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Abstract 
This study aims to assist urban planners and building 
designers in taking informed decisions based on energy 
performance – simulating a real-world urban development 
scenario – using limited computational resources. In 
particular, this paper proposes a new approach that 
integrates existing studies on building loads forecasting 
by using a Generative Adversarial Network (GAN) 
generated dataset based on significant geometrical 
parameters. This overcomes the needs for large datasets – 
often difficult to access.  
The results demonstrate that the data-driven approaches 
have addressed the buildings' load predictions with a 
reasonable accuracy while significantly reducing the 
calculation time required. 

Introduction 
To avoid dangerous anthropogenic interference with the 
climate system, two mitigation measures are possible: 
reducing greenhouse gas (GHG) emissions and enhancing 
greenhouse gas sinks. However, there are strong reasons 
for favouring the former over the latter1. The risks raised 
by a large-scale deployment of negative emissions 
technologies are much more significant than the issues 
raised by replacing fossil fuels with renewables. Although 
negative emissions projects have become necessary 
because of the low remaining global carbon budget, the 
first imperative today remains to reduce global emissions 
rapidly and drastically through a global energy transition 
(Bourban, 2022). 
The building sector accounts for roughly 40% of the total 
energy consumption and 38% of the CO2 emissions in the 
European Union (Saheb et al., 2015). On a global scale, 
the energy savings potential is estimated to be 53 
Hexajoules annually by 2050 (United Nations 
Environment Programme, 2022), and building designers 
play a vital role in realising this huge energy savings 
potential.  
 

 
1 According to Geden (2016), “By establishing the idea of 
negative emissions [into carbon budgets, during the 
IPCC’s fifth assessment cycle], climate researchers have 
helped, unintentionally, to mask the lack of effective 
political mitigation action,” because including carbon 

Nowadays, architects and engineers use building 
performance simulations (BPS), abstracting real-world 
evidence, to support informed decisions to assess and 
reduce the environmental impact of buildings and meet 
strict requirements related to indoor climate and 
performance objectives. To find possible solutions, the 
design team must vary many design parameters such as 
building geometry, insulation thickness, glazing 
properties, and HVAC systems. However, the variation of 
these factors constitutes an enormous multi-dimensional 
design space, generating a multi-scale, interdisciplinary, 
complex problem to be solved. Regarding the 
Architecture, Engineering and Construction (AEC) 
sector, the IEA ANNEX-30 research shows that the 
choices about critical design parameters are determined in 
the early design stage, and more than 40% of the building 
energy-saving potential comes from the early design stage 
(Attia et al., 2013). Therefore, it is necessary to optimise 
the critical design decisions from the beginning of the 
project to improve building performance (Lin et al., 
2021). 

Data-informed building performance 
simulations 
BPS is a powerful physics-based method for predicting a 
building's dynamic behaviour, renewable energy sources 
(RES) integration, and the building's sustainability 
intrinsic criteria harmonisation (Olu-Ajayi et al., 2022). 
Hence, synergetic implementation of the BPS, energy 
efficiency and RES integration is the only way to realise 
sustainable buildings and approach carbon-neutral city 
planning without omitting user behaviour. Accurate load 
forecasting is the premise of reasonable generation, 
transmission, and energy distribution arrangement at a 
city scale. Improving load forecasting accuracy is 
conducive to proper operation mode and maintenance 
plan in a power system or microgrid to reduce operational 
costs and improve the benefits of the power system or 
microgrid (Hou et al., 2022). 

dioxide removal (CDR) in the carbon budget allows 
decision-makers to circumvent the original constraints on 
global emissions, while claiming that they are bringing 
climate change under political control (Geden, 2016). 



 

 

Anyway, in urban scenarios, running thousands of 
simulations is an obstacle to the widespread adoption of 
design space exploration, uncertainty analysis, sensitivity 
analysis, and optimisation. Worse yet, thousands of 
simulations may be necessary to thoroughly explore the 
high-dimensional design space formed by the many 
design parameters. This computational issue may be 
overcome by creating fast metamodels (Østergård et al., 
2018) using machine learning (ML) and artificial 
intelligence (AI) based tools. However, there is still a lack 
of methods, algorithms and tools to support building 
performance optimisation in the early design stage. 
Essential for the development of a solid evidence base for 
the use of ML-based BPS (metamodels) is data 
empirically derived from large populations representing 
the real-world conditions of complex building stock. Still, 
for the most part, even basic information about energy 
demand in buildings, e.g., trends and patterns, along with 
simple descriptions of population and stock 
segmentations, is limited or simply lacking (Skea, 2012; 
Summerfield and Lowe, 2012). 
Supporting the development of evidence-based data for 
the energy performance of buildings requires having 
access to different levels of information, from high-level 
aggregate ecological studies (i.e. using small area 
statistics), cross-sectional studies of individual units of 
observations (people, households, premises, meters, etc.), 
and exploratory studies. The risk is that without detailed 
data collection and storage, longitudinal analysis or 
systematic reviews of research findings is not viable to 
support project-by-project learning (Hamilton et al., 
2015). 
However, to cope with the lack of data and, at the same 
time, highlight the importance of data gathering, large-
scale analyses can be conducted using artificial datasets. 
Artificial datasets consist of a certain amount of data 
derived from simulations (conducted using traditional 
methods) or ML approaches such as Generative 
Adversarial Networks (GAN), which generate data from 
a small dataset. In both cases, these data are structured in 
such a way as to have consistency between features (input 
data) of the different models analysed.  
This paper analyses the application of ML-based BPS for 
predicting cooling loads based on an artificial dataset 
generated with a tabular GAN for data generation.  
The aim of this proof-of-concept is to demonstrate 
(Objective 1) the effectiveness of ML-based tools in terms 
of accuracy – baseline, and (Objective 2) the effectiveness 
of these tools trained on an artificial dataset generated 
with GANs. 

Cooling loads prediction 
When it comes to energy-efficient building design, the 
computation of the heating load (HL) and the cooling load 
(CL) is required to determine the specifications of the 
heating and cooling equipment needed to maintain 
comfortable indoor air conditions.  
These parameters are one of the most impactful for energy 
consumption and can be considered key performance 
indicators in a building design.  
To estimate the required cooling and heating capacities, 
designers need information about the characteristics of the 
building and the conditioned space, the climate, and the 
intended functional use. Using statistical and machine 
learning concepts has the distinct advantage that distilled 
expertise from other disciplines is brought into the BPS 
domain. Using these techniques makes it extremely fast to 
obtain answers by varying building design parameters 
once a model has been adequately trained. Moreover, 
statistical analysis can enhance our understanding by 
offering quantitative expressions of the factors that affect 
the quantity (or quantities) of interest that the building 
designer or architect may wish to focus on (Tsanas and 
Xifara, 2012). Due to their intrinsic extensive data-based 
calculation, these tools can also be applied to a multi-scale 
domain, enhancing the possibility to study interrelations 
between multiple buildings and better understand city-
scale energy consumption. 
In this study, CL has been associated with some geometric 
building variables such as relative compactness, surface 
area, wall area, roof area, overall height, orientation, 
glazing area, and glazing area distribution (Pessenlehner 
and Mahdavi, 2003; Schiavon et al., 2010; Wan et al., 
2011), combined with external factors such as climate 
(Wan et al., 2011). Starting from those data, a statistical 
analysis has been provided to gain insight into the 
underlying properties of input and output variables, using 
categorical regression and state-of-the-art nonlinear and 
non-parametric statistical machine learning tools to map 
the input variables to CL. 

Methods 
To evaluate the applicability of GAN-generated dataset 
for the cooling loads forecasting, we first selected a 
reference dataset. Next, we defined the design variables. 
We then conducted ML-based simulations to establish a 
baseline. We cropped the existing dataset – keeping the 
same variables and input/output relationships – and used 
to train a GAN in order to generate a second dataset, akin 
to the first. Finally, we conducted the same ML-based 
simulation to compare the two models and evaluate their 
performances. 
The process is showed below in Figure 01, with the 
dashed boxes indicating the next steps to be performed in 
future work. 



Figure 1: Methodology diagram

Case study
This section briefly summarises the data-driven statistical 
concepts and the ML techniques used to analyse the data. 
All the analyses are performed in a Jupyter Notebook 
using a Python environment. Some analytics libraries 
(such as Pandas, Numpy, Seaborn and Matplotlib) were 
used to process the data and obtain more readable results.
The used dataset is gathered from the Center for Machine 
Learning and Intelligent Systems data repository of the 
Bren School of Information and Computer Science 
(University of California), based on research by Tsanas 
and Xifara (Tsanas and Xifara, 2012). The data are based 
on a geometrical exploration starting from an elementary 
cube (3,5m × 3,5m × 3,5m) from which 12 building forms 
composed of 18 elements (elementary cubes) are 
generated.

Figure 2: Representation of building forms generated from the 
combination of 18 elementary cubes

All the buildings have the same volume of 771 m3 but 
different surface areas and dimensions. The materials 
used for each of the 18 elements are the same for all 
building forms. The selection was made by the most 
common materials in the building industry at the 
publication date, for a common building in Athens, 
Greece. Specifically, the associated U-values are: walls 
(1.78 W/m2K), floors (0.86 W/m2K), roofs (0.50 W/m2K), 
windows (2.26 W/m2K). The simulation assumes that the 
buildings are residential with seven persons and sedentary 
activity (70 W). 
The internal design conditions were set as follows: 
clothing: 0.6 clo, humidity: 60%, air speed: 0.30 m/s, 
lighting level: 300 Lux. The internal gains were set to 
sensible (5 W/m2) and latent (2 W/m2), while the 
infiltration rate was set to 0,5 for air change rate with wind 
sensitivity 0.25 ach. For the thermal properties was used 
a mixed mode with 95% efficiency, with a thermostat 
range of 19–24 ◦C, 15–20 h of operation on weekdays and 
10–20 h on weekends. Three types of glazing areas were 
used, expressed as percentages of the floor area: 10%, 
25%, and 40%. Furthermore, five different distribution 
scenarios for each glazing area were simulated: 



uniform: 25% glazing on each side,
north: 55% on the north side and 15% on each of 
the other sides,
east: 55% on the east side and 15% on each of 
the other sides,
south: 55% on the south side and 15% on each of 
the other sides, 
west: 55% on the west side and 15% on each of 
the other sides.

Finally, all shapes were rotated to face the four cardinal 
points. Thus, considering twelve building forms and three 
glazing area variations with five glazing area distributions 
each, for four orientations, 720 building samples. In 
addition, twelve building forms for the four orientations 
without glazing were considered. Therefore, in total, the 
dataset is based on 768 buildings samples. Each of the 768 
simulated buildings can be characterised by the eight 
building parameters presented above.
As reported in the previous section, the data has 768 rows 
(instances) and 10 columns (dimension), of which 8 input 
values (features) and 2 output values. The input values 
are:

Relative Compactness
Surface Area - m²
Wall Area - m²
Roof Area - m²
Overall height - m
Orientation - 2:North, 3:East, 4:South, 5:West
Glazing Area - 0%, 10%, 25%, 40% (of floor 
area)
Glazing Area Distribution (Variance) -
1:Uniform, 2:North, 3:East, 4:South, 5:West

While the output:
Cooling load – kWh

All the data can be summarised using simple diagrams, 
highlighting the differences between the 768 case-study 
buildings analysed.

Figure 3: Value distribution of the input/output data

From a mathematical perspective, given N samples (here 
N=768) and M input variables (here M=8), we can 
construct a matrix which has the form of:

     (1)

This matrix is typically associated with a response 
variable vector and we need to find the 
functional relationship f to relate X and y (here y is CL) 
such that . The tool that performs the functional 
mapping is commonly referred to as a learner in the 
machine learning literature.
Following this schema, the variables X (Relative 
compactness, surface area, wall area, roof area, overall 
height, orientation, glazing area and glazing area 
distribution) and y (cooling load) have been defined. The 
train-test split is a technique for evaluating the 
performance of a machine learning algorithm. It can be 
used for classification or regression problems and 
supervised learning algorithms. The procedure involves 
taking a dataset and dividing it into two subsets. The first 
subset is used to fit the model and is referred to as the 
training dataset. The second subset is not used to train the 
model; instead, the input element of the dataset is 
provided to the model, then predictions are made and 
compared to the expected values. This second dataset is 
referred to as the test dataset.
For the ML-based simulation, the CatBoost regressor was 
used. CatBoost is an open-source machine learning 
algorithm (Prokhorenkova et al., 2017). It can work with 
diverse data types to help solve a wide range of problems. 
It yields state-of-the-art results without extensive data 
training typically required by other machine learning 
methods. CatBoost library is based on gradient boosting 
machine learning regression algorithm and is widely 
applied to multiple business challenges like fraud 
detection, recommendation items, and forecasting. It can 
return very good results with relatively few data, unlike 
other ML models that need to learn from massive amount 
of data. It also reduces the need for extensive 
hyperparameter tuning and lowers the chances of 
overfitting, leading to more generalised models. 



Base data analysis
The first step of the process is the validation of the ML 
model based on the available dataset. 
Gradient boosting is essentially a process of constructing 
an ensemble predictor by performing gradient descent in 
a functional space. It is backed by solid theoretical results 
that explain how strong predictors can be built by 
iteratively combining weaker models (base predictors) in 
a greedy manner. However, implementations of gradient 
boosting face the statistical issue of relying – after several 
steps of boosting - on the targets of all training examples.
CatBoost is an implementation of gradient boosting, 
which uses binary decision trees as base predictors. The 
CatBoost model use ordered boosting, avoiding target 
leakage, and a modified algorithm for processing 
categorical features, achieving better results over existing 
gradient boosted decision trees.
Using the CatBoost regression model, it has been possible 
to train the model in 4.79 seconds. Applying the cross-
validation to the test subset, it is possible to note that the 
algorithm provides extremely accurate values in no time. 
The model was trained and validated on 33% of the data 
set, and the accuracy (R-squared value) for the prediction 
test was consistently above 90%. Figure 7 shows the 
difference between actual and predicted data.

Table 1: Accuracy of the baseline model

Dataset R-squared

Train dataset (y) 0.998

Test dataset (y) 0.991

GAN generated dataset
GAN is a deep learning generative technology. It contains 
two distinct ML models: generator and discriminator. The 
potential distribution of the raw data is explored through 
a confrontation strategy between the two models, thereby 
generating virtual samples consistent with the distribution 
of the raw base data (Mao et al., 2020). The generator is 
responsible for generating the synthetic data sample G(z) 
based on the original raw data and inputting them into the 
discriminator. The discriminator, on the other hand, is 
responsible has to distinguish the true and synthetic 
(generator-generated data) input samples (Jabbar et al., 
2020). Generator (G) outputs the synthetic generated data 
samples, while the discriminator (D) outputs the sample 
discrimination rate, which, together, are converted into 
the objective optimisation function V(D, G) and then fed 
back to the generator and discriminator; iteratively, such 
process makes the generated data more and more realistic 
(Yu et al., 2022). 
The GAN principle is depicted in Figure 4 below.

Figure 4: GAN functioning schema

The expression of objective optimisation process V(D, G) 
reads:

(2)

In Equation 2, x is the raw data, px is the distribution of 
x, z is the noise data, and pz is the priori probability 
distribution of input noise variables. 
The generator expects V(D,G) to be minimised, while the 
discriminator expects V(D,G) to be maximised, the 
process of which can be expressed as:

(3)

The generator and discriminator are fixed, respectively, to 
alternately and iteratively minimise and maximise 
V(D,G) until the final equilibrium is reached, thereby 
obtaining a GAN with better performance. At this time, 
the losses of the generator and discriminator are the same, 
and the artificial dataset is generated.

Artificial data generation and analysis
In this paper, we used the CTGAN library to generate 
the second artificial dataset. The preparation of the raw 
data consists of the original dataset, excluding 500 
random raws, to give both a proper training set and a 
reasonably low number of simulations, like in a real-
world scenario. The reduced raw dataset is then split into 
conditional and continuous columns to avoid physical 
errors, such as surfaces with an area <0.
According to this principle, the "orientation", the 
"glazing area", and the "glazing area distribution" 
parameters are considered discrete features, recurring the 
same steps as the original dataset. Lastly, an artificial 
dataset of 768 raws has been generated to be as coherent 
as possible with the original dataset. The figure below 
shows the accuracy of the GAN-generated dataset 
compared to the original one.



 

 

 
 
Figure 5: Distribution of means and standard deviation of real 

and synthetic data 

 

 
 
Figure 6: Real and synthetic data distribution for each feature 

 

Lastly, the figure below shows the new distribution of the 
values from the GAN-generated dataset. 
 

 
Figure 7: Value distribution of the input/output data, real and 

synthetic 
 

Once the new dataset has been generated, in order to prove 
the accuracy of the model trained with the generated data 
against the baseline, the same ML model (CatBoost 
regressor) has been used.  
After the neural network has been trained on the artificial 
dataset, the model is compared with the model trained on 
the original dataset. Finally, the outputs of the two models 
are compared so that the method's effectiveness can be 
assessed. 
As expected, the effectiveness of the neural network 
based on the artificial dataset is significantly lower than 
the former, with an accuracy of around 40%. However, 
analysing the comparison graph, it is possible to see that 
the peaks (both positive and negative) are consistent and 
that the average consumption is in line with reality. This 
discrepancy may be dictated by the structure of the source 
data, which being variations of 12 buildings only, show 
repeating patterns, which is not absorbed in the artificial 
dataset. Furthermore, it is crucial to emphasise that both 
models were not normalised in order to reduce outliers or 
any values that could distort the overall behaviour of the 
model. This choice was made to test the feasibility of the 
approach in its crudest state. It is believed, therefore, that 
more accurate and usable results can be obtained after 
normalising the data and exploring the generation models 
in greater depth. 
 
  



 

 

Conclusions and outlook of future work 
The test results demonstrate in practical terms how the 
ML-based tool responds (Objective 1) with a very high 
degree of accuracy (>90%) compared to the baseline 
calculated with traditional BPS methods. However, the 
results obtained with the GAN-generated dataset are not 
sufficient to guarantee the same accuracy level (Objective 
2). The main issue can be found in the regression based 
on the artificial dataset, and not in the generation of the 
artificial dataset itself. This can be proven by looking at 
the comparison of values between raw and generated data 
that are consistent among all the features. 
Future work will include further analyses (such as dataset 
normalisation, scaling, and different ML models 
comparison) on the application of ML algorithms to the 
artificial dataset, trying to overcome potential problems 
due to the double artificial modelling. 
The outcomes of this paper confirm the potential of ML-
based BPS for the exploration and optimisation of a 
significant design space in a limited timeframe. These 
results can be of great relevance in the hypothesis of early-
stage design evaluations for the design of new buildings 
in an existing urban context, guaranteeing the possibility 
to evaluate different geometries in reduced timescales and 
maximise their performance.  
These tools can be further explored and applied to the 
simultaneous analysis of multiple buildings (or variations 
of buildings) to rapidly assess and optimise the design of 
new urban or neighbourhood developments, taking into 
account the energy needs both of individual buildings and 
of the aggregate. In this scenario, ML-based BPS 
represents a fundamental step forward for net zero-carbon 

developments such as the ones defined in the European 
Commission's "100 EU Cities" for 100 climate-neutral 
and smart cities by 2030, decoupling the analysis needed 
to achieve decarbonisation targets from the large amount 
of time and computational effort required by traditional 
methods. 
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