.4 of NZBC D1/AS1 [11]. 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

<lrml:PrescriptiveStatement key="NZ_NZBC-D1AS1#2.6_r1.1.4"> 
    <ruleml:Rule key="NZ_NZBC-D1AS1#2.6_r1.1.4"> 
        <ruleml:if> 
            <ruleml:Expr> 
                <ruleml:Fun iri="lovo:has"/> 
                    <ruleml:Atom> 
                        <ruleml:Rel iri="buvo:occupant"/> 
                        <ruleml:Var iri="buvo:building"/> 
                    </ruleml:Atom> 
                <ruleml:Data xsi:type="xs:string">disabilities</ruleml:Data> 
            </ruleml:Expr> 
        </ruleml:if> 
        <ruleml:then> 
            <ruleml:And> 
                <lrml:Obligation> ……  
 

2.2.  Building code computerisation 
ACC requires the building code and building design information in a computable format. Figure 1 
shows the various aspects the conversion process can include. The two main tasks of interest for this 



 
 
 
 
 
 

research are information extraction and transformation from building codes and standards. Commonly 
extracted information ranges from concept-relationship triplets [13, 14] to the semantic information 
elements introduced by Zhang and El-Gohary [15]. Those include subjects and attributes, deontic 
operators, relations, quantities, and restrictions. While handcrafted rules and ontologies were prevalent 
in early attempts [16, 17, 18], more recently, ML was utilised for this task [19, 20, 21, 22]. 

Rule-based approaches are often considered to be sufficient to transform the extracted information 
into a formal representation. Xu et al. [18] and Zhang and El-Gohary [23] converted building 
regulations into a logic format. While the first approach used simple rules, the second approach used a 
complex method to transform 40 different information elements into Prolog Rules using semantic 
mapping and conflict resolution rules. Another example is Guo et al. [24], who transformed the 
extracted terms and relations into SPARQL using term matching and semantic similarity analysis. 

Figure 1. NLP supported ACC process (Figure adapted from Fuchs and Amor [12]) 

2.3.  Transformer architecture 
Vaswani et al. [6] introduced the transformer architecture, a neural network architecture that replaced 
recurrent neural networks with attentions mechanisms to encode textual data. The architecture was 
specialised for translation tasks using an encoder to generate a representation of the input and a 
decoder to generate the output. The encoder and decoder are connected via cross-attention. The input 
and target representations are calculated through multiple transformer blocks consisting of a multi-
head self-attention layer, a linear layer, and normalisation and activation functions. T5 [25] introduced 
the paradigm of providing task definitions via the input prompt, making it suitable for multi-task 
training. T5 is available pre-trained with masked language modelling using a large web corpus and 
refined with supervised tasks such as translation, summarisation, and natural language inference. 
BART [3] introduced an additional shuffling objective deemed valuable for the SPRING AMR parser 
but was not trained on supervised tasks. 

2.4.  Semantic parsing 
Semantic parsing aims to translate a sentence from natural language into a formal meaning 
representation. There are numerous representations available such as lambda calculus and first-order 
logic, SQL and SPARQL, Prolog and programming languages, and AMR. A range of manually 
annotated (e.g., AMR [5]) and automatically generated datasets (e.g., SPARQL [26] and Logic [27]) 
exist for various semantic representations. AMR is a complex parsing task close to our application. It 
represents entities and relations with PropBank frames (e.g., ‘t / tell-01 :ARG0 (y / you)’) and includes 
constructs for quantities, dates, and lists. Parsing approaches can be categorised as grammar-, 
alignment-, transition-, and attention-based. Grammar-based models utilise external grammars like 
combinatory categorial grammar or regular expressions. Alignment-based models require a direct 
alignment between the original text and the semantic representation, which is often unavailable and 



 
 
 
 
 
 

challenging to generate. Transition-based models use a set of actions like swap, replace, shift, and 
reduce to transform one representation, including natural language, into another. Finally, attention-
based methods include SPRING [4], the transformer-based AMR parser motivating this study. 

3.  Research Methodology 
We hypothesise that the different semantic parsing sub-tasks mutually influence and benefit each 
other, whereas breaking the parsing task into information extraction and transformation removes 
important relational information necessary for later transformation steps. This effect can be observed 
in Zhang and El-Gohary [23], where the extraction of more information types led to higher 
transformation accuracy. In addition, this research aims to eliminate two weaknesses of previous 
approaches. We resolve the limited scalability to different requirement types and topics by using deep 
learning instead of handcrafted rules or features. We prevent cascading errors by generating the 
translation end-to-end. The semantic parser was developed iteratively following the steps in Figure 2. 

 

 

Figure 2. Methodology overview 

3.1.  Pre-processing 
The manually translated regulation clauses described in Section 2.1 were used as the foundation of this 
research. We discarded figures and tables. The remaining textual requirements consist of qualitative, 
quantitative, and descriptive requirements [28] and represent a broad range of topics, requirement 
types, and complexities. Although LRML includes references to the encoded regulation clauses, 
collecting tuples of LRML rules and the corresponding legal text necessary to train the model is non-
trivial. The regulatory text was only available in PDF, which is prone to parsing errors when retrieved 
automatically. Paragraphs with multiple sentences can be encoded as one or more rules. Similarly, a 
single sentence might contain multiple rules. We parsed the regulatory documents with PdfMiner, 
aligned the LRML rules and clauses using regular expressions and reviewed the alignments manually. 
We transcribed the LRML into the short form shown in Listing 2 to accommodate the token limitation 
of transformer models. LRML keywords are used as predicates and entities as subjects. Multiple 
subjects in a predicate are separated with commas. Namespaces and argument specifiers are removed. 

Listing 2. A short form of the LRML rule introduced in Listing 1. 
1 if(expr(fun(has),atom(rel(occupant),var(building)),data(disabilities))),then(and(obligation(…… 

3.2.  Training 

3.2.1.  Baseline. A baseline for LRML parsing is established by comparing T5 and BART in five 
different configurations: BART-base, BART-large, T5-base, T5-large, and T5-AMR. T5-AMR refers 
to a T5-base model refined to AMR parsing [29] and tests our hypothesis that out-of-domain datasets 
can be used to enhance the parsing performance. The similarity between LRML and AMR parsing led 



 
 
 
 
 
 

us to conclude that AMR training data could be a valuable resource to mitigate the data scarcity for 
LRML. Suitable hyperparameters were identified to allow a fair comparison of the different models. 

3.2.2.  Data augmentation. Data augmentation is common practice in computer vision to enhance 
performance and robustness. Augmentation methods for NLP, such as deleting, changing, and 
inserting words, can be problematic since the entire meaning of a sentence can alter with small 
changes. Still, we hypothesise this strategy is sufficient for our use case since both the regulation and 
the LRML representation can be augmented in parallel, forcing the model implicitly to learn entity 
independent extraction patterns. We generate artificial training data (i.e., silver data) by 1) identifying 
entities in regulation clauses, 2) masking a variable percentage of words in the aligned entities, 3) 
sampling multiple replacements terms per training sample, and 4) using the new terms in both LRML 
and regulation. This workflow is presented in Figure 3 using an example Regulation–LRML pair. We 
generated the new entities using RoBERTa [30] and a top-k sampling strategy. RoBERTa’s masking 
strategy and large vocabulary were well suited for this task. 
 

 

Figure 3. Silver data generation process with an example Regulation-LRML pair 

3.2.3.  Multi-task learning. Finally, the strength of the T5-AMR model led us to the assumption that 
using training data from related tasks might lead to further performance increases. Incorporating 
existing translations of regulatory documents would be ideal. But, due to the limited accessibility of 
such datasets, we used out-of-domain data for our experiments. Aribandi et al. [2] proposed ExT5, a 
large-scale multi-task training of the T5 model. Their experiments suggest that semantic parsing 
primarily benefits from summarisation and natural language inference data. Nevertheless, they 
achieved their best results by training with the maximum available tasks rather than a hand-picked 
subset. Since the ExT5 models are not available, we reproduce their results with a subset of the 
datasets. We chose a range of semantic parsing datasets, the natural language understanding 
benchmarks GLUE and SuperGLUE, and the LRML silver data (Details shown in Table 1). 

Table 1. Multi-task learning datasets, task descriptions and their sample sizes. 
Dataset Description Size Reference 
LRML Silver data 21,800 Dimyadi et al. [9] 
COGS Semantic parsing: Logical form 24,155 Kim and Linzen [27] 
CFQ Semantic parsing: SPARQL 95,744 Keysers et al. [26] 
AMR3.0 Semantic parsing: AMR 55,635 Knight et al. [5] 
ScotReg Masked Language Modelling 14,006 Kruiper et al. [31] 
GLUE MNLI, MRPC, QNLI, QQP, RTE, SST2, WNLI, COLA, STSB 949,733 Wang et al. [32] 
SuperGLUE BoolQ, CB, COPA, MultiRC, Record, WIC 143,478 Wang et al. [33] 

3.3.  Evaluation 
BLEU [34] is often used to evaluate translation tasks by comparing n-gram overlaps between 
prediction and ground truth. We use this metric to give an intuition about the parser’s performance. 
Nevertheless, BLEU does not directly evaluate representation specific characteristics like the 
relationship between predicates and subjects, the camel-case notation, nested predicates, and structural 



 
 
 
 
 
 

correctness. Whole sentence accuracy and SMATCH [35] are commonly used to evaluate AMR. 
SMATCH compares the triples of the prediction and ground truth. Therefore, it needs to find the best 
tree alignment, an NP-Complete problem. SemBLEU [36] eliminates this issue by comparing AMR 
structures of different context sizes as a bag-of-words. Since those metrics are not directly applicable, 
we propose an adapted evaluation metric that deals with the nested structure of the shortened LRML 
format. We avoid identifying the best entity alignment by using greedy search and rewarding partly 
correct entities and relations. Precision and recall are calculated per entity e and relation r in the 
predictions and references according to Equations 1 and 2. Sub-scores for entities are calculated by 
splitting the camel-case concepts. For example, the predicted entity ‘wall’ partly matches the reference 
‘chimneyWall’ and has 50% 𝑅𝑒𝑐𝑎𝑙𝑙!"## 	and 100% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛!"##. To account for nested and n-ary 
predicates, the relations are scored by the number of correct entity parts they enclose. For example, the 
relation ‘rel(construction)’ scores 0 if an incorrect entity ‘rel(type)’ was predicted. This eliminates 
SMATCH’s weakness to give scores for predicates with incorrect subjects. Given the reference 
‘atom(rel(construction),var(chimneyWall)’ and candidate ‘atom(rel(type),var(wall))’, we can calculate 
the following scores for the atom: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛"$%& = '

'('
 and 𝑅𝑒𝑐𝑎𝑙𝑙"$%& = '

'()
. Finally, the total can 

be calculated with Equations 3-5. The entity scores are weighted with w=2 in our experiments. 
 

𝑒: 𝐸𝑛𝑡𝑖𝑡𝑖𝑦 

𝑟: 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛 

𝑇: 𝑇𝑜𝑡𝑎𝑙 

𝑤:𝑊𝑒𝑖𝑔ℎ𝑡 

𝑇𝑃: 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝐹𝑃: 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 

𝐹𝑁:𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛!/# =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (1) 

𝑅𝑒𝑐𝑎𝑙𝑙!/# =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ =
∑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛! ∗ 𝑤 + ∑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛#

∑𝑒 ∗ 𝑤 +∑𝑟  (3) 

𝑅𝑒𝑐𝑎𝑙𝑙$ =
∑𝑅𝑒𝑐𝑎𝑙𝑙! ∗ 𝑤 +∑𝑅𝑒𝑐𝑎𝑙𝑙#

∑𝑒 ∗ 𝑤 + ∑𝑟  (4) 

𝐹1-𝑆𝑐𝑜𝑟𝑒$ = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ ∗ 𝑅𝑒𝑐𝑎𝑙𝑙$
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ + 𝑅𝑒𝑐𝑎𝑙𝑙$

 (5) 

4.  Findings and Discussion 
We conducted experiments to identify how well the LRML data structure can be generated and how 
sound the generated logical constructs are. First, we determined a baseline by comparing the different 
models proposed in Section 3.3. Based on those results, we evaluated possible improvements to 
alleviate the low number of training samples. Finally, we investigated the outputs of the best model to 
identify the potential of our method and future research directions. 

4.1.  Training data 
Following the methodology described in Section 3.1, we collected 659 LRML rules that encode 
textual requirements. After removing rules with obvious mistakes, rare LRML elements, missing or 
empty if- statements and rules that could not be automatically aligned with a regulation clause, 606 
LRML rules corresponding to 419 unique regulation clauses remained. Finally, the corpus was split 
9:1 into a training set (545 samples) and a validation set (61 samples). 

4.2.  Experiments 

4.2.1.  Baseline. We used Huggingface [37] to refine the pre-trained models for LRML. Initial 
hyperparameter sweeps with broad coverage and random search identified a suitable parameter range 
that is computationally affordable but allows fair comparisons. We swept over batch sizes [4, 8, 12, 
16], beam sizes [1, 3, 5], and learning rates [1e-4, 2e-4, …, 6e-4] for T5 and [5e-5, …, 9e-5] for 
BART and report the strongest results on the validation set. Table 2 shows relatively close F1-Scores 
for the best models, T5-large and T5-AMR. It is noticeable that pre-training with AMR brings a 1.5% 
increase over T5-base. While T5-large has slightly better F1-Scores, it is much slower to train and 



 
 
 
 
 
 

limited to a batch size of 8 on our 48GB GPU. BART performs worse than T5, indicating that T5's 
supervised pre-training benefits our task. 

Table 2. Baseline experiments. BLEU and 𝐹1-𝑆𝑐𝑜𝑟𝑒* are reported from the best epoch 
each. The deviation to the 3rd best sample is reported in brackets to show training stability. 

Model Batch Learning rate Beam size BLEU 𝐹1-𝑆𝑐𝑜𝑟𝑒! 
BART-base 16 6e-5 5 33.66% (-2.19) 34.83% (-0.42) 
BART-large 12 6e-5 5 36.97% (+2.15) 36.00% (-1.35) 
T5-base 8 5e-4 3 50.15% (+2.05) 39.54% (-0.65) 
T5-large 8 6e-4 3 54.52% (+1.99) 41.51% (-0.26) 
T5-AMR 8 4e-4 3 50.02% (+3.66) 41.04% (-0.54) 

4.2.2.  Data augmentation. We used a top-k value of 50 and chose the masking probability of each 
word proportionally to the ratio between maskable words and the total sentence length. This 
configuration proved itself superior to fixed masking ratios and lower top-k values. We generated 
enough silver data per training sample to achieve convergence within one epoch without repeating 
samples. We used the gold validation set to validate T5-AMR trained with silver data. T5-AMR is 
smaller in size and faster to train compared to T5-large. We identified the best model trained with 
silver data and refined it further with gold data. As an alternative, we trained with silver and gold data 
in parallel. Table 3 shows that training on gold and silver data in parallel worked slightly better than 
training sequentially. Nevertheless, there is no improvement in F1-Score over T5-AMR. Better 
strategies to generate the silver data and data augmentation during training should be tested in future. 

Table 3. Silver data training. A small hyperparameter range was tested for training with silver data 
based on the results of Table 3. For LRML-gold, we swept over learning rates [1e-5, 2e-5, …, 8e-5]. 
Model Dataset Batch Learning rate Beam size BLEU 𝐹1-𝑆𝑐𝑜𝑟𝑒! 
T5-AMR LRML-silver 4 4e-4 3 50.46% (+0.65) 38.72% (-0.18) 
T5-silver LRML-gold 8 3e-5 3 50.72% (-2.17) 40.65% (-0.62) 
T5-AMR LRML-silver-gold 4 4e-4 3 50.45% (+1.75) 40.81% (-0.61) 

4.2.3.  Multi-task learning. The pre-processing of the multi-task learning datasets into a text-to-text 
structure was conducted according to the original T5 paper [25]. We concatenated all datasets, trained 
the model with random sampling and evaluated it with the LRML validation set. Since AMR is 
included in the training tasks, we decided to use T5-base rather than T5-AMR. The batch size was 
increased to 12 to balance the different tasks via batch normalisation. As an alternative, we limited the 
datasets to semantic parsing and masked language modelling. Table 4 shows that training with all 
multi-tasking datasets degrades the performance, possibly due to the GLUE and SuperGLUE datasets 
being classification tasks. In comparison, multi-task training with semantic parsing tasks showed slight 
improvements in the LRML parsing performance. Nevertheless, since these improvements are limited, 
we should address the training data amount and quality directly in future work. 

Table 4. Results for multi-task learning. For refining the multi-task model, we performed a 
hyperparameter search over learning rates [6e-6, 7e-6, …, 9e-5] and batches [4, 8, 12]. 

Model Dataset Batch Learning rate BLEU 𝐹1-𝑆𝑐𝑜𝑟𝑒! 
T5-base Multi 12 4e-4 42.82% 37.37% 
T5-base Multi-gold 12 2e-4 44.01% 37.43% 
T5-multi-gold LRML-gold 12 4e-5 45.81% (+0.42) 38.21% (-0.34) 
T5-base Multi-semantic-gold 12 4e-4 53.51% 41.87% 
T5-multi-semantic-gold LRML-gold 8 8e-6 50.23% (-1.50) 42.18% (-0.32) 



 
 
 
 
 
 

4.3.  Error analysis 
While the metrics reported in Section 4.2 make the different experiments and models comparable, they 
give little intuition on how well LRML can actually be generated. So, we used the best model (i.e., T5-
multi-semantic-gold-gold) to generate predictions for the validation set. We examine the best and 
worst predictions to identify the end-to-end LRML parser’s potential and areas for improvement. 
Listings 3 and 4 show that a reasonable structure was learnt. Nevertheless, there are many repetitions 
in Listing 4. While repetitions do not have any direct impact as they do not change the rule logic, they 
lead to a worse parsing score and potentially to exceeded token limits and incomplete translations. 

In Listing 3, recall errors lead to underspecified logic statements. The missing ‘concrete grade’ 
precondition could lead to applying the rule to the wrong objects causing false positives during the 
compliance checking. The specification of clause_2.1, which was not given in the regulatory clause, 
would cause a falsely restricted obligation. The prediction in Listing 4 includes multiple conditions 
(without the required ‘or’-conjunction), while the ground truth was split into multiple LRML rules 
with one condition. Wrong or missing conjunctions can lead to the rule not being executed and 
accordingly to false negatives, which would not be acceptable for the compliance checking use case. 
Although there is no logical difference between having one rule with multiple conditions or multiple 
rules, such cases must be consistently treated in the training data. Finally, the model did not predict the 
correct functions and obligations and suffered from hallucination, a common problem in deep 
learning, where an unrelated object is generated (e.g., nzbc_g12_as2). In the sample in Listing 4, the 
different granularities and implicit knowledge used to create the ground truth data seem problematic. 
We plan to use our model to identify such problems and review the corresponding training samples. 
Cleaning the training data and applying consistent translation guidelines should improve predictions. 

Listing 3. Sample with best F1-Score (71.3% F1-Score, 64.9% Precision, 79.2% Recall). Green text 
highlights correctly extracted entities. Red text emphasizes the main prediction and recall errors. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1.8.2 Concrete; Chimneys of reinforced concrete, shall comply with the relevant clauses of NZS 3109 for 
ordinary grade concrete. 
Prediction: if(and(expr(fun(is),atom(rel(construction),var(chimney)),data(concrete)), 
                             expr(fun(is),atom(rel(construction),var(chimney)),data(reinforcedConcrete)))), 
                  then(obligation(expr(fun(complyWith),atom(rel(construction),var(chimney)), 
                                                    data(nzs_3109_clause_2.1)))) 
Ground truth: if(and(expr(fun(is),atom(rel(construction),var(chimney)),data(reinforcedConcrete)), 
                                  expr(fun(is),atom(rel(grade),var(concrete)),data(ordinary)))), 
                       then(obligation(expr(fun(complyWith),atom(var(chimney)),data(nzs_3109)))) 

 

Listing 4. Worst sample (6.1% F1-Score, 3.3% Precision, 46.4% Recall). The obligation in Line 7 
was repeated seven more times but removed in this example due to space considerations. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

1.4.1 Collection, storage and treatment facilities and disposal systems shall be located: a) In areas that will 
not create health or safety hazards 
Prediction: if(expr(fun(equal),atom(rel(location),var(collector,StorageArea)),data(TRUE)), 
                      expr(fun(equal),atom(rel(location),var(disposalSystem)),data(TRUE)))), 
                   then(and(obligation(expr(fun(include),atom(var(location)),data(collection,StorageArea))), 
                                  obligation(expr(fun(include),atom(var(location)),data(disposalSystem))), 
                                  obligation(expr(fun(complyWith),atom(var(location)),data(nzbc_g12_as2)))))      
Ground truth: if(atom(var(treatmentFacility))), 
                       then(obligation(atom(var(location),data(safeArea)))) 

5.  Conclusion and Future Research 
This research shows the potential of an end-to-end semantic parser to support the manual translation of 
building regulations in an assistive manner or to be used in combination with a manual review. The 
advantage of using ML is that newly translated regulations can be used as additional training data. 
Over time, the model will become more competent and require less manual input, and simply adapt to 
new regulations. The initial training with NZBC data does not prevent the model from being used for 



 
 
 
 
 
 

other countries’ regulations or other types of normative texts. We will apply continuous learning 
strategies in future research and test the model with such a different set of regulations. Furthermore, 
we will refine the semantic parser to yield better predictions by providing domain-specific knowledge, 
using stronger model architectures, and better transfer learning strategies. Also, improving the 
consistency of the training data is expected to lead to quicker training convergence and better results. 
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