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Abstract

While the trend towards building resilience in
transport infrastructure systems in the face of extreme
flooding is accelerating, scant attention has been paid to
assessing the flood resilience of urban rail transit systems
(URTSs). This paper develops an approach to
quantitatively assess the URTS flood resilience by
integrating the system performance-based resilience
triangle curve, complex network modelling, and scenario
analysis. A case study of the London URTS has been
demonstrated to test its feasibility. This approach is novel
in capturing the structural topology, operational
performance, and engineering features of the URTS to
comprehensively assess its resilience under flooding.

Introduction

Urban rail transit systems (URTSs), such as metros,
light rail, and trams, are critical infrastructure for efficient
and sustainable mobility in cities worldwide, providing
safe, reliable, and accessible passenger service within and
around urban and suburban areas. While the dependence
on URTSs keeps growing in response to environmental
challenges, continuing urbanisation, and aspirations for a
better quality of life, the increasing complexity and
connectivity of these networked systems make them
susceptible to disruption. A local failure of one network
component could incur cascading failures in others. Such
vulnerability has been exposed by the continued effects of
climate change, which have enhanced the frequency and
intensity of observed extreme flooding. Compelling
evidence is the near-simultancous heavy precipitation
events in the summer of 2021 in Europe, the United
States, and China: flooded metro stations were closed in
London and New York (Matthew, 2021), and 14 people
died in a flooded metro tunnel in Zhengzhou (Gan and
Wang, 2021).

Ongoing extreme flooding reminds us that it is impossible
to prevent all disruptions. A recent investigation of the
flooding that occurred across London in July 2021
confirms that the scale of this flooding, which exceeded a
30-year rainfall event, far exceeds design standards for the
current sewer system (which combines sewage with
surface water runoff), and it may not be economical or
practicable to invest in eliminating the risk of a similar
event (Wilcockson, 2022), not to mention the estimated

77

1000-year flood event occurred in Australia in early 2022
(Morton and  Readfearn, 2022). Under such
circumstances, the concept of resilience has grown in
popularity as a mechanism for infrastructure systems to
survive uncertain extreme events outside traditional
design boundaries and plan for safe-to-fail. Resilience
emerges as a new way of thinking that goes beyond
prevention and protection-centred mindsets to emphasise
the multi-faceted abilities of infrastructure systems to (a)
withstand the impact of disruptions and continue to
operate with acceptable function degradation, (b) restore
the normal system performance level in a timely manner,
and (c) adapt to future disruptions (Cutter et al., 2013;
Department for Transport, 2014; Bruneau et al., 2003).

Despite the necessity of dealing with extreme flooding in
URTSs and the popularity of building resilience in
infrastructure systems, a review of research on the flood
resilience of URTSs reveals that this topic has received
scant attention. The query string “TS = (flood OR
flooding OR rainfall OR storm OR (weather event) OR
(extreme weather)) AND (metro OR subway OR
underground OR (rail transit) OR (rapid transit)) AND
(resilience OR resilient OR resiliency)” was searched in
the Web of Science and Scopus. A total of 228 articles
were obtained after removing duplicates and only 8 papers
were found to be relevant to the flood resilience of URTSs
after examining the title, abstracts, and keywords (see Sun
et al. (2022), Zhang and Ng (2021), Yadav et al. (2020),
Martello et al. (2021), Chan and Schofer (2016), Jiao et
al. (2021), Liu et al. (2020), and Zhu et al. (2017)). The
focus of these papers is on the flood resilience assessment
of metro systems by using network modelling, where
metro systems are abstracted as a network with stations as
nodes and tracks as edges. However, the current
methodology designed for assessing the URTS flood
resilience shows a phenomenon of oversimplification.

First of all, these papers generally assess resilience by
indicating system performance purely with topological
network attributes (e.g., network efficiency or the giant
connected components). Such an approach can capture the
resilience of the physical URTS network but ignores the
impacts of its operational performance, such as the
number of passengers served at each station and the
number of passenger journeys completed per day. How
the physical and operational aspects can be combined to



L. Build the URTS network model

I11. Assess the URTS flood resilience

1.Data collection (network topology)

= Nodes: station code, name, coordinate,
number of entries, number of exits, on
which line.

= Edges: the start station, the end station,
on which line, edge travel time.

2.Construct URTS network model

= Create an undirected Graph for each
line with the Python NetworkX library.

= Add nodes with attributes to each line.

= Add edges with attributes to each line.

= Create a Graph for the London URTS

each line to this Graph (automatically
eliminating duplicates).

= Calculate node betweenness centrality,
using travel time as the edge weight.

network and add all nodes and edges of

1I. Generate flood disruption scenarios

3.1dentity flooded components

= Collect flood depth maps from the UK
Environment Agency.

= Overlay the flood depth maps with the
URTS network in QGIS.

= [dentify flooded stations/tracks in each
scenario based on Rule 1 and Rule 2.

4.Data preparation

= Collect daily travel demands: the origin station (O), the destination station
(D), and the number of passenger journeys between each OD pair.

= Calculate node importance I of station i by integrating node betweenness
centrality BC (i.e., structural importance) and tze average number of
passengers entering/exiting each station SE (i.e., operational importance):

I; = BC; * :

ST SE (n: the total number of stations)
i=1 i

N7

5.Programme for calculating the number of satisfied passenger journeys

= Import daily travel demand data.

= Let Q indicate the total number of satisfied passenger journeys.

= For each OD pair, test if there is a path from O to D. If TRUE, add this OD
pair’s travel demand to Q. Q is Q at a normal state.

= Model validation: check if Q obtained from programming is equal to the
actual value.

¥

6.Simulate disruptions and recovery process

= At time step t=0, there is no disruption. The network is complete. Q = Q.

= At time step t=1, remove all flooded nodes and edges from the network,
and compute @ and the global efficiency at this state.

= From time step t=2, recover one flooded node or edge at each time step, in
the descending order of node importance. Compute @ and the global
efficiency at each time step.

N7

7.Assess the URTS flood resilience
= Depict the resilience triangle curve.
= Calculate resilience loss and the ratio of resilience loss to Q.

Note: Italics in colour show the capture of operational attributes.

Figure 1 Procedure for the URTS flood resilience assessment

achieve a comprehensive resilience assessment is still
under development. Second, the simulation of flood
disruption scenarios has not been considered in detail. As
infrastructure resilience is set up on the prerequisite that
not all disruptions can be avoided, we need to understand
how the system is affected by a range of scenarios and,
through simulations, gain the capacity to manage a more
effective response and recovery. Scenario analysis or
stress testing of disruptions is an indispensable step of
resilience assessment. In the extant network modelling for
infrastructure resilience assessment, random failures are
usually used to simulate disruptions caused by natural
hazards, with the assumption that all nodes in the
infrastructure network have the same failure probability
and fail sequentially in a random manner. However,
flooding presents more significant risks to certain parts of
the network due to their physical construction and
geographical locations — segments located in flood zones
are more likely to be inundated and the severity of
inundation varies with influential factors such as flood
depth and velocity. As such, applying random failures at
individual stations across the network is unrealistic for
stress testing of certain disturbances such as flooding
caused by weather events.

Motivated by addressing the growing flash flooding
challenges facing URTSs through resilience management
and bridging the extant limitations, this paper proposes a
network modelling-based approach for quantifying the
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URTS flood resilience under three realistic flood
scenarios, namely 30-year, 100-year and 1,000-year
floods. It makes the first step towards incorporating
practical engineering features of the URTS into its
resilience assessment and combining topological and
operational properties in complex network modelling.
This paper takes the London metro as a case study. The
assessment results visualise how the system is affected by
flooding and provide insights into how resilient the
system is in its current state.

Methodology

The methodology designed for quantifying URTS
flood resilience has three components, including the
construction of the URTS network model, the generation
of flood disruption scenarios, and the assessment of
URTS flood resilience through the system performance-
based resilience triangle curve. Figure 1 illustrates the
procedure for the URTS flood resilience assessment.

Building the URTS network model

To capture its network topology, the URTS can be
abstracted as an undirected graph based on complex
network theory. Complex network theory focuses on
observations of real-world networks and ad hoc
mathematical concepts to quantify them (Ihiguez et al.,
2020). Let G = (V, E) denote a URTS network, where V
is a set of nodes representing locations such as metro
stations and E is a set of edges that link these nodes to



represent routes such as rail tracks. Adjacency matrices
are used to represent how nodes are connected by edges.
For instance, a metro network can be represented by an
unweighted adjacency matrix A where a value of 1 means
that two stations are connected and a value of 0 denotes
no such connection (see Eq. (1)).
4= {a--} _ {1, if stati.on i' and j'are direct'ly connected )
g 0,if station i and j are not directly connected
The URTS network model is considered undirected (i.e.,
if there is an edge between node A and node B, it is
possible to travel from A to B and from B to A), because
URTS trains usually run in both directions between two
stations. In addition, operational features are assigned to
nodes and edges as weights to reflect a more realistic
picture. The node weight is the average number of
passengers entering/exiting the station, which is used to
assess node importance (see Figure 1 I1I-4). The weight
of the edges is the realistic travel time of each edge, which
is used to calculate the length of the shortest path when
measuring node betweenness centrality (see Figure 1 I-2).
The NetworkX library of Python is used to build the
network model and calculate network attributes such as
node betweenness centrality for further use in the
assessment process.

Generating flood disruption scenarios

The process of generating flood disruption scenarios takes
into account basic engineering features of URTSs,
including geographical location and the type of station.
First of all, flood disruption scenarios are generated by
overlaying the URTS network with flood depth maps in
ArcGIS to evaluate the location-specific flood exposure
of stations and tracks. 0.9m is selected in this case as a
conservative initial scenario for determining if stations
and tracks are inundated. It is assumed that flood water
with a depth over 0.9m at ground level is very likely to
cause structural damage and disable property-level flood
resilience measures (Environment Agency, 2019):

e Rule 1: If the station has entrances/exits or platforms
where flood depth is over 0.9 m, the node representing
this station is considered inundated.

e Rule 2: If the two stations at the end of a track are not
inundated but a flooded area with flood depth over
0.9m blocks the track, the edge representing this track
is considered inundated.

Furthermore, URTS stations and tracks are usually
located underground, at grade, or elevated. When
determining the components to be flooded, the type of
station and track should be considered to differentiate the
possibility of inundation. For example, elevated stations
and tracks are less susceptible to flooding because they
are high above the ground and do not easily hold water.
Besides, if no water flows through the at-grade entrance
into the station, the underground track is also less likely
to be flooded because there is no water source.
Considering this practical context, the following
principles are used for identifying flooded components for
different types of stations and tracks.

e If the station entrance/exit is located at grade and the
tracks connected to the station are underground or
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elevated, use Rule 1 to check if the node is flooded. If
YES, the node is removed and the connected edges
will be removed automatically.

e If both the station entrance/exit and the connected
tracks are located at grade, first use Rule 1 to check if
the node is flooded. If YES, the node is removed, and
the connected edge will be removed automatically. If
NO, use Rule 2 to check if the edge is flooded.

e If both the station entrance/exit and the connected
tracks are elevated, there is no need to check — neither
node nor edge will be flooded.

Assessing the URTS flood resilience

The guiding philosophy behind network-based resilience
assessment approaches is the system performance-based
resilience triangle curve proposed by Bruneau et al.
(2003). As presented in Figure 2(a), system performance
Q(t) is an objective measure of system function with a
range from 0 to 100%. It can be evaluated by indicators
such as the number of services delivered, the number of
people served, and the level of economic activity,
depending on the type of system and resilience scope
(Ouyang et al., 2012). Disruption occurs at t, and Q(t)
decreases before returning to its normal state at t;. The
shaded area in Figure 2(a) depicts resilience loss (RL),
which is the difference between the performance curve of
the degraded infrastructure system and the as-planned
performance curve. A lower RL value indicates higher
resilience as this means that the system is less affected by
the disruption, while a larger RL implies lower resilience.
Figure 2(b) shows another way to measure the resilience
value R, which uses the ratio of the areas between the
actual system performance curve to the as-planned system
performance over the disruption duration (Reed et al.,
2009). The resilience obtained in this way is a normalised
percentage of the remaining performance, which enables
the comparison of the resilience of different systems
under different disruptions.

The resilience triangle curve was originally proposed to
measure community seismic resilience but has since been
more widely adopted to assess infrastructure resilience
under disruptions. Infrastructure resilience generally
refers to the ability of infrastructure systems to withstand,
recover from, and adapt to disruptions. As demonstrated
in Figure 3 (adapted from McDaniels et al. (2008)), the
three capacities emerge sequentially as the disruption
progresses. Withstanding refers to the ability of a system
to absorb and/or resist the adverse impacts of disruptions
and continue to operate even with function degradation)
in order to minimize consequences. Recovery indicates
the ability to repair and restore service. Adaptation is the
ability to adjust to changing internal demands and external
disturbances. Adaptation studies usually provide insights
for decision-making by analysing strategies to help the
system better prepare for future disruptions, which is out
of the scope of this paper. This paper adopts the
measurement of R, which covers the abilities to withstand
and recover.

Table 1 illustrates the system performance indicator
selected in this paper. The fundamental purpose of URTSs
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is to carry passengers from their origin stations to
destination stations. Hence, the number of satisfied
passenger journeys is selected as the indicator of system
performance because it can signal to what extent this
purpose is fulfilled under disruption. The widely adopted
network attribute — global efficiency — is used as a
comparison. The assessment equations Eq. (2) and Eq. (3)
follow the principle illustrated in Figure 2(b). The detailed
assessment procedure is demonstrated in Figure 1 III. In
carrying out the assessment, we have assumed that:
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Table 1 Explanation of system performance indicators

Indicator Explanation

The
number of
satisfied
passenger
journeys

Every day, passengers commute between their
targeted origin stations (O) and destination
stations (D) in the URTS. A daily average
number of passengers journeys between each
OD pair can indicate the system performance
under the normal state.

For each OD pair, if the URTS network has a
path from O to D, the passenger journeys on
this OD pair can be satisfied. Passenger
journeys on all OD pairs can be met when the
network is intact. However, when the network
is disrupted by flooding, passenger journeys on
some OD pairs are not expected to be satisfied
due to the absence of an available path.

Resilience (R) is assessed by the ratio:
t
J,] Qeat
Qo(ty — te)
where Q; is the number of satisfied passenger
journeys at time t, Q is the initial number of
satisfied passenger journeys at the normal state,
and (tf — t,) is the time interval between the

occurrence of the disruption and the full
recovery of the system (see Figure 3).

)

Global
efficiency

The efficiency of a pair of nodes in a network
is the inverse of the shortest path distance
between the nodes. That is, the shorter the
shortest path between a pair of nodes, the more
efficiently the information is transferred
between them. The global efficiency of a
network is the average efficiency of all pairs of
nodes. In the context of a URTS network,
global efficiency indicates the ability of a
URTS to efficiently move passengers between
different stations and measures how well it is

functioning.
Resilience (R) is assessed by the ratio:
J Edt
= 3)
EO(tf - te)

where E; and E; is the network global
efficiency at time t and the normal state,
respectively.

As shown in Figure 1 III-4, the node importance [ is
determined by its betweenness centrality BC and the
average number of passengers entering/exiting each
station SE. BC is the number of times a node lies in
the shortest path between other nodes, representing the
degree to which a node stands between others. A node
with a higher BC has more significance in influencing
network performance, and thus BC is suitable to
indicate the importance of a node in the network
structure. SE indicates how many passengers are
served at each station on a typical autumn weekday,
which captures the operational importance of each
station. To integrate structural and operational
importance, we assume that the node importance of



station i is the weighted BC;, where the weight is the
ratio of SE; to the SE of all.

e When the flood occurs at time step t =1, all
predefined flooded nodes and edges are disabled.

e During the recovery phase, recover one network
component (either nodes or edges) at each time step.
The recovery sequence is set in the descending order
of the node importance. The time step is arbitrary at
this stage and is a current major assumption. It is
presented here to demonstrate the concept. The
development of recovery profiles is part of future
planned stages for the model development.

e The maximum acceptable delay time for passengers is
half an hour. In the recovery phase, if a feasible path
exists between the origin and destination stations but
takes half an hour more than the shortest path under
the normal state, we assume that this is not practical
for passengers and that these journeys cannot be
fulfilled. This time is estimated based on the delay
refund of Transport for London (TfL) — passengers
can claim a refund if their journey was delayed for 15
minutes or more on the London Underground (LU)
lines and the Docklands Light Railway (DLR) line or
30 minutes or more on the London Overground (LO)
line and the Elizabeth line. Although delays caused by
bad weather are not covered by the refund claim, the
time can be used to approximate the maximum
acceptable delay time for passengers. Thirty minutes
is adopted to accommodate extreme conditions.

Results and discussion
Study case — the London URTS

London is a metropolis with over 5 million daily travel
demands on its URTS, which is a highly connected and
complex network with a long history of operation.
However, built on the River Thames, London is
vulnerable to flooding. It is estimated that 4% of the LU
and the DLR stations and 9% of the lines are at risk of a
30-year tidal/fluvial and/or surface water flooding
(Greater London Authority, 2018).

The London URTS studied in this paper covers 11 lines
of the LU, the LO line, the Elizabeth line, and the DLR
line. Figure 4(a) presents the 14 lines modelled for this
paper, and Table 2 describes the data. Geographical
location is used to overlay the true geography of London
URTS with flood maps to generate flood disruption
scenarios. In terms of engineering features, the metro
route map is used to identify station connections for
network model construction, and the types of stations and
tracks are used to differentiate the possibility of
inundation, as previously stated. Among the operational
features, passenger entering/exiting data and travel time
are used to assign weights to nodes and edges,
respectively. Passenger journey is used to indicate system
performance and assess resilience. The passenger journey
data is acquired from an open access dataset from TfL,
representing the travel demand on a typical weekday
(Monday-Thursday), Friday, Saturday, and Sunday at all
stations and lines in 2019. As depicted in Figure 4(b), this
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paper studies 5,343,049 passenger journeys travelling
between 51,917 origin-destination (OD) pairs on a typical
weekday in London in 2019, with the number of
passenger journeys indicated by stroke width and the
number of lines where the starting station is located
indicated by colour. It should be noted that part of the new
Elizabeth line (i.e., from Reading to West Drayton) is not
involved in modelling due to no 2019 data.

(a) 5%

Legends
= Bakerloo = Northern
= Central = Piccadilly
Circle = Victoria
== Hammersmith & City
== District

= Jubilee

== Metropolitan == Elizabeth line

(b)

Legends
== Journeys start from a station located on 1 line

= Journeys start from a station located on 5 lines

== Journeys start from a station located on 6 lines sRomLEY

Figure 4 Schematic of the London URTS: (a) 14 lines studied
in this study, (b) passenger journeys on a typical weekday in

the autumn of 2019
Table 2 Data description
Data Type Data detail Data source
Geographical ~ Shapefiles of the Transport for
location London URTS, London;
including latitude and OpenStreetMap
longitude of stations
and tracks.
Engineering ~ Metro route map, Transport for
features including 406 nodes London (2022)
and 483 edges.
Station and track type Transport for
(i.e., underground, at London; Google
grade, or elevated). Street View
Operational * The number of Transport for
features passengers entering and ~ London (2020)

exiting each station.

¢ The number of daily
passenger journeys
between each OD pair.
Travel time between
two adjacent stations.

Transport for
London (2013)

To analyse the flood resilience of the London URTS with
potentially realistic flood disruption scenarios, this paper
adopts flood depth maps of 30-year, 100-year and 1,000-
year floods generated by the UK environment Agency.
Developed based on up-to-date data and advanced
techniques (e.g., hydrological/hydraulic modelling and



digital terrain model), the maps simulate the flooding
taking place from the “surface runoff” generated by
rainwater which is on the surface of the ground (whether
or not it is moving) and has not yet entered a watercourse,
drainage system or public sewer (Environment Agency,
2019). This matches well with the flash flooding studied
in this paper. Moreover, the maps are with a high
horizontal grid resolution of 2m, which enables the
identification of flooded metro components with excellent
detail, though this will be reviewed in further detail later
in the project as local asset managers have indicated some
limitations to the extent to which these maps capture local
drainage capacities.

Results

Following the aforementioned methodology, the London
URTS network model is constructed through Python and
three flood disruption scenarios are identified (see Table
3). The results of the URTS flood resilience assessment
are depicted in Figure 5, showing the overall trend of
passenger journey-based and global efficiency-based
resilience triangle curves. The curves indicate how the
London URTS is affected by flooding of different
intensities and how much the recovery of one flooded
component contributes to the recovery of the system
performance at each time step. Table 4 presents the URTS
flood resilience value calculated by Eq. (2) and Eq. (3).

Table 3 Flood disruption scenarios, using a conservative ().9m

flood depth threshold
Flood scenario The number of The number of
flooded nodes flooded edges
30-year flood 11 10
100-year flood 32 11
1,000-year flood 76 14

Table 4 URTS flood resilience assessment results

Flood scenarios  Resilience assessed ~ Resilience
by passenger assessed by
journeys global efficiency
30-year flood 96% 95%
100-year flood 91% 89%
1,000-year flood  83% 82%

Two insights can be drawn from these initial results.
Firstly, although the resilience assessed based on
passenger journeys and global efficiency is similar in each
scenario, this does not necessarily mean that global
efficiency can be a reasonable predictor of URTS flood
resilience. One reason is that a station’s loss of service
(i.e., the number of passengers served) is not necessarily
in line with the network’s loss of global efficiency. For
instance, the overall trends of passenger journey-based
and global efficiency-based curves in Figure 5 are similar,
but the rates of change are not consistent at certain stages.
An example is that the recovery at time step t=8 in the 30-
year scenario sees a significant rise in system performance
but a gentle change in global efficiency, indicating the
impact of operational features — the number of passengers
served at each station. The more such examples there are,
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the greater the difference in the results will be. The results
in Table 4 are somewhat similar across two measures, as
the majority of metro stations serving large numbers of
passengers in London are not flooded in these scenarios.
Another reason is that global efficiency does not always
grow with the recovery of nodes and edges. It is observed
from the results that when the node to be recovered in the
next step is at a very marginal location in the network or
takes a relatively longer time to other stations (e.g., some
LO stations), the global efficiency decreases instead. This
is because adding such a node could increase the average
shortest path length (which is weighted by travel time) of
the network. However, this does not make sense for
assessing system resilience, as the more is recovered, the
more resilient the system is. This may be obvious to an
asset manager, but this practical interpretation of the
network modelling parameters is often missing from
existing academic literature.

(a) 30-year flood scenario
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Secondly, the more extreme the flood, the greater the
impact on system performance — which may become
practically unaffordable and unacceptable. For example,
the URTS flood resilience is only 83% in the 1,000-year
flood scenario outlined in this paper and considerable
economic loss would be expected as a result. While the
recovery regime adopted remains highly theoretical
(affecting the practicality of the results achieved at this
point in development), what is demonstrated in this paper
is the ability to explore possible tipping points in the
network operation by testing out less probable but
possible scenarios. It provides the starting point to think
about what actions can be taken to reduce the impact and
restore services in a timely manner. The methodology
proposed in this paper can also be used to test the
effectiveness of potential actions.

Discussion

The case study is conducted to test the feasibility of a
resilience assessment approach that builds on existing
network modelling approaches but with more practical
applications for decision-making in mind. It captures
engineering features of URTSs and tests the resilience
quality under a range of potentially realistic scenarios.
However, this demo assessment has some limitations and
needs further work on modelling details.

First, although the normalised percentage R can indicate
the value of system resilience, we do not know what the
threshold for a resilient system is and thus cannot tell if
the current system is resilient based on the value of R. To
address this limitation, the economic impacts can be
further measured to signal the acceptable level of system
resilience value in operation, because the URTS operator
invests a lot of money and effort to keep URTSs running
and flood disruptions can incur high economic impacts
(e.g., revenue loss and average delay). We suggest that if
the economic loss is acceptable to the operator, the system
can be considered resilient.

Secondly, the 0.9m flood level threshold is a level set by
the UK Environment Agency for houses, which normally
have entrances with steps above the ground level.
However, considering that a large part of the tracks and
station entrances of URTSs are at ground level, the 0.9m
flood level threshold is a very conservative starting point
for URTS flood inundation analysis. Alternative
thresholds will be explored in future analysis. Table 5
illustrates an example. To facilitate this work, a tool could
be developed on the ArcGIS platform to automatically
identify flooded components at different flood levels (this
is currently a manual process).

Finally, the assumption of recovering one network
component at each time step underestimates the actual
recovery capacity of the URTS operational team. A more
sensible recovery profile needs to be informed by
practical assumptions, such as the extent to which there is
the capacity to deploy resources across multiple stations
to bring the assets back online.
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Table 5 Possible traffic-light system for differentiating the

impacts of flood depths

Flood Category Impact

depth

<0.3m Green: no No impacts.
flood

0.3-0.6m  Yellow: Low level impacts that can be
might be eliminated by emergency
flooded measures (e.g., sandbags).

0.6-09m  Amber: may Medium level impacts that
be flooded could potentially disrupt

operations.

>0.9m Red: High level impacts and
definitely will  operations will be totally
be flooded disrupted.

Conclusions

While the trend towards building resilience in
transport systems in the face of extreme flooding is
accelerating, the flood resilience assessment of URTSs
has received scant attention. This paper is novel in
proposing an approach to quantitatively assess the URTS
flood resilience by using complex network modelling and
scenario analysis. Taking the London URTS as a case
study, this paper assesses the current level of resilience of
the London URTS under scenarios of 30-year, 100-year,
and 1,000-year floods. Results show that global efficiency
is not necessarily a quality indicator as good as passenger
journeys and the London URTS may not be resilient to
extreme flooding at the 1,000-year flood level.

This approach captures the structural topology and
operational performance of the URTS to comprehensively
assess its resilience level under flood disruptions, which
is reflected by the way the node importance and the
resilience value is measured. The flood disruptions are
generated based on potentially realistic flood scenarios
with considering the type of stations and tracks and
location-specific flood risk exposure, which advances
infrastructure resilience assessment under specific types
of disturbance and provides informative insights for
disaster risk reduction decisions in the face of future
extreme situations. Finally, the designed methodology
can be widely applied to measure the resilience of other
single or interdependent infrastructure networks.
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