

Neural Semantic Parsing of Building Regulations for
Compliance Checking

S Fuchs1, M Witbrock1, J Dimyadi2,1 and R Amor1

1 School of Computer Science, The University of Auckland, Auckland, New Zealand
2 CAS Limited, Auckland, New Zealand

sffc348@aucklanduni.ac.nz, m.witbrock@auckland.ac.nz, jdimyadi@cas.net.nz,
trebor@cs.auckland.ac.nz

Abstract. Computerising building regulations to allow reasoning is one of the main challenges
in automated compliance checking in the built environment. While there has been a long
history of translating regulations manually, in recent years, natural language processing (NLP)
has been used to support or automate this task. While rule- and ontology-based information
extraction and transformation approaches have achieved accurate translations for narrow
domains and specific regulation types, machine learning (ML) promises increased scalability
and adaptability to new regulation styles. Since ML usually requires many annotated examples
as training data, we take advantage of the long history of building code computerisation and
use a corpus of manually translated regulations to train a transformer-based encoder-decoder
model. Given a relatively small corpus, the model learns to predict the logical structure and
extracts entities and relations reasonably well. While the translation quality is not adequate to
fully automate the process, the model shows the potential to serve as an auto-completion
system and to identify manually translated regulations that need to be reviewed.

1. Introduction
Automated compliance checking (ACC) has been an active research area in the building domain for
the last 50 years [1]. To automatically check a building design for compliance against relevant codes,
one needs both the design information and the codes in a computable form. However, regulations are
especially difficult to interpret and encode due to their complex structure, inherent ambiguity, and
domain terminology. Most approaches to formalising building codes have been manual, semi-
automated or rule-based. While the manual and semi-automated approaches can achieve high-quality
translations, they are not free from human errors, biases and personal preferences for translation styles,
which cannot be completely prevented even by using extensive translation guidelines. Similar
problems occur with fully automated rule-based translation systems. Since the rules are based on a
selection of development texts, applying them to unseen regulation types is likely to result in
erroneous translations. The more types, styles, and topics to be supported, the more rules are required,
and the likelihood of contradictions and overspecified rules increases.

In contrast, ML-based approaches can benefit from more diverse training samples to draw better
distinctions and abstractions. The translation process is usually split into separate tasks such as text
segmentation, named entity extraction and relation extraction. Those tasks can be efficiently annotated
and learned with traditional ML. While separate tasks are easier to learn, they can introduce multiple

sources of errors. Errors introduced early in the pipeline might have cascading effects and skew the
entire translation. In recent years, the ML community has been moving towards building end-to-end
solutions for complex tasks and learning multiple tasks with a single model to benefit from task
similarities and shared knowledge [2]. This approach can also be found in the semantic parsing
literature. Even for complex parsing tasks, highly complex parsing strategies have been replaced by
attention-based deep learning architectures. For example, the BART model [3] used in SPRING [4]
allows bi-directional translation from and into Abstract Meaning Representation (AMR) [5], a graph-
based semantic representation.

We hypothesise that transformer-based models [6] allow end-to-end translation of building
regulations into a formal representation similar to SPRING for Text-to-AMR. With several countries
having their laws translated manually, we utilise such a corpus as a training set to translate new
regulations automatically instead of going through the time- and cost-intensive manual process.

2. Related Work

2.1. Formal building code representations
Numerous studies evaluated different data formats based on their suitability for representing building
regulations and facilitating ACC [7]. This started with decision tables in Fenves [8] and advanced to
SWRL, FOL, RIF, LKIF, RuleML, LegalRuleML, and more. Since selecting and evaluating a suitable
representation shall not be the focus of this research, only the main criteria of availability, readability,
and reasoning capability need to be fulfilled.

This work focuses on the New Zealand Building Code (NZBC). While it is a performance-based
specification for buildings, the accompanying Acceptable Solutions and Verification Methods provide
a prescriptive means to comply with those specifications. Sixteen Acceptable Solutions, covering the
categories ‘Stability’, ‘Protection from Fire’, ‘Access’, ‘Moisture’, and ‘Services and Facilities’, were
manually translated into LegalRuleML (LRML) by Dimyadi et al. [9] (availability). LRML is an
XML-based format (readability) extending RuleML with operators necessary to represent regulation
specific characteristics such as deontic concepts (e.g., permission, obligation, prohibition) and
defeasibility. An example of this format is presented in Listing 1. Wyner and Governatori [10] showed
that LRML can be transformed into defeasible logic (reasoning capability), a non-monotonic logic that
allows for prioritising one rule over another to represent exceptions and restrictions.

Listing 1. LRML representation for Section 1.1.4 of NZBC D1/AS1 [11].
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

<lrml:PrescriptiveStatement key="NZ_NZBC-D1AS1#2.6_r1.1.4">
 <ruleml:Rule key="NZ_NZBC-D1AS1#2.6_r1.1.4">
 <ruleml:if>
 <ruleml:Expr>
 <ruleml:Fun iri="lovo:has"/>
 <ruleml:Atom>
 <ruleml:Rel iri="buvo:occupant"/>
 <ruleml:Var iri="buvo:building"/>
 </ruleml:Atom>
 <ruleml:Data xsi:type="xs:string">disabilities</ruleml:Data>
 </ruleml:Expr>
 </ruleml:if>
 <ruleml:then>
 <ruleml:And>
 <lrml:Obligation> ……

2.2. Building code computerisation
ACC requires the building code and building design information in a computable format. Figure 1
shows the various aspects the conversion process can include. The two main tasks of interest for this

research are information extraction and transformation from building codes and standards. Commonly
extracted information ranges from concept-relationship triplets [13, 14] to the semantic information
elements introduced by Zhang and El-Gohary [15]. Those include subjects and attributes, deontic
operators, relations, quantities, and restrictions. While handcrafted rules and ontologies were prevalent
in early attempts [16, 17, 18], more recently, ML was utilised for this task [19, 20, 21, 22].

Rule-based approaches are often considered to be sufficient to transform the extracted information
into a formal representation. Xu et al. [18] and Zhang and El-Gohary [23] converted building
regulations into a logic format. While the first approach used simple rules, the second approach used a
complex method to transform 40 different information elements into Prolog Rules using semantic
mapping and conflict resolution rules. Another example is Guo et al. [24], who transformed the
extracted terms and relations into SPARQL using term matching and semantic similarity analysis.

Figure 1. NLP supported ACC process (Figure adapted from Fuchs and Amor [12])

2.3. Transformer architecture
Vaswani et al. [6] introduced the transformer architecture, a neural network architecture that replaced
recurrent neural networks with attentions mechanisms to encode textual data. The architecture was
specialised for translation tasks using an encoder to generate a representation of the input and a
decoder to generate the output. The encoder and decoder are connected via cross-attention. The input
and target representations are calculated through multiple transformer blocks consisting of a multi-
head self-attention layer, a linear layer, and normalisation and activation functions. T5 [25] introduced
the paradigm of providing task definitions via the input prompt, making it suitable for multi-task
training. T5 is available pre-trained with masked language modelling using a large web corpus and
refined with supervised tasks such as translation, summarisation, and natural language inference.
BART [3] introduced an additional shuffling objective deemed valuable for the SPRING AMR parser
but was not trained on supervised tasks.

2.4. Semantic parsing
Semantic parsing aims to translate a sentence from natural language into a formal meaning
representation. There are numerous representations available such as lambda calculus and first-order
logic, SQL and SPARQL, Prolog and programming languages, and AMR. A range of manually
annotated (e.g., AMR [5]) and automatically generated datasets (e.g., SPARQL [26] and Logic [27])
exist for various semantic representations. AMR is a complex parsing task close to our application. It
represents entities and relations with PropBank frames (e.g., ‘t / tell-01 :ARG0 (y / you)’) and includes
constructs for quantities, dates, and lists. Parsing approaches can be categorised as grammar-,
alignment-, transition-, and attention-based. Grammar-based models utilise external grammars like
combinatory categorial grammar or regular expressions. Alignment-based models require a direct
alignment between the original text and the semantic representation, which is often unavailable and

challenging to generate. Transition-based models use a set of actions like swap, replace, shift, and
reduce to transform one representation, including natural language, into another. Finally, attention-
based methods include SPRING [4], the transformer-based AMR parser motivating this study.

3. Research Methodology
We hypothesise that the different semantic parsing sub-tasks mutually influence and benefit each
other, whereas breaking the parsing task into information extraction and transformation removes
important relational information necessary for later transformation steps. This effect can be observed
in Zhang and El-Gohary [23], where the extraction of more information types led to higher
transformation accuracy. In addition, this research aims to eliminate two weaknesses of previous
approaches. We resolve the limited scalability to different requirement types and topics by using deep
learning instead of handcrafted rules or features. We prevent cascading errors by generating the
translation end-to-end. The semantic parser was developed iteratively following the steps in Figure 2.

Figure 2. Methodology overview

3.1. Pre-processing
The manually translated regulation clauses described in Section 2.1 were used as the foundation of this
research. We discarded figures and tables. The remaining textual requirements consist of qualitative,
quantitative, and descriptive requirements [28] and represent a broad range of topics, requirement
types, and complexities. Although LRML includes references to the encoded regulation clauses,
collecting tuples of LRML rules and the corresponding legal text necessary to train the model is non-
trivial. The regulatory text was only available in PDF, which is prone to parsing errors when retrieved
automatically. Paragraphs with multiple sentences can be encoded as one or more rules. Similarly, a
single sentence might contain multiple rules. We parsed the regulatory documents with PdfMiner,
aligned the LRML rules and clauses using regular expressions and reviewed the alignments manually.
We transcribed the LRML into the short form shown in Listing 2 to accommodate the token limitation
of transformer models. LRML keywords are used as predicates and entities as subjects. Multiple
subjects in a predicate are separated with commas. Namespaces and argument specifiers are removed.

Listing 2. A short form of the LRML rule introduced in Listing 1.
1 if(expr(fun(has),atom(rel(occupant),var(building)),data(disabilities))),then(and(obligation(……

3.2. Training

3.2.1. Baseline. A baseline for LRML parsing is established by comparing T5 and BART in five
different configurations: BART-base, BART-large, T5-base, T5-large, and T5-AMR. T5-AMR refers
to a T5-base model refined to AMR parsing [29] and tests our hypothesis that out-of-domain datasets
can be used to enhance the parsing performance. The similarity between LRML and AMR parsing led

us to conclude that AMR training data could be a valuable resource to mitigate the data scarcity for
LRML. Suitable hyperparameters were identified to allow a fair comparison of the different models.

3.2.2. Data augmentation. Data augmentation is common practice in computer vision to enhance
performance and robustness. Augmentation methods for NLP, such as deleting, changing, and
inserting words, can be problematic since the entire meaning of a sentence can alter with small
changes. Still, we hypothesise this strategy is sufficient for our use case since both the regulation and
the LRML representation can be augmented in parallel, forcing the model implicitly to learn entity
independent extraction patterns. We generate artificial training data (i.e., silver data) by 1) identifying
entities in regulation clauses, 2) masking a variable percentage of words in the aligned entities, 3)
sampling multiple replacements terms per training sample, and 4) using the new terms in both LRML
and regulation. This workflow is presented in Figure 3 using an example Regulation–LRML pair. We
generated the new entities using RoBERTa [30] and a top-k sampling strategy. RoBERTa’s masking
strategy and large vocabulary were well suited for this task.

Figure 3. Silver data generation process with an example Regulation-LRML pair

3.2.3. Multi-task learning. Finally, the strength of the T5-AMR model led us to the assumption that
using training data from related tasks might lead to further performance increases. Incorporating
existing translations of regulatory documents would be ideal. But, due to the limited accessibility of
such datasets, we used out-of-domain data for our experiments. Aribandi et al. [2] proposed ExT5, a
large-scale multi-task training of the T5 model. Their experiments suggest that semantic parsing
primarily benefits from summarisation and natural language inference data. Nevertheless, they
achieved their best results by training with the maximum available tasks rather than a hand-picked
subset. Since the ExT5 models are not available, we reproduce their results with a subset of the
datasets. We chose a range of semantic parsing datasets, the natural language understanding
benchmarks GLUE and SuperGLUE, and the LRML silver data (Details shown in Table 1).

Table 1. Multi-task learning datasets, task descriptions and their sample sizes.
Dataset Description Size Reference
LRML Silver data 21,800 Dimyadi et al. [9]
COGS Semantic parsing: Logical form 24,155 Kim and Linzen [27]
CFQ Semantic parsing: SPARQL 95,744 Keysers et al. [26]
AMR3.0 Semantic parsing: AMR 55,635 Knight et al. [5]
ScotReg Masked Language Modelling 14,006 Kruiper et al. [31]
GLUE MNLI, MRPC, QNLI, QQP, RTE, SST2, WNLI, COLA, STSB 949,733 Wang et al. [32]
SuperGLUE BoolQ, CB, COPA, MultiRC, Record, WIC 143,478 Wang et al. [33]

3.3. Evaluation
BLEU [34] is often used to evaluate translation tasks by comparing n-gram overlaps between
prediction and ground truth. We use this metric to give an intuition about the parser’s performance.
Nevertheless, BLEU does not directly evaluate representation specific characteristics like the
relationship between predicates and subjects, the camel-case notation, nested predicates, and structural

correctness. Whole sentence accuracy and SMATCH [35] are commonly used to evaluate AMR.
SMATCH compares the triples of the prediction and ground truth. Therefore, it needs to find the best
tree alignment, an NP-Complete problem. SemBLEU [36] eliminates this issue by comparing AMR
structures of different context sizes as a bag-of-words. Since those metrics are not directly applicable,
we propose an adapted evaluation metric that deals with the nested structure of the shortened LRML
format. We avoid identifying the best entity alignment by using greedy search and rewarding partly
correct entities and relations. Precision and recall are calculated per entity e and relation r in the
predictions and references according to Equations 1 and 2. Sub-scores for entities are calculated by
splitting the camel-case concepts. For example, the predicted entity ‘wall’ partly matches the reference
‘chimneyWall’ and has 50% 𝑅𝑒𝑐𝑎𝑙𝑙!"## 	and 100% 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛!"##. To account for nested and n-ary
predicates, the relations are scored by the number of correct entity parts they enclose. For example, the
relation ‘rel(construction)’ scores 0 if an incorrect entity ‘rel(type)’ was predicted. This eliminates
SMATCH’s weakness to give scores for predicates with incorrect subjects. Given the reference
‘atom(rel(construction),var(chimneyWall)’ and candidate ‘atom(rel(type),var(wall))’, we can calculate
the following scores for the atom: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛"$%& = '

'('
 and 𝑅𝑒𝑐𝑎𝑙𝑙"$%& = '

'()
. Finally, the total can

be calculated with Equations 3-5. The entity scores are weighted with w=2 in our experiments.

𝑒: 𝐸𝑛𝑡𝑖𝑡𝑖𝑦

𝑟: 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛

𝑇: 𝑇𝑜𝑡𝑎𝑙

𝑤:𝑊𝑒𝑖𝑔ℎ𝑡

𝑇𝑃: 𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑃: 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑁:𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛!/# =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (1)

𝑅𝑒𝑐𝑎𝑙𝑙!/# =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ =
∑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛! ∗ 𝑤 + ∑𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛#

∑𝑒 ∗ 𝑤 +∑𝑟 (3)

𝑅𝑒𝑐𝑎𝑙𝑙$ =
∑𝑅𝑒𝑐𝑎𝑙𝑙! ∗ 𝑤 +∑𝑅𝑒𝑐𝑎𝑙𝑙#

∑𝑒 ∗ 𝑤 + ∑𝑟 (4)

𝐹1-𝑆𝑐𝑜𝑟𝑒$ = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ ∗ 𝑅𝑒𝑐𝑎𝑙𝑙$
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛$ + 𝑅𝑒𝑐𝑎𝑙𝑙$

 (5)

4. Findings and Discussion
We conducted experiments to identify how well the LRML data structure can be generated and how
sound the generated logical constructs are. First, we determined a baseline by comparing the different
models proposed in Section 3.3. Based on those results, we evaluated possible improvements to
alleviate the low number of training samples. Finally, we investigated the outputs of the best model to
identify the potential of our method and future research directions.

4.1. Training data
Following the methodology described in Section 3.1, we collected 659 LRML rules that encode
textual requirements. After removing rules with obvious mistakes, rare LRML elements, missing or
empty if- statements and rules that could not be automatically aligned with a regulation clause, 606
LRML rules corresponding to 419 unique regulation clauses remained. Finally, the corpus was split
9:1 into a training set (545 samples) and a validation set (61 samples).

4.2. Experiments

4.2.1. Baseline. We used Huggingface [37] to refine the pre-trained models for LRML. Initial
hyperparameter sweeps with broad coverage and random search identified a suitable parameter range
that is computationally affordable but allows fair comparisons. We swept over batch sizes [4, 8, 12,
16], beam sizes [1, 3, 5], and learning rates [1e-4, 2e-4, …, 6e-4] for T5 and [5e-5, …, 9e-5] for
BART and report the strongest results on the validation set. Table 2 shows relatively close F1-Scores
for the best models, T5-large and T5-AMR. It is noticeable that pre-training with AMR brings a 1.5%
increase over T5-base. While T5-large has slightly better F1-Scores, it is much slower to train and

limited to a batch size of 8 on our 48GB GPU. BART performs worse than T5, indicating that T5's
supervised pre-training benefits our task.

Table 2. Baseline experiments. BLEU and 𝐹1-𝑆𝑐𝑜𝑟𝑒* are reported from the best epoch
each. The deviation to the 3rd best sample is reported in brackets to show training stability.

Model Batch Learning rate Beam size BLEU 𝐹1-𝑆𝑐𝑜𝑟𝑒!
BART-base 16 6e-5 5 33.66% (-2.19) 34.83% (-0.42)
BART-large 12 6e-5 5 36.97% (+2.15) 36.00% (-1.35)
T5-base 8 5e-4 3 50.15% (+2.05) 39.54% (-0.65)
T5-large 8 6e-4 3 54.52% (+1.99) 41.51% (-0.26)
T5-AMR 8 4e-4 3 50.02% (+3.66) 41.04% (-0.54)

4.2.2. Data augmentation. We used a top-k value of 50 and chose the masking probability of each
word proportionally to the ratio between maskable words and the total sentence length. This
configuration proved itself superior to fixed masking ratios and lower top-k values. We generated
enough silver data per training sample to achieve convergence within one epoch without repeating
samples. We used the gold validation set to validate T5-AMR trained with silver data. T5-AMR is
smaller in size and faster to train compared to T5-large. We identified the best model trained with
silver data and refined it further with gold data. As an alternative, we trained with silver and gold data
in parallel. Table 3 shows that training on gold and silver data in parallel worked slightly better than
training sequentially. Nevertheless, there is no improvement in F1-Score over T5-AMR. Better
strategies to generate the silver data and data augmentation during training should be tested in future.

Table 3. Silver data training. A small hyperparameter range was tested for training with silver data
based on the results of Table 3. For LRML-gold, we swept over learning rates [1e-5, 2e-5, …, 8e-5].
Model Dataset Batch Learning rate Beam size BLEU 𝐹1-𝑆𝑐𝑜𝑟𝑒!
T5-AMR LRML-silver 4 4e-4 3 50.46% (+0.65) 38.72% (-0.18)
T5-silver LRML-gold 8 3e-5 3 50.72% (-2.17) 40.65% (-0.62)
T5-AMR LRML-silver-gold 4 4e-4 3 50.45% (+1.75) 40.81% (-0.61)

4.2.3. Multi-task learning. The pre-processing of the multi-task learning datasets into a text-to-text
structure was conducted according to the original T5 paper [25]. We concatenated all datasets, trained
the model with random sampling and evaluated it with the LRML validation set. Since AMR is
included in the training tasks, we decided to use T5-base rather than T5-AMR. The batch size was
increased to 12 to balance the different tasks via batch normalisation. As an alternative, we limited the
datasets to semantic parsing and masked language modelling. Table 4 shows that training with all
multi-tasking datasets degrades the performance, possibly due to the GLUE and SuperGLUE datasets
being classification tasks. In comparison, multi-task training with semantic parsing tasks showed slight
improvements in the LRML parsing performance. Nevertheless, since these improvements are limited,
we should address the training data amount and quality directly in future work.

Table 4. Results for multi-task learning. For refining the multi-task model, we performed a
hyperparameter search over learning rates [6e-6, 7e-6, …, 9e-5] and batches [4, 8, 12].

Model Dataset Batch Learning rate BLEU 𝐹1-𝑆𝑐𝑜𝑟𝑒!
T5-base Multi 12 4e-4 42.82% 37.37%
T5-base Multi-gold 12 2e-4 44.01% 37.43%
T5-multi-gold LRML-gold 12 4e-5 45.81% (+0.42) 38.21% (-0.34)
T5-base Multi-semantic-gold 12 4e-4 53.51% 41.87%
T5-multi-semantic-gold LRML-gold 8 8e-6 50.23% (-1.50) 42.18% (-0.32)

4.3. Error analysis
While the metrics reported in Section 4.2 make the different experiments and models comparable, they
give little intuition on how well LRML can actually be generated. So, we used the best model (i.e., T5-
multi-semantic-gold-gold) to generate predictions for the validation set. We examine the best and
worst predictions to identify the end-to-end LRML parser’s potential and areas for improvement.
Listings 3 and 4 show that a reasonable structure was learnt. Nevertheless, there are many repetitions
in Listing 4. While repetitions do not have any direct impact as they do not change the rule logic, they
lead to a worse parsing score and potentially to exceeded token limits and incomplete translations.

In Listing 3, recall errors lead to underspecified logic statements. The missing ‘concrete grade’
precondition could lead to applying the rule to the wrong objects causing false positives during the
compliance checking. The specification of clause_2.1, which was not given in the regulatory clause,
would cause a falsely restricted obligation. The prediction in Listing 4 includes multiple conditions
(without the required ‘or’-conjunction), while the ground truth was split into multiple LRML rules
with one condition. Wrong or missing conjunctions can lead to the rule not being executed and
accordingly to false negatives, which would not be acceptable for the compliance checking use case.
Although there is no logical difference between having one rule with multiple conditions or multiple
rules, such cases must be consistently treated in the training data. Finally, the model did not predict the
correct functions and obligations and suffered from hallucination, a common problem in deep
learning, where an unrelated object is generated (e.g., nzbc_g12_as2). In the sample in Listing 4, the
different granularities and implicit knowledge used to create the ground truth data seem problematic.
We plan to use our model to identify such problems and review the corresponding training samples.
Cleaning the training data and applying consistent translation guidelines should improve predictions.

Listing 3. Sample with best F1-Score (71.3% F1-Score, 64.9% Precision, 79.2% Recall). Green text
highlights correctly extracted entities. Red text emphasizes the main prediction and recall errors.

1
2
3
4
5
6
7
8
9

1.8.2 Concrete; Chimneys of reinforced concrete, shall comply with the relevant clauses of NZS 3109 for
ordinary grade concrete.
Prediction: if(and(expr(fun(is),atom(rel(construction),var(chimney)),data(concrete)),
 expr(fun(is),atom(rel(construction),var(chimney)),data(reinforcedConcrete)))),
 then(obligation(expr(fun(complyWith),atom(rel(construction),var(chimney)),
 data(nzs_3109_clause_2.1))))
Ground truth: if(and(expr(fun(is),atom(rel(construction),var(chimney)),data(reinforcedConcrete)),
 expr(fun(is),atom(rel(grade),var(concrete)),data(ordinary)))),
 then(obligation(expr(fun(complyWith),atom(var(chimney)),data(nzs_3109))))

Listing 4. Worst sample (6.1% F1-Score, 3.3% Precision, 46.4% Recall). The obligation in Line 7
was repeated seven more times but removed in this example due to space considerations.

1
2
3
4
5
6
7
8
9

1.4.1 Collection, storage and treatment facilities and disposal systems shall be located: a) In areas that will
not create health or safety hazards
Prediction: if(expr(fun(equal),atom(rel(location),var(collector,StorageArea)),data(TRUE)),
 expr(fun(equal),atom(rel(location),var(disposalSystem)),data(TRUE)))),
 then(and(obligation(expr(fun(include),atom(var(location)),data(collection,StorageArea))),
 obligation(expr(fun(include),atom(var(location)),data(disposalSystem))),
 obligation(expr(fun(complyWith),atom(var(location)),data(nzbc_g12_as2)))))
Ground truth: if(atom(var(treatmentFacility))),
 then(obligation(atom(var(location),data(safeArea))))

5. Conclusion and Future Research
This research shows the potential of an end-to-end semantic parser to support the manual translation of
building regulations in an assistive manner or to be used in combination with a manual review. The
advantage of using ML is that newly translated regulations can be used as additional training data.
Over time, the model will become more competent and require less manual input, and simply adapt to
new regulations. The initial training with NZBC data does not prevent the model from being used for

other countries’ regulations or other types of normative texts. We will apply continuous learning
strategies in future research and test the model with such a different set of regulations. Furthermore,
we will refine the semantic parser to yield better predictions by providing domain-specific knowledge,
using stronger model architectures, and better transfer learning strategies. Also, improving the
consistency of the training data is expected to lead to quicker training convergence and better results.

References
[1] Amor R and Dimyadi J 2020 The promise of automated compliance checking Developments in

the built environment 5 100039
[2] Aribandi et al. 2021 ExT5: Towards extreme multi-task scaling for transfer learning Preprint

arXiv:2111.10952
[3] Lewis M, Liu Y, Goyal N, Ghazvininejad M, Mohamed A, Levy O, Stoyanov V and

Zettlemoyer L 2019 Bart: Denoising sequence-to-sequence pre-training for natural language
generation, translation, and comprehension Preprint arXiv:1910.13461

[4] Bevilacqua M, Blloshmi R and Navigli R 2021 One SPRING to rule them both: Symmetric
AMR semantic parsing and generation without a complex pipeline Proc. of the 35th AAAI
Conf. on Artificial Intelligence

[5] Knight et al. 2020 Abstract Meaning Representation (AMR) Annotation Release 3.0
LDC2020T02 Web Download (Philadelphia: Linguistic Data Consortium)

[6] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez A N, Kaiser Ł and Polosukhin I
2017 Attention is all you need Advances in neural information processing systems 30 5998-
6008

[7] BuildingSMART 2017 Regulatory room report on open standards for regulations, requirements
and recommendations content buildingSMART Standards Summit

[8] Fenves S J 1966 Tabular decision logic for structural design J. Structural Division 92 6 473-90
[9] Dimyadi J, Fernando S, Davies K and Amor R 2020 Computerising the new zealand building

code for automated compliance audit New Zealand Built Environment Research Symposium
[10] Wyner A Z and Governatori G 2013 A study on translating regulatory rules from natural

language to defeasible logics RuleML 2
[11] Ministry of Business, Innovation and Employment 2017 Acceptable Solutions and Verification

Methods For New Zealand Building Code Clause D1 Access Routes edition 2 amendment 6
[12] Fuchs S and Amor R 2021 Natural language processing for building code interpretation: A

systematic literature review Proc. of the Conference CIB W78
[13] Al Qady M and Kandil A 2010 Concept relation extraction from construction documents using

natural language processing J. of Construction Engineering and Management 136 3 294–302
[14] Li F, Song Y and Shan Y 2020 Joint extraction of multiple relations and entities from building

code clauses Applied Sciences 10 20 p 7103
[15] Zhang J and El-Gohary N M 2016 Semantic NLP-based information extraction from

construction regulatory documents for automated compliance checking Journal of
Computing in Civil Engineering 30 2

[16] Kwon J, Kim B, Lee S and Kim H 2013 Automated procedure for extracting safety regulatory
information using natural language processing techniques and ontology Annual conference
of the canadian society for civil engineering 2 1213–20

[17] Zhou P and El-Gohary N 2017 Ontology-based automated information extraction from building
energy conservation codes Automation in Construction 74 103-17

[18] Xu X, Cai H and Chen K 2019 Modeling 3D spatial constraints to support utility compliance
checking Computing in civil engineering: Visualization, information modeling, and
simulation 439-46

[19] Zhang R and El-Gohary N 2020 A machine-learning approach for semantically-enriched
building-code sentence generation for automatic semantic analysis Construction Research
Congress: Computer Applications

[20] Moon S, Lee G, Chi S and Oh H 2021 Automated construction specification review with named
entity recognition using natural language processing Journal of Construction Engineering
and Management 147 1 04020147

[21] Song J, Lee J K, Choi J and Kim I 2020 Deep learning-based extraction of predicate-argument
structure (PAS) in building design rule sentences Journal of Computational Design and
Engineering 7 5 563-76

[22] Schönfelder P and König M 2021 Deep learning-based entity recognition in construction
regulatory documents ISARC 38 387-94

[23] Zhang J and El-Gohary N 2015 Automated information transformation for automated regulatory
compliance checking in construction J. Computing in Civil Engineering 29 4 B4015001

[24] Guo D, Onstein E and La Rosa A D 2021 A semantic approach for automated rule compliance
checking in construction industry IEEE Access 9 129648-60

[25] Raffel C, Shazeer N, Roberts A, Lee K, Narang S, Matena M, Zhou Y, Li W and Liu P J 2019
Exploring the limits of transfer learning with a unified text-to-text transformer Preprint
arXiv:1910.10683

[26] Keysers et al. 2019 Measuring compositional generalization: a comprehensive method on
realistic data Preprint arXiv:1912.09713

[27] Kim N and Linzen T 2020 COGS: a compositional generalization challenge based on semantic
interpretation Preprint arXiv:2010.05465

[28] Zhang R and El-Gohary N 2021 Clustering-based approach for building code computability
analysis Journal of Computing in Civil Engineering 35 6 04021021

[29] Jascob B 2022 Amrlib Github https://github.com/bjascob/amrlib
[30] Liu Y, Ott M, Goyal N, Du J, Joshi M, Chen D, Levy O, Lewis M, Zettlemoyer L and Stoyanov

V 2019 Roberta: a robustly optimized bert pretraining approach Preprint arXiv:1907.11692
[31] Kruiper R, Konstas I, Gray A, Sadeghineko F, Watson R and Kumar B 2021 SPAR. txt, a cheap

shallow parsing approach for regulatory texts Preprint arXiv:2110.01295
[32] Wang A, Singh A, Michael J, Hill F, Levy O and Bowman S R 2018 GLUE: A multi-task

benchmark and analysis platform for natural language understanding Preprint
arXiv:1804.07461

[33] Wang A, Pruksachatkun Y, Nangia N, Singh A, Michael J, Hill F, Levy O and Bowman S R
2019 Superglue: a stickier benchmark for general-purpose language understanding systems
Preprint arXiv:1905.00537

[34] Papineni K, Roukos S, Ward T and Zhu W J 2002 Bleu: a method for automatic evaluation of
machine translation Proc. of the 40th annual meeting of the Association for Computational
Linguistics 311-18

[35] Cai S and Knight K 2013 Smatch: an evaluation metric for semantic feature structures Proc. of
the 51st Annual Meeting of the Association for Computational Linguistics 2 748-52

[36] Song L and Gildea D 2019 SemBleu: a robust metric for AMR parsing evaluation Preprint
arXiv:1905.10726

[37] Wolf et al. 2019. Huggingface's transformers: state-of-the-art natural language processing
Preprint arXiv:1910.03771

Acknowledgements
Due to an error in the original evaluation procedure, the experiments had to be rerun after the paper
was presented at CIB W78. This resulted in lower results which are presented here. This research was
funded by the University of Canterbury’s Quake Centre’s Building Innovation Partnership (BIP)
programme, which is jointly funded by industry and the Ministry of Business, Innovation and
Employment (MBIE).

