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Abstract

This study aims to assist urban planners and building
designers in taking informed decisions based on energy
performance — simulating a real-world urban development
scenario — using limited computational resources. In
particular, this paper proposes a new approach that
integrates existing studies on building loads forecasting
by using a Generative Adversarial Network (GAN)
generated dataset based on significant geometrical
parameters. This overcomes the needs for large datasets —
often difficult to access.

The results demonstrate that the data-driven approaches
have addressed the buildings' load predictions with a
reasonable accuracy while significantly reducing the
calculation time required.

Introduction

To avoid dangerous anthropogenic interference with the
climate system, two mitigation measures are possible:
reducing greenhouse gas (GHG) emissions and enhancing
greenhouse gas sinks. However, there are strong reasons
for favouring the former over the latter!. The risks raised
by a large-scale deployment of negative emissions
technologies are much more significant than the issues
raised by replacing fossil fuels with renewables. Although
negative emissions projects have become necessary
because of the low remaining global carbon budget, the
first imperative today remains to reduce global emissions
rapidly and drastically through a global energy transition
(Bourban, 2022).

The building sector accounts for roughly 40% of the total
energy consumption and 38% of the CO; emissions in the
European Union (Saheb et al., 2015). On a global scale,
the energy savings potential is estimated to be 53
Hexajoules annually by 2050 (United Nations
Environment Programme, 2022), and building designers
play a vital role in realising this huge energy savings
potential.

! According to Geden (2016), “By establishing the idea of
negative emissions [into carbon budgets, during the
IPCC’s fifth assessment cycle], climate researchers have
helped, unintentionally, to mask the lack of effective
political mitigation action,” because including carbon
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Nowadays, architects and engineers use building
performance simulations (BPS), abstracting real-world
evidence, to support informed decisions to assess and
reduce the environmental impact of buildings and meet
strict requirements related to indoor climate and
performance objectives. To find possible solutions, the
design team must vary many design parameters such as
building geometry, insulation thickness, glazing
properties, and HVAC systems. However, the variation of
these factors constitutes an enormous multi-dimensional
design space, generating a multi-scale, interdisciplinary,
complex problem to be solved. Regarding the
Architecture, Engineering and Construction (AEC)
sector, the IEA ANNEX-30 research shows that the
choices about critical design parameters are determined in
the early design stage, and more than 40% of the building
energy-saving potential comes from the early design stage
(Attia et al., 2013). Therefore, it is necessary to optimise
the critical design decisions from the beginning of the
project to improve building performance (Lin et al.,
2021).

Data-informed building performance
simulations

BPS is a powerful physics-based method for predicting a
building's dynamic behaviour, renewable energy sources
(RES) integration, and the building's sustainability
intrinsic criteria harmonisation (Olu-Ajayi et al., 2022).
Hence, synergetic implementation of the BPS, energy
efficiency and RES integration is the only way to realise
sustainable buildings and approach carbon-neutral city
planning without omitting user behaviour. Accurate load
forecasting is the premise of reasonable generation,
transmission, and energy distribution arrangement at a
city scale. Improving load forecasting accuracy is
conducive to proper operation mode and maintenance
plan in a power system or microgrid to reduce operational
costs and improve the benefits of the power system or
microgrid (Hou et al., 2022).

dioxide removal (CDR) in the carbon budget allows
decision-makers to circumvent the original constraints on
global emissions, while claiming that they are bringing
climate change under political control (Geden, 2016).



Anyway, in urban scenarios, running thousands of
simulations is an obstacle to the widespread adoption of
design space exploration, uncertainty analysis, sensitivity
analysis, and optimisation. Worse yet, thousands of
simulations may be necessary to thoroughly explore the
high-dimensional design space formed by the many
design parameters. This computational issue may be
overcome by creating fast metamodels (Ostergard et al.,
2018) wusing machine learning (ML) and artificial
intelligence (AI) based tools. However, there is still a lack
of methods, algorithms and tools to support building
performance optimisation in the early design stage.

Essential for the development of a solid evidence base for
the use of ML-based BPS (metamodels) is data
empirically derived from large populations representing
the real-world conditions of complex building stock. Still,
for the most part, even basic information about energy
demand in buildings, e.g., trends and patterns, along with
simple descriptions of population and stock
segmentations, is limited or simply lacking (Skea, 2012;
Summerfield and Lowe, 2012).

Supporting the development of evidence-based data for
the energy performance of buildings requires having
access to different levels of information, from high-level
aggregate ecological studies (i.e. using small area
statistics), cross-sectional studies of individual units of
observations (people, households, premises, meters, etc.),
and exploratory studies. The risk is that without detailed
data collection and storage, longitudinal analysis or
systematic reviews of research findings is not viable to
support project-by-project learning (Hamilton et al.,
2015).

However, to cope with the lack of data and, at the same
time, highlight the importance of data gathering, large-
scale analyses can be conducted using artificial datasets.
Artificial datasets consist of a certain amount of data
derived from simulations (conducted using traditional
methods) or ML approaches such as Generative
Adversarial Networks (GAN), which generate data from
a small dataset. In both cases, these data are structured in
such a way as to have consistency between features (input
data) of the different models analysed.

This paper analyses the application of ML-based BPS for
predicting cooling loads based on an artificial dataset
generated with a tabular GAN for data generation.

The aim of this proof-of-concept is to demonstrate
(Objective 1) the effectiveness of ML-based tools in terms
of'accuracy — baseline, and (Objective 2) the effectiveness
of these tools trained on an artificial dataset generated
with GANS.
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Cooling loads prediction

When it comes to energy-efficient building design, the
computation of the heating load (HL) and the cooling load
(CL) is required to determine the specifications of the
heating and cooling equipment needed to maintain
comfortable indoor air conditions.

These parameters are one of the most impactful for energy
consumption and can be considered key performance
indicators in a building design.

To estimate the required cooling and heating capacities,
designers need information about the characteristics of the
building and the conditioned space, the climate, and the
intended functional use. Using statistical and machine
learning concepts has the distinct advantage that distilled
expertise from other disciplines is brought into the BPS
domain. Using these techniques makes it extremely fast to
obtain answers by varying building design parameters
once a model has been adequately trained. Moreover,
statistical analysis can enhance our understanding by
offering quantitative expressions of the factors that affect
the quantity (or quantities) of interest that the building
designer or architect may wish to focus on (Tsanas and
Xifara, 2012). Due to their intrinsic extensive data-based
calculation, these tools can also be applied to a multi-scale
domain, enhancing the possibility to study interrelations
between multiple buildings and better understand city-
scale energy consumption.

In this study, CL has been associated with some geometric
building variables such as relative compactness, surface
area, wall area, roof area, overall height, orientation,
glazing area, and glazing area distribution (Pessenlehner
and Mahdavi, 2003; Schiavon et al., 2010; Wan et al.,
2011), combined with external factors such as climate
(Wan et al., 2011). Starting from those data, a statistical
analysis has been provided to gain insight into the
underlying properties of input and output variables, using
categorical regression and state-of-the-art nonlinear and
non-parametric statistical machine learning tools to map
the input variables to CL.

Methods

To evaluate the applicability of GAN-generated dataset
for the cooling loads forecasting, we first selected a
reference dataset. Next, we defined the design variables.
We then conducted ML-based simulations to establish a
baseline. We cropped the existing dataset — keeping the
same variables and input/output relationships — and used
to train a GAN in order to generate a second dataset, akin
to the first. Finally, we conducted the same ML-based
simulation to compare the two models and evaluate their
performances.

The process is showed below in Figure 01, with the
dashed boxes indicating the next steps to be performed in
future work.
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Case study

This section briefly summarises the data-driven statistical
concepts and the ML techniques used to analyse the data.
All the analyses are performed in a Jupyter Notebook
using a Python environment. Some analytics libraries
(such as Pandas, Numpy, Seaborn and Matplotlib) were
used to process the data and obtain more readable results.

The used dataset is gathered from the Center for Machine
Learning and Intelligent Systems data repository of the
Bren School of Information and Computer Science
(University of California), based on research by Tsanas
and Xifara (Tsanas and Xifara, 2012). The data are based
on a geometrical exploration starting from an elementary
cube (3,5m X 3,5m X 3,5m) from which 12 building forms
composed of 18 elements (elementary cubes) are
generated.

Figure 2: Representation of building forms generated from the
combination of 18 elementary cubes

All the buildings have the same volume of 771 m? but
different surface areas and dimensions. The materials
used for each of the 18 elements are the same for all
building forms. The selection was made by the most
common materials in the building industry at the
publication date, for a common building in Athens,
Greece. Specifically, the associated U-values are: walls
(1.78 W/m?K), floors (0.86 W/m?K), roofs (0.50 W/m?K),
windows (2.26 W/m?K). The simulation assumes that the
buildings are residential with seven persons and sedentary
activity (70 W).

The internal design conditions were set as follows:
clothing: 0.6 clo, humidity: 60%, air speed: 0.30 m/s,
lighting level: 300 Lux. The internal gains were set to
sensible (5 W/m?) and latent (2 W/m?), while the
infiltration rate was set to 0,5 for air change rate with wind
sensitivity 0.25 ach. For the thermal properties was used
a mixed mode with 95% efficiency, with a thermostat
range of 19-24 °C, 15-20 h of operation on weekdays and
10-20 h on weekends. Three types of glazing areas were
used, expressed as percentages of the floor area: 10%,
25%, and 40%. Furthermore, five different distribution
scenarios for each glazing area were simulated:



e uniform: 25% glazing on each side,

e north: 55% on the north side and 15% on each of
the other sides,

e cast: 55% on the east side and 15% on each of
the other sides,

e south: 55% on the south side and 15% on each of
the other sides,

e west: 55% on the west side and 15% on cach of
the other sides.

Finally, all shapes were rotated to face the four cardinal
points. Thus, considering twelve building forms and three
glazing area variations with five glazing area distributions
each, for four orientations, 720 building samples. In
addition, twelve building forms for the four orientations
without glazing were considered. Therefore, in total, the
dataset is based on 768 buildings samples. Each of the 768
simulated buildings can be characterised by the eight
building parameters presented above.

As reported in the previous section, the data has 768 rows
(instances) and 10 columns (dimension), of which 8 input
values (features) and 2 output values. The input values
are:

Relative Compactness
Surface Area - m?
Wall Area - m?
Roof Area - m?
Overall height - m
Orientation - 2:North, 3:East, 4:South, 5:West
Glazing Area - 0%, 10%, 25%, 40% (of floor
area)

e Glazing Area Distribution (Variance) -

1:Uniform, 2:North, 3:East, 4:South, 5:West

While the output:

e Cooling load — kWh
All the data can be summarised using simple diagrams,
highlighting the differences between the 768 case-study
buildings analysed.
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Figure 3: Value distribution of the input/output data
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From a mathematical perspective, given N samples (here
N=768) and M input variables (here M=8), we can
construct a matrix X € RV*M which has the form of:

x1M]
XNM

This matrix is typically associated with a response
variable vector y € RV*1 and we need to find the
functional relationship f to relate X and y (here y is CL)
such that y = f(x). The tool that performs the functional
mapping is commonly referred to as a learner in the
machine learning literature.

X11

X= (1)

XN1

Following this schema, the variables X (Relative
compactness, surface area, wall area, roof area, overall
height, orientation, glazing area and glazing area
distribution) and y (cooling load) have been defined. The
train-test split is a technique for evaluating the
performance of a machine learning algorithm. It can be
used for classification or regression problems and
supervised learning algorithms. The procedure involves
taking a dataset and dividing it into two subsets. The first
subset is used to fit the model and is referred to as the
training dataset. The second subset is not used to train the
model; instead, the input element of the dataset is
provided to the model, then predictions are made and
compared to the expected values. This second dataset is
referred to as the test dataset.

For the ML-based simulation, the CatBoost regressor was
used. CatBoost is an open-source machine learning
algorithm (Prokhorenkova et al., 2017). It can work with
diverse data types to help solve a wide range of problems.
It yields state-of-the-art results without extensive data
training typically required by other machine learning
methods. CatBoost library is based on gradient boosting
machine learning regression algorithm and is widely
applied to multiple business challenges like fraud
detection, recommendation items, and forecasting. It can
return very good results with relatively few data, unlike
other ML models that need to learn from massive amount
of data. It also reduces the need for extensive
hyperparameter tuning and lowers the chances of
overfitting, leading to more generalised models.



Base data analysis

The first step of the process is the validation of the ML
model based on the available dataset.

Gradient boosting is essentially a process of constructing
an ensemble predictor by performing gradient descent in
a functional space. It is backed by solid theoretical results
that explain how strong predictors can be built by
iteratively combining weaker models (base predictors) in
a greedy manner. However, implementations of gradient
boosting face the statistical issue of relying — after several
steps of boosting - on the targets of all training examples.
CatBoost is an implementation of gradient boosting,
which uses binary decision trees as base predictors. The
CatBoost model use ordered boosting, avoiding target
leakage, and a modified algorithm for processing
categorical features, achieving better results over existing
gradient boosted decision trees.

Using the CatBoost regression model, it has been possible
to train the model in 4.79 seconds. Applying the cross-
validation to the test subset, it is possible to note that the
algorithm provides extremely accurate values in no time.
The model was trained and validated on 33% of the data
set, and the accuracy (R-squared value) for the prediction
test was consistently above 90%. Figure 7 shows the
difference between actual and predicted data.

Table 1: Accuracy of the baseline model

Dataset R-squared
Train dataset (y) 0.998
Test dataset (y) 0.991

GAN generated dataset

GAN is a deep learning generative technology. It contains
two distinct ML models: generator and discriminator. The
potential distribution of the raw data is explored through
a confrontation strategy between the two models, thereby
generating virtual samples consistent with the distribution
of the raw base data (Mao et al., 2020). The generator is
responsible for generating the synthetic data sample G(z)
based on the original raw data and inputting them into the
discriminator. The discriminator, on the other hand, is
responsible has to distinguish the true and synthetic
(generator-generated data) input samples (Jabbar et al.,
2020). Generator (G) outputs the synthetic generated data
samples, while the discriminator (D) outputs the sample
discrimination rate, which, together, are converted into
the objective optimisation function V(D, G) and then fed
back to the generator and discriminator; iteratively, such
process makes the generated data more and more realistic
(Yu et al., 2022).

The GAN principle is depicted in Figure 4 below.
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Figure 4: GAN functioning schema

The expression of objective optimisation process V(D, G)
reads:

V(D‘ G) = Ex~px [lOgD (x)]

+E;p, [log (1 - D(G(z)))]
2

In Equation 2, x is the raw data, p, is the distribution of
x, z is the noise data, and p. is the priori probability
distribution of input noise variables.

The generator expects V(D,G) to be minimised, while the
discriminator expects V(D,G) to be maximised, the
process of which can be expressed as:

min max
G D V(D,G)

=Eyp, [logD (x)]
+E;p, [log (1 - D(G(z)))]
(3)

The generator and discriminator are fixed, respectively, to
alternately and iteratively minimise and maximise
V(D,G) until the final equilibrium is reached, thereby
obtaining a GAN with better performance. At this time,
the losses of the generator and discriminator are the same,
and the artificial dataset is generated.

Artificial data generation and analysis

In this paper, we used the CTGAN library to generate
the second artificial dataset. The preparation of the raw
data consists of the original dataset, excluding 500
random raws, to give both a proper training set and a
reasonably low number of simulations, like in a real-
world scenario. The reduced raw dataset is then split into
conditional and continuous columns to avoid physical
errors, such as surfaces with an area <0.

According to this principle, the "orientation", the
"glazing area", and the "glazing area distribution"
parameters are considered discrete features, recurring the
same steps as the original dataset. Lastly, an artificial
dataset of 768 raws has been generated to be as coherent
as possible with the original dataset. The figure below
shows the accuracy of the GAN-generated dataset
compared to the original one.
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Lastly, the figure below shows the new distribution of the
values from the GAN-generated dataset.
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Figure 7 Value distribution of the input/output data, real and
synthetic

Once the new dataset has been generated, in order to prove
the accuracy of the model trained with the generated data
against the baseline, the same ML model (CatBoost
regressor) has been used.

After the neural network has been trained on the artificial
dataset, the model is compared with the model trained on
the original dataset. Finally, the outputs of the two models
are compared so that the method's effectiveness can be
assessed.

As expected, the effectiveness of the neural network
based on the artificial dataset is significantly lower than
the former, with an accuracy of around 40%. However,
analysing the comparison graph, it is possible to see that
the peaks (both positive and negative) are consistent and
that the average consumption is in line with reality. This
discrepancy may be dictated by the structure of the source
data, which being variations of 12 buildings only, show
repeating patterns, which is not absorbed in the artificial
dataset. Furthermore, it is crucial to emphasise that both
models were not normalised in order to reduce outliers or
any values that could distort the overall behaviour of the
model. This choice was made to test the feasibility of the
approach in its crudest state. It is believed, therefore, that
more accurate and usable results can be obtained after
normalising the data and exploring the generation models
in greater depth.
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Conclusions and outlook of future work

The test results demonstrate in practical terms how the
ML-based tool responds (Objective 1) with a very high
degree of accuracy (>90%) compared to the baseline
calculated with traditional BPS methods. However, the
results obtained with the GAN-generated dataset are not
sufficient to guarantee the same accuracy level (Objective
2). The main issue can be found in the regression based
on the artificial dataset, and not in the generation of the
artificial dataset itself. This can be proven by looking at
the comparison of values between raw and generated data
that are consistent among all the features.

Future work will include further analyses (such as dataset
normalisation, scaling, and different ML models
comparison) on the application of ML algorithms to the
artificial dataset, trying to overcome potential problems
due to the double artificial modelling.

The outcomes of this paper confirm the potential of ML-
based BPS for the exploration and optimisation of a
significant design space in a limited timeframe. These
results can be of great relevance in the hypothesis of early-
stage design evaluations for the design of new buildings
in an existing urban context, guaranteeing the possibility
to evaluate different geometries in reduced timescales and
maximise their performance.

These tools can be further explored and applied to the
simultaneous analysis of multiple buildings (or variations
of buildings) to rapidly assess and optimise the design of
new urban or neighbourhood developments, taking into
account the energy needs both of individual buildings and
of the aggregate. In this scenario, ML-based BPS
represents a fundamental step forward for net zero-carbon
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developments such as the ones defined in the European
Commission's "100 EU Cities" for 100 climate-neutral
and smart cities by 2030, decoupling the analysis needed
to achieve decarbonisation targets from the large amount
of time and computational effort required by traditional
methods.
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