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Abstract
This paper presents a novel approach for assessing and 
optimizing the flexibility potential of electricity 
consumers in residential buildings using a Consumer 
Digital Twin (CDT) and a Building Digital Twin (BDT). 
By leveraging smart devices, cloud-based data 
processing, and advanced optimization techniques, the 
proposed methodology integrates CDT and BDT to 
accurately forecast consumer’s energy demand and 
thermal satisfaction, quantify the consumer’s preferences 
in terms of importance level for specific flexible 
household appliances, and schedule their optimal 
operation. The key findings demonstrate the effectiveness 
of the integrated CDT-BDT framework towards reducing 
the total energy costs for electricity consumers and 
enhancing the utilization of local renewable energy 
sources. The principal conclusions highlight the potential 
of the proposed method for improving grid stability by 
reducing the load peaks and shift the load operation off-
peak periods. The research contributes to the 
advancement of digital twin applications in the domain of 
energy management and optimization, particularly in 
residential building settings, and the establishment of 
innovative business models in the electricity market.

Introduction
At present, the growing adoption of renewable energy 
sources (RES) and the rising demand for electricity in 
residential buildings underscore the need for effective 
energy management and optimization strategies. Inherent 
variability and intermittency of RES present challenges, 
such as grid instability and inefficiencies, necessitating 
approaches that harness consumer’s flexibility potential 
and optimize energy consumption patterns for better RES 
integration. Digital twin technology has emerged as a 
promising solution, offering real-time monitoring, 
analysis, and control of energy-related aspects through 
digital replicas of physical assets and processes. However, 
applying digital twins effectively in energy management 
demands a holistic approach that harmoniously combines 
individual-level consumer preferences and behaviors with 
building-level energy performance optimization.

The International Renewable Energy Agency (IRENA) 
projects that renewable resources will contribute to 90% 
of the global electricity generation by 2050 (IRENA, 
2021). Concurrently, electricity demand is anticipated to 
rise by 30% by 2040, primarily driven by urbanization, 
population growth, and the increasing number of 
appliances exerting pressure on existing electricity 
infrastructure (IEA, 2022). In Europe, buildings are 
responsible for 40% of energy consumption and 36% of 
CO2 emissions, making the promotion of energy-efficient 
buildings essential for a sustainable and carbon-neutral 
future (EU Law, 2019). The rising peak demand and 
integration of renewable energy resources present 
challenges to grid operators in balancing energy supply 
and demand (Gan et al., 2020). Furthermore, the 
stochastic nature of energy generation and demand 
highlights the need for flexibility in ensuring constant, 
reliable, and cost-effective energy supply, consequently 
reducing the expenses associated with remedial actions 
(Kazempour et al., 2018).
Flexibility refers to the ability to maintain continuous 
operation despite significant fluctuations in energy supply 
or demand (El Geneidy et al., 2020). Demand response, a 
critical form of flexibility in electricity markets, enables 
consumers to adjust their energy demand in response to 
incentives and pricing signals. This reduction in peak 
demand and shift in usage to off-peak periods promotes 
efficient use of renewable energy and enhances grid 
stability. Thus, residential flexibility, in this context, can 
be understood as the potential for consumer demand 
response.
At the building level, flexibility is primarily provided in 
three areas: appliance scheduling, heating and cooling 
control, and electric vehicle (EV) charging. Recent 
research has explored the use of appliances for flexibility 
(Rostampour et al., 2020; Vizia et al., 2021; Lezama et al., 
2020), with some studies focusing specifically on building 
heating and cooling systems as a source of ancillary 
services for the grid. However, user preferences largely 
determine the constraints for these approaches. 
Depending on user preferences, appliances such as the 
washing machine, the dishwasher and the water heater can 
be preloaded and activated to the determined optimal time 
interval by a flexibility algorithm. The same approach can 



be applied to the heating and cooling system in a building 
by temporarily shutting it off during high-tariff periods 
and reactivating it before occupants notice any changes. 
In the case of EV charging, flexibility is derived from the 
fact that an EV may be plugged in for several hours but 
typically requires less than an hour to fully charge.
The remainder of this paper is organized as follows:
Section 2 presents a detailed description of the CDT and 
BDT concepts and their integration in the proposed 
framework. Section 3 describes the methodology for data 
acquisition, processing, and analysis in the context of 
CDTs and BDTs. Section 4 presents the optimization 
framework, including the objective functions and the 
optimization algorithm used to determine the optimal 
appliance operation schedules. Section 5 provides the 
results of the proposed methodology, including a 
simulation study and a real-world test case from the 
H2020 TwinERGY project's Benetutti Smart Community 
pilot site. Finally, Section 6 offers conclusions and future 
directions for research.
The main contributions of this paper are summarized as 
follows: the development of a novel integrated CDT-BDT 
framework for assessing and optimizing the flexibility 
potential of electricity consumers in residential buildings; 
the demonstration of the effectiveness of the proposed 
methodology in reducing total energy costs and enhancing 
the utilization of local renewable energy sources; the 
introduction of a novel approach to building energy 
flexibility that aims to establish the foundation for 
innovative business models in the electricity market; and 
the advancement of digital twin applications in the 
domain of energy management and optimization, 
particularly in residential building settings.

Literature Review
This section provides an overview of the state-of-the-art 
in building energy flexibility and highlights the strong 
attention of digital twin technologies in the energy sector. 
To start with, CDT serves as a simplified virtual 
representation of a specific electricity consumer that 
facilitates the forecast and discovery behavior patterns on 
individual’s energy demand, assesses the consumer’s 
thermal comfort level in a real-time manner, and 
processes the consumer’s preferences regarding the 
importance of household appliances. BDT captures static 
information, dynamic characteristics and real-time sensed 
data regarding a specific building and its occupants to 
facilitate the building’s overall energy performance and 
efficiency.
Researchers have proposed various applications of digital 
twins in the energy sector, such as the appliance 
scheduling, the control of heating and cooling system, and 
the optimal EV charging (Rostampour et al., 2020; Vizia 
et al., 2021; Lezama et al., 2020). In addition, several 
studies have highlighted the potential of building energy 
flexibility to create new revenue streams and business 
models in the electricity market (Radenković et al., 2020).

A scan-to-BIM-based DT was implemented to improve 
energy efficiency in an existing building resulting in a 
14.1% reduction in energy consumption (Zhao et al., 
2021). Another DT was employed to manage heat supply 
in a smart building and minimize financial costs while 
maintaining occupants’ thermal comfort (Zakharov, 
2019). DTs were also utilized to forecast and optimize 
energy efficiency for historic buildings through AI 
models (Ni et al., 2021), to deliver personalized energy 
services to prosumers in a real community (Dembski et 
al., 2020), and to increase energy savings for the entire 
infrastructure life-cycle while providing data availability 
and connectivity for novel services (Bortolini et al., 2022; 
van Dinter et al., 2022).
Although human-oriented digital technologies hold 
promises for substantial progress in the energy sector, 
their realization remains in its early stages due to the 
intricate and subjective character of human behavior 
(Shengli et al., 2021). Therefore, a comprehensive 
approach that seamlessly integrates the individual-level 
consumer with building-level energy performance 
optimization remains an open research challenge. 

Methods and Materials
The present study introduces a novel approach to building 
energy flexibility by integrating the Consumer Digital 
Twin (CDT) and Building Digital Twin (BDT). The 
approach comprises three optimization problems, namely, 
the minimization of appliance costs, maximization of 
Renewable Energy Sources (RES) utilization, and 
optimization of aggregated demand. The following 
section commences with an introduction to the 
components of the CDT and BDT, offering a broad 
overview of their features and functionalities, followed by 
an exposition of the framework's strengths, which include 
seamless data integration of the CDT and BDT, a flexible 
optimization algorithm, and testing through simulated and 
real-world test cases.

Consumer Digital Twin
The CDT is a simplified, human-oriented virtual 
representation of a consumer within the electricity market. 
The virtual replica encompasses the most discriminative 
features, behaviors, and actions of the physical 
counterpart, and ensures seamless bidirectional data 
exchange between the physical and the virtual entity. To 
this end, CDT acquires and processes raw data in an 
automatic way from both physical and digital resources in 
the consumer's environment, such as smart devices and 
REST APIs, respectively. Furthermore, CDT obtains and 
analyzes consumer’s preferences, which reflect the 
individual’s energy flexibility priorities in the form of 
decision criteria.
The key functionalities performed by the CDT focuses on 
the development of consumer’s dynamic constructs to 
uncover behavioral patterns in energy demand, the 
determination of relative priorities, versatility in energy 
flexibility and acceptance in demand response actions, 



and the assessment of individual’s indoor thermal comfort 
level. In particular, the CDT decomposes historical time-
series data related to the energy consumption of specific 
residential electric appliances to isolate potential trends 
and seasonality patterns, and evaluates the autocorrelation 
strength against time lags, aiming to produce an accurate 
day-ahead forecast for the demand profile of each 
appliance. Additionally, CDT continuously determines 
the consumer’s thermal comfort level from a wrist-worn 
wearable device (Gialelis et al., 2022), which expresses 
the thermal satisfaction associated with indoor thermal 
environmental conditions to furtherly optimize the 
forecast of the demand profile for the HVAC load 
(Andriopoulos et al., 2023).
Another important feature of the CDT is the quantification 
of consumer’s preferences, which are represented as a set 
of decision criteria that express the individual’s 
prioritized demand response potential. Consumers are 
requested to define the relative importance for each pair 
of residential electric appliances in their daily routine 
using a 9-point balanced importance scale. In this way, the 
consumer is able to express their level of importance with 
more precision than a simple binary ranking system. 
Additionally, the consumer specifies the desired range of 
operating time window for each appliance and the 
acceptable demand response rate, selected from the 
discrete values of 0%, 25%, 50%, 75%, or 100%.
To hierarchically order the appliances based on the 
determined intensity of importance by each consumer, 
CDT assigns them weights through the multi-criteria 
decision analysis framework of Analytical Hierarchy 
Process (AHP). The weights reflect the subjective 
importance of an appliance as perceived by the specific 
consumer. The superior or inferior importance of a 
specific appliance over the compared one is defined in 
terms of verbal appreciation. Hence, equal, moderate, 
strong, very strong, and extreme importance are indicated 
by the corresponding scale’s values of 1, 3, 5, 7, and 9, 
respectively, whereas the intermediate values are omitted 
since they evince compromission.

Figure 1. The user interface of CDT from which consumers 
insert their preferences regarding the importance of each 

flexible load the desired operation time window.

A graphical interface is implemented in the CDT that 
serves as a simple and user-friendly end-point from which 
consumers can insert and update their preferences, as 

presented in Figure 1. By the time a user has defined the 
intensity of importance for each pair of residential loads, 
the desired operation time window and the demand 
response acceptance rate, the inputs are processed on the 
back-end of the CDT through AHP method to produce the 
priority vector of the obtained weights.
With this in mind, the proposed CDT promotes a human-
centric DR optimization strategy, which enables 
personalized, prioritized and non-intrusive control 
functions of energy assets, and quantifies the consumer’s 
flexibility. Also, it enhances day-ahead forecasts for the 
energy demand of specific residential appliances to 
address their stochastic nature.

Building Digital Twin
A Building Digital Twin (BDT) is the digital 
representation of a physical building that simulates 
energy-related processes, monitors real-time key energy 
indicators, and optimizes the building's energy 
performance. A cloud-native message broker is employed
to enable real-time data flows from the CDT in an 
efficient manner. Additionally, BDT retrieves static 
information from an external Building Information Model 
(BIM) and sensed data from smart devices installed in the 
building’s ecosystem. From the stakeholder’s perspective, 
the BDT allows the evaluation of the building’s energy 
performance and execution of data-driven decision 
making. Also, it schedules and optimizes the operation of 
electrical appliances based on the aggregated energy 
flexibility provided by consumers.
During the initialization phase of the BDT, the static 
building information regarding the architectural drawings, 
the envelope construction components, the equipment of 
the building and the geographical coordinates is manually 
inserted by the owners. In addition, BDT obtains and 
aggregates real-time data streams regarding energy usage, 
forecasted data for energy demand and energy production 
from owned RES facilities, and consumer’s preferences.
The schedules of residential electric appliance usage and 
the disaggregated demand profiles over a specific time 
period are produced by the building dynamic simulation 
software (IES-VE). The appliance modeling process 
within the IES-VE dynamic simulation software 
comprises six steps, as follows.

1. Building model generation; the users create the 
initial building model either using the IES 
SketchUp plugin or the VE software.

2. Determination and evaluation of the model’s 
input parameters; the key input parameters for 
the dynamic simulation model, such as the 
internal gains, information on HVAC systems, 
and schedules of operation, are manually 
inserted by the users and are furtherly validated 
by the software.

3. Development of internal gains profiles; The 
internal gain profiles are established either by 
following the descriptions in the documentation 



or by selecting the most relevant ones based on 
the consumption associated to each profile.

4. Allocation of a meter to each smart device; 
meters are VE objects assigned to smart electric 
appliances by users to associate end-uses to 
cumulative variables for estimation of energy 
vectors.

5. Simulation and analysis; A 10-minute simulation 
is performed for the entire period of analysis. 
Historical data of the electricity demand for each 
building is obtained by the CDT to tune the
simulation inputs and are compared with the 
metered data to evaluate the model’s 
performance. The acceptable discrepancy value 
for the difference between the simulation results 
and actual electrical consumption is a mean 
absolute percentage error (MAPE) of 5%.

6. Channel generation: For each residential electric 
appliance, a single channel is created to store and 
visualize information.

Another core element of the BDT is the IES Intelligent 
Virtual Network (iVN), which aggregates and simulates 
the performance of physical networks including heating 
and electrical physical infrastructure. The demand of the 
assets related to the aforementioned networks and the 
forecasted local weather conditions are inserted into the 
simulation model to evaluate the minimum local energy 
generation that satisfies this demand, either by fossil fuels 
or renewables.
Within the scope of this work, the iVN provides 
renewable generation forecasts based on the local weather 
conditions, as acquired by an external REST API service. 
Additionally, the iVN requires static information of the 
local renewables, such as the power capacity, the 
positioning, the angle of installation and the degradation 
factor.

Optimization Framework
An optimization framework is utilized to determine the 
optimal solution of a multi-objective optimization 
problem, which are provided as input into the flexibility 
model. To this end, the framework utilizes information 
obtained by both CDT and BDT, including the demand 
profiles for each smart appliance, the forecasted 
generation of renewables, and time-series of the day-
ahead electricity prices. As a result, the optimized day-
ahead aggregated demand profile is produced for each 
building.
In the scope of this work, the multi-objective optimization 
problem comprises three objective functions, as follows.

O1: The objective function for the minimization 
of the total electricity costs regarding residential 
electric appliances of a building.
O2: The objective function of the local 
renewable’s usage maximization.
O3: The objective function of the diversity’s 
factor maximization of the diversity factor.

O1: Minimization of the total electricity costs
The objective function Oc, described by the Equation 1, 
minimizes the operational cost of residential electric 
appliances for the day-ahead.

Equation 1. Minimization of total electricity costs

The number of electric appliances, the number of 
buildings, and the number of time intervals in a day 
considered by the optimization problem are denoted by 
the parameters of nα, nβ, and nτ, respectively. The 
determined relative priority of an electric appliance α by 
the AHP method is indicated by wα, the average electric 
power of a building’s β electric appliance α in time 
interval τ is represented by Pβ, τ, α, the electricity tariff in 
time interval τ is represented by Εpτ, and the peak power 
demand for a building β is represented by max (Pdβ).

O2: Maximization of the local renewables’ usage
The objective function OR, described by the Equation 2,
maximizes the usage of local renewable resources 
considering the difference in each time step between the 
renewable energy generation and the demand for each 
building.

Equation 2. Maximization of local renewables’ usage

Hence, it ensures that only the necessary demand is 
allocated to meet the generation, while the remaining load 
will be moved in times of the day to minimize cost and/or 
maximize the diversity factor.
The number of renewable energy resources is denoted by 
nσ, the average electric power of a building’s β electric 
appliance α in time interval τ is represented by Pβ, τ, α, 
the peak power demand for a building β is represented by 
max(Pdβ), the average generated power from the 
renewable system σ in time interval τ is represented by 
Gσ,τ and the peak power generated by the system during 
the day is represented by max(Gdσ).  

O3: Maximization of the diversity factor
The objective function ODf, described by the Equation 3, 
maximizes the diversity factor for the buildings, which 
indicates the deviation in daily maximum energy demand 
among buildings. From a mathematical perspective, the 
diversity factor is defined as the ratio between the sum of 
the maximum daily energy demand of each building and 
the maximum daily aggregated energy demand for the 
group of buildings. The diversity factor quantifies the 
variability of power demands among different buildings, 
where a higher diversity factor indicates a more even 



distribution of power demands, while a lower diversity 
factor suggests that some buildings may have overlapping 
power demands. Maximizing the diversity factor can help 
to mitigate sudden spikes in the aggregated power 
demand, which is crucial for maintaining a stable and 
reliable power supply.
Equation 3 defines the diversity factor as the ratio between 
the sum of the maximum daily power demand of each 
building and the maximum daily aggregated power 
demand for the group of buildings. Specifically, the 
numerator represents the peak power demand for the daily 
profile of building β, with β being the building index, and 
Pdβ being the power demand of building β. The 
denominator represents the peak aggregate power demand 
for the group of buildings, where τ represents the time 
interval index and α represents the appliance index. 

Equation 3. Minimization of diversity factor

During the optimization process, the decision vector in 
each iteration represents the list of starting point in 
minutes over the day for each smart appliance. Once the 
starting point has been defined, the reconstructed demand 
profile will be allocated to that time interval.

Results
The evaluation of the performance for the proposed CDT-
BDT integration is divided into two phases; a testing 
phase, in which synthetic data for residential electric 
appliances demand and domestic rooftop generation are 
utilized, followed by a validation phase using real-world 
data from five buildings in the H2020 TwinERGY 
project's Benetutti Smart Community pilot site.

Simulation
A simulation of the flexibility algorithm is performed with 
synthetic daily data for 39 semi-detached houses equipped 
with a 4kWp solar PV array and their appliance demand 
profiles generated by StRoBe (Baetens et al., 2016), 
which models the occupant’s stochastic behavior and 
interaction with appliances in a building. Then, the profile 
was optimized against energy costs, renewable generation 
usage and diversity factor, with the simulation repeated 
for five different DR acceptance rates, namely 0%, 25%, 
50%, 75% and 100%. In Figure 2, the results of the 
simulation are presented. As anticipated, higher levels of 
demand response acceptance result in better performance 
of the demand profile. This can be observed by comparing 
the green and red lines that indicate 0% and 100% demand 
response acceptance, respectively. The peak of energy 
consumption for the non-flexible profile, represented by 
the green line, occurs during the evening, when generation 
from renewables is low and the energy tariff is high. On 
the other hand, the energy consumption of the most 
flexible profile, represented by the red line, peaks when 
the generation from renewables maximizes, resulting in a 

more consistent energy consumption during the day and 
lower time-of-use cost.

Figure 2: Simulation results

Table 1 confirms that costs decrease as the demand 
response acceptance rate increases, except in the case of 
25% acceptance rate, which shows a slight increase. This 
deviation is likely due to the optimization of renewable 
energy use and diversity factor by the algorithm, making 
it still a more optimal scenario overall.

Table 1: Total energy costs - Simulation results of flexibility 
algorithm

DR
Acceptance

Total Energy 
Costs

0% €127.36

25% €127.65

50% €120.93

75% €115.86

100% €110.48

Real-world test case
To validate the flexibility algorithm, a real-word test case 
including five residential buildings was conducted within 
the Benetutti Smart Community. The owners of each 
building predetermined the required static information 
and external weather forecasted data of air temperature, 
solar radiation, plane of irradiance and wind speed for the 
city of Benetutti retrieved from an external REST API to 
predict the generation from owned RES facilities. In 
addition, information on power capacity, angle of 
installation and degradation factor of each PV considered 
by the forecast model to furtherly optimize the prediction.

Figure 3: Real-world test case results



As for the energy demand of each household electric 
appliance, CDT created a demand profile due to the 
historical consumption patterns of each appliance. 
Moreover, CDT provided to BDT the user’s preferences 
regarding the relative importance for each appliance, the 
desired operational time windows and the DR acceptable 
ratio to produce a time-series output for each load.
The results of the flexibility algorithms in both cases 
proved to be quite promising. The total energy costs 
reduce as the demand response acceptance rate increases 
with the exception of the 25% demand response 
acceptance rate case which leads to a slight increase. This 
can be explained by the optimization of renewable energy 
use and diversity factor by the algorithm, making it still a 
more optimal scenario on balance.

Table 2: Total energy costs – Real world test case results of 
flexibility algorithm

DR
Acceptance

Total Energy 
Costs

0% €8.79

25% €8.69

50% €8.75

75% €5.15

100% €4.04

Conclusions
In this paper, the proposed integration of CDT and BDT 
is demonstrated in a real-world test case scenario to 
evaluate the consumer's flexibility potential and reduce 
the total costs for each building. The testing and validation 
of the flexibility algorithm were successful, with results 
meeting expectations in simulated test cases and verified 
at the Benetutti pilot site. The next steps include 
connecting the algorithm to Bristol’s, Hagedorn’s, and 
Athens’ pilot sites once the modeling is finished.
The future work in the field of distributed energy 
resources (DER) is expected to involve a comprehensive 
evaluation of simulation results for shared assets, such as 
EV charging stations, PV systems, small wind turbines, 
and batteries. This evaluation will include analysis of 
associated analytics and operational parameters such as 
voltage, current flow, and frequency of the electricity 
grid. Another topic for further research is to enable near 
real-time flexibility services and develop relevant 
business models. A recommendation-based solution for 
modifying end-user performance or behavior is being 
considered, which will facilitate the implementation of the 
aforementioned services. Furthermore, evaluating    our 
thermal comfort framework by implementing a 
quantitative analysis of its impact on the demand response 
output will provide valuable insights into the effect of 
demand response adoption on occupant comfort and 
satisfaction.
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