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Abstract

This paper presents a novel approach for assessing and
optimizing the flexibility potential of electricity
consumers in residential buildings using a Consumer
Digital Twin (CDT) and a Building Digital Twin (BDT).
By leveraging smart devices, cloud-based data
processing, and advanced optimization techniques, the
proposed methodology integrates CDT and BDT to
accurately forecast consumer’s energy demand and
thermal satisfaction, quantify the consumer’s preferences
in terms of importance level for specific flexible
household appliances, and schedule their optimal
operation. The key findings demonstrate the effectiveness
of the integrated CDT-BDT framework towards reducing
the total energy costs for electricity consumers and
enhancing the utilization of local renewable energy
sources. The principal conclusions highlight the potential
of the proposed method for improving grid stability by
reducing the load peaks and shift the load operation off-
peak periods. The research contributes to the
advancement of digital twin applications in the domain of
energy management and optimization, particularly in
residential building settings, and the establishment of
innovative business models in the electricity market.

Introduction

At present, the growing adoption of renewable energy
sources (RES) and the rising demand for electricity in
residential buildings underscore the need for effective
energy management and optimization strategies. Inherent
variability and intermittency of RES present challenges,
such as grid instability and inefficiencies, necessitating
approaches that harness consumer’s flexibility potential
and optimize energy consumption patterns for better RES
integration. Digital twin technology has emerged as a
promising solution, offering real-time monitoring,
analysis, and control of energy-related aspects through
digital replicas of physical assets and processes. However,
applying digital twins effectively in energy management
demands a holistic approach that harmoniously combines
individual-level consumer preferences and behaviors with
building-level energy performance optimization.
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The International Renewable Energy Agency (IRENA)
projects that renewable resources will contribute to 90%
of the global electricity generation by 2050 (IRENA,
2021). Concurrently, electricity demand is anticipated to
rise by 30% by 2040, primarily driven by urbanization,
population growth, and the increasing number of
appliances exerting pressure on existing electricity
infrastructure (IEA, 2022). In Europe, buildings are
responsible for 40% of energy consumption and 36% of
CO2 emissions, making the promotion of energy-efficient
buildings essential for a sustainable and carbon-neutral
future (EU Law, 2019). The rising peak demand and
integration of renewable energy resources present
challenges to grid operators in balancing energy supply
and demand (Gan et al.,, 2020). Furthermore, the
stochastic nature of energy generation and demand
highlights the need for flexibility in ensuring constant,
reliable, and cost-effective energy supply, consequently
reducing the expenses associated with remedial actions
(Kazempour et al., 2018).

Flexibility refers to the ability to maintain continuous
operation despite significant fluctuations in energy supply
or demand (El Geneidy et al., 2020). Demand response, a
critical form of flexibility in electricity markets, enables
consumers to adjust their energy demand in response to
incentives and pricing signals. This reduction in peak
demand and shift in usage to off-peak periods promotes
efficient use of renewable energy and enhances grid
stability. Thus, residential flexibility, in this context, can
be understood as the potential for consumer demand
response.

At the building level, flexibility is primarily provided in
three areas: appliance scheduling, heating and cooling
control, and electric vehicle (EV) charging. Recent
research has explored the use of appliances for flexibility
(Rostampour et al., 2020; Vizia et al., 2021; Lezama et al.,
2020), with some studies focusing specifically on building
heating and cooling systems as a source of ancillary
services for the grid. However, user preferences largely
determine the constraints for these approaches.
Depending on user preferences, appliances such as the
washing machine, the dishwasher and the water heater can
be preloaded and activated to the determined optimal time
interval by a flexibility algorithm. The same approach can



be applied to the heating and cooling system in a building
by temporarily shutting it off during high-tariff periods
and reactivating it before occupants notice any changes.
In the case of EV charging, flexibility is derived from the
fact that an EV may be plugged in for several hours but
typically requires less than an hour to fully charge.

The remainder of this paper is organized as follows:
Section 2 presents a detailed description of the CDT and
BDT concepts and their integration in the proposed
framework. Section 3 describes the methodology for data
acquisition, processing, and analysis in the context of
CDTs and BDTs. Section 4 presents the optimization
framework, including the objective functions and the
optimization algorithm used to determine the optimal
appliance operation schedules. Section 5 provides the
results of the proposed methodology, including a
simulation study and a real-world test case from the
H2020 TwinERGY project's Benetutti Smart Community
pilot site. Finally, Section 6 offers conclusions and future
directions for research.

The main contributions of this paper are summarized as
follows: the development of a novel integrated CDT-BDT
framework for assessing and optimizing the flexibility
potential of electricity consumers in residential buildings;
the demonstration of the effectiveness of the proposed
methodology in reducing total energy costs and enhancing
the utilization of local renewable energy sources; the
introduction of a novel approach to building energy
flexibility that aims to establish the foundation for
innovative business models in the electricity market; and
the advancement of digital twin applications in the
domain of energy management and optimization,
particularly in residential building settings.

Literature Review

This section provides an overview of the state-of-the-art
in building energy flexibility and highlights the strong
attention of digital twin technologies in the energy sector.
To start with, CDT serves as a simplified virtual
representation of a specific electricity consumer that
facilitates the forecast and discovery behavior patterns on
individual’s energy demand, assesses the consumer’s
thermal comfort level in a real-time manner, and
processes the consumer’s preferences regarding the
importance of household appliances. BDT captures static
information, dynamic characteristics and real-time sensed
data regarding a specific building and its occupants to
facilitate the building’s overall energy performance and
efficiency.

Researchers have proposed various applications of digital
twins in the energy sector, such as the appliance
scheduling, the control of heating and cooling system, and
the optimal EV charging (Rostampour et al., 2020; Vizia
et al., 2021; Lezama et al., 2020). In addition, several
studies have highlighted the potential of building energy
flexibility to create new revenue streams and business
models in the electricity market (Radenkovi¢ et al., 2020).
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A scan-to-BIM-based DT was implemented to improve
energy efficiency in an existing building resulting in a
14.1% reduction in energy consumption (Zhao et al.,
2021). Another DT was employed to manage heat supply
in a smart building and minimize financial costs while
maintaining occupants’ thermal comfort (Zakharov,
2019). DTs were also utilized to forecast and optimize
energy efficiency for historic buildings through Al
models (Ni et al., 2021), to deliver personalized energy
services to prosumers in a real community (Dembski et
al., 2020), and to increase energy savings for the entire
infrastructure life-cycle while providing data availability
and connectivity for novel services (Bortolini et al., 2022;
van Dinter et al., 2022).

Although human-oriented digital technologies hold
promises for substantial progress in the energy sector,
their realization remains in its early stages due to the
intricate and subjective character of human behavior
(Shengli et al., 2021). Therefore, a comprehensive
approach that seamlessly integrates the individual-level
consumer with building-level energy performance
optimization remains an open research challenge.

Methods and Materials

The present study introduces a novel approach to building
energy flexibility by integrating the Consumer Digital
Twin (CDT) and Building Digital Twin (BDT). The
approach comprises three optimization problems, namely,
the minimization of appliance costs, maximization of
Renewable Energy Sources (RES) utilization, and
optimization of aggregated demand. The following
section commences with an introduction to the
components of the CDT and BDT, offering a broad
overview of their features and functionalities, followed by
an exposition of the framework's strengths, which include
seamless data integration of the CDT and BDT, a flexible
optimization algorithm, and testing through simulated and
real-world test cases.

Consumer Digital Twin

The CDT 1is a simplified, human-oriented virtual
representation of a consumer within the electricity market.
The virtual replica encompasses the most discriminative
features, behaviors, and actions of the physical
counterpart, and ensures seamless bidirectional data
exchange between the physical and the virtual entity. To
this end, CDT acquires and processes raw data in an
automatic way from both physical and digital resources in
the consumer's environment, such as smart devices and
REST APIs, respectively. Furthermore, CDT obtains and
analyzes consumer’s preferences, which reflect the
individual’s energy flexibility priorities in the form of
decision criteria.

The key functionalities performed by the CDT focuses on
the development of consumer’s dynamic constructs to
uncover behavioral patterns in energy demand, the
determination of relative priorities, versatility in energy
flexibility and acceptance in demand response actions,



and the assessment of individual’s indoor thermal comfort
level. In particular, the CDT decomposes historical time-
series data related to the energy consumption of specific
residential electric appliances to isolate potential trends
and seasonality patterns, and evaluates the autocorrelation
strength against time lags, aiming to produce an accurate
day-ahead forecast for the demand profile of each
appliance. Additionally, CDT continuously determines
the consumer’s thermal comfort level from a wrist-worn
wearable device (Gialelis et al., 2022), which expresses
the thermal satisfaction associated with indoor thermal
environmental conditions to furtherly optimize the
forecast of the demand profile for the HVAC load
(Andriopoulos et al., 2023).

Another important feature of the CDT is the quantification
of consumer’s preferences, which are represented as a set
of decision criteria that express the individual’s
prioritized demand response potential. Consumers are
requested to define the relative importance for each pair
of residential electric appliances in their daily routine
using a 9-point balanced importance scale. In this way, the
consumer is able to express their level of importance with
more precision than a simple binary ranking system.
Additionally, the consumer specifies the desired range of
operating time window for each appliance and the
acceptable demand response rate, selected from the
discrete values of 0%, 25%, 50%, 75%, or 100%.

To hierarchically order the appliances based on the
determined intensity of importance by each consumer,
CDT assigns them weights through the multi-criteria
decision analysis framework of Analytical Hierarchy
Process (AHP). The weights reflect the subjective
importance of an appliance as perceived by the specific
consumer. The superior or inferior importance of a
specific appliance over the compared one is defined in
terms of verbal appreciation. Hence, equal, moderate,
strong, very strong, and extreme importance are indicated
by the corresponding scale’s values of 1, 3, 5, 7, and 9,
respectively, whereas the intermediate values are omitted
since they evince compromission.

WASHING MACHINE Importance Scole

DISH WASHER mprtance Scole

Figure 1. The user interface of CDT from which consumers
insert their preferences regarding the importance of each
flexible load the desired operation time window.

A graphical interface is implemented in the CDT that
serves as a simple and user-friendly end-point from which
consumers can insert and update their preferences, as
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presented in Figure 1. By the time a user has defined the
intensity of importance for each pair of residential loads,
the desired operation time window and the demand
response acceptance rate, the inputs are processed on the
back-end of the CDT through AHP method to produce the
priority vector of the obtained weights.

With this in mind, the proposed CDT promotes a human-
centric DR optimization strategy, which enables
personalized, prioritized and non-intrusive control
functions of energy assets, and quantifies the consumer’s
flexibility. Also, it enhances day-ahead forecasts for the
energy demand of specific residential appliances to
address their stochastic nature.

Building Digital Twin

A Building Digital Twin (BDT) is the digital
representation of a physical building that simulates
energy-related processes, monitors real-time key energy
indicators, and optimizes the building's energy
performance. A cloud-native message broker is employed
to enable real-time data flows from the CDT in an
efficient manner. Additionally, BDT retrieves static
information from an external Building Information Model
(BIM) and sensed data from smart devices installed in the
building’s ecosystem. From the stakeholder’s perspective,
the BDT allows the evaluation of the building’s energy
performance and execution of data-driven decision
making. Also, it schedules and optimizes the operation of
electrical appliances based on the aggregated energy
flexibility provided by consumers.

During the initialization phase of the BDT, the static
building information regarding the architectural drawings,
the envelope construction components, the equipment of
the building and the geographical coordinates is manually
inserted by the owners. In addition, BDT obtains and
aggregates real-time data streams regarding energy usage,
forecasted data for energy demand and energy production
from owned RES facilities, and consumer’s preferences.

The schedules of residential electric appliance usage and
the disaggregated demand profiles over a specific time
period are produced by the building dynamic simulation
software (IES-VE). The appliance modeling process
within the IES-VE dynamic simulation software
comprises six steps, as follows.

1. Building model generation; the users create the
initial building model either using the IES
SketchUp plugin or the VE software.

2. Determination and evaluation of the model’s
input parameters; the key input parameters for
the dynamic simulation model, such as the
internal gains, information on HVAC systems,
and schedules of operation, are manually
inserted by the users and are furtherly validated
by the software.

3. Development of internal gains profiles; The
internal gain profiles are established either by
following the descriptions in the documentation



or by selecting the most relevant ones based on
the consumption associated to each profile.

4. Allocation of a meter to each smart device;
meters are VE objects assigned to smart electric
appliances by users to associate end-uses to
cumulative variables for estimation of energy
vectors.

5. Simulation and analysis; A 10-minute simulation
is performed for the entire period of analysis.
Historical data of the electricity demand for each
building is obtained by the CDT to tune the
simulation inputs and are compared with the
metered data to evaluate the model’s
performance. The acceptable discrepancy value
for the difference between the simulation results
and actual electrical consumption is a mean
absolute percentage error (MAPE) of 5%.

6. Channel generation: For each residential electric
appliance, a single channel is created to store and
visualize information.

Another core element of the BDT is the IES Intelligent
Virtual Network (iVN), which aggregates and simulates
the performance of physical networks including heating
and electrical physical infrastructure. The demand of the
assets related to the aforementioned networks and the
forecasted local weather conditions are inserted into the
simulation model to evaluate the minimum local energy
generation that satisfies this demand, either by fossil fuels
or renewables.

Within the scope of this work, the iVN provides
renewable generation forecasts based on the local weather
conditions, as acquired by an external REST API service.
Additionally, the iVN requires static information of the
local renewables, such as the power capacity, the
positioning, the angle of installation and the degradation
factor.

Optimization Framework

An optimization framework is utilized to determine the
optimal solution of a multi-objective optimization
problem, which are provided as input into the flexibility
model. To this end, the framework utilizes information
obtained by both CDT and BDT, including the demand
profiles for each smart appliance, the forecasted
generation of renewables, and time-series of the day-
ahead electricity prices. As a result, the optimized day-
ahead aggregated demand profile is produced for each
building.

In the scope of this work, the multi-objective optimization
problem comprises three objective functions, as follows.

e Ol: The objective function for the minimization
of the total electricity costs regarding residential
electric appliances of a building.

e 02: The objective function of the
renewable’s usage maximization.

e 0O3: The objective function of the diversity’s
factor maximization of the diversity factor.

local
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O1: Minimization of the total electricity costs

The objective function Oc, described by the Equation 1,
minimizes the operational cost of residential electric
appliances for the day-ahead.

Ng
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Equation 1. Minimization of total electricity costs

The number of electric appliances, the number of
buildings, and the number of time intervals in a day
considered by the optimization problem are denoted by
the parameters of na, nf, and nt, respectively. The
determined relative priority of an electric appliance o by
the AHP method is indicated by wa, the average electric
power of a building’s B electric appliance o in time
interval 1 is represented by P, 1, a, the electricity tariff in
time interval 7 is represented by Ept, and the peak power
demand for a building f is represented by max (Pdp).

02: Maximization of the local renewables’ usage

The objective function OR, described by the Equation 2,
maximizes the usage of local renewable resources
considering the difference in each time step between the
renewable energy generation and the demand for each
building.

Na
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Equation 2. Maximization of local renewables’ usage

Hence, it ensures that only the necessary demand is
allocated to meet the generation, while the remaining load
will be moved in times of the day to minimize cost and/or
maximize the diversity factor.

The number of renewable energy resources is denoted by
no, the average electric power of a building’s B electric
appliance o in time interval T is represented by P, 1, a,
the peak power demand for a building f is represented by
max(Pdp), the average generated power from the
renewable system o in time interval t is represented by
Go,t and the peak power generated by the system o during
the day is represented by max(Gdo).

03: Maximization of the diversity factor

The objective function ODf, described by the Equation 3,
maximizes the diversity factor for the buildings, which
indicates the deviation in daily maximum energy demand
among buildings. From a mathematical perspective, the
diversity factor is defined as the ratio between the sum of
the maximum daily energy demand of each building and
the maximum daily aggregated energy demand for the
group of buildings. The diversity factor quantifies the
variability of power demands among different buildings,
where a higher diversity factor indicates a more even



distribution of power demands, while a lower diversity
factor suggests that some buildings may have overlapping
power demands. Maximizing the diversity factor can help
to mitigate sudden spikes in the aggregated power
demand, which is crucial for maintaining a stable and
reliable power supply.

Equation 3 defines the diversity factor as the ratio between
the sum of the maximum daily power demand of each
building and the maximum daily aggregated power
demand for the group of buildings. Specifically, the
numerator represents the peak power demand for the daily
profile of building 8, with B being the building index, and
PdB being the power demand of building B. The
denominator represents the peak aggregate power demand
for the group of buildings, where t represents the time
interval index and a represents the appliance index.

ng
z max(Pdg)
B=1

ng ng Ng
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Equation 3. Minimization of diversity factor

ODf =

During the optimization process, the decision vector in
each iteration represents the list of starting point in
minutes over the day for each smart appliance. Once the
starting point has been defined, the reconstructed demand
profile will be allocated to that time interval.

Results

The evaluation of the performance for the proposed CDT-
BDT integration is divided into two phases; a testing
phase, in which synthetic data for residential electric
appliances demand and domestic rooftop generation are
utilized, followed by a validation phase using real-world
data from five buildings in the H2020 TwinERGY
project's Benetutti Smart Community pilot site.

Simulation

A simulation of the flexibility algorithm is performed with
synthetic daily data for 39 semi-detached houses equipped
with a 4kWp solar PV array and their appliance demand
profiles generated by StRoBe (Baetens et al., 2016),
which models the occupant’s stochastic behavior and
interaction with appliances in a building. Then, the profile
was optimized against energy costs, renewable generation
usage and diversity factor, with the simulation repeated
for five different DR acceptance rates, namely 0%, 25%,
50%, 75% and 100%. In Figure 2, the results of the
simulation are presented. As anticipated, higher levels of
demand response acceptance result in better performance
of the demand profile. This can be observed by comparing
the green and red lines that indicate 0% and 100% demand
response acceptance, respectively. The peak of energy
consumption for the non-flexible profile, represented by
the green line, occurs during the evening, when generation
from renewables is low and the energy tariff is high. On
the other hand, the energy consumption of the most
flexible profile, represented by the red line, peaks when
the generation from renewables maximizes, resulting in a
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more consistent energy consumption during the day and
lower time-of-use cost.

w Euro

03AM

06AM 0oAM 12oM 03PM 06PM

Figure 2: Simulation results

Table 1 confirms that costs decrease as the demand
response acceptance rate increases, except in the case of
25% acceptance rate, which shows a slight increase. This
deviation is likely due to the optimization of renewable
energy use and diversity factor by the algorithm, making
it still a more optimal scenario overall.

Table 1: Total energy costs - Simulation results of flexibility

algorithm
DR Total Energy
Acceptance Costs

0% €127.36
25% €127.65
50% €120.93
75% €115.86
100% €110.48

Real-world test case

To validate the flexibility algorithm, a real-word test case
including five residential buildings was conducted within
the Benetutti Smart Community. The owners of each
building predetermined the required static information
and external weather forecasted data of air temperature,
solar radiation, plane of irradiance and wind speed for the
city of Benetutti retrieved from an external REST API to
predict the generation from owned RES facilities. In
addition, information on power -capacity, angle of
installation and degradation factor of each PV considered
by the forecast model to furtherly optimize the prediction.

w

# sagrequied oo
*a

03AM

06AM 09AM 12oM 03pM 06PM

Figure 3: Real-world test case results
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As for the energy demand of each household electric
appliance, CDT created a demand profile due to the
historical consumption patterns of each appliance.
Moreover, CDT provided to BDT the user’s preferences
regarding the relative importance for each appliance, the
desired operational time windows and the DR acceptable
ratio to produce a time-series output for each load.

The results of the flexibility algorithms in both cases
proved to be quite promising. The total energy costs
reduce as the demand response acceptance rate increases
with the exception of the 25% demand response
acceptance rate case which leads to a slight increase. This
can be explained by the optimization of renewable energy
use and diversity factor by the algorithm, making it still a
more optimal scenario on balance.
Table 2: Total energy costs — Real world test case results of

[lexibility algorithm
DR Total Energy
Acceptance Costs
0% €8.79
25% €8.69
50% €8.75
75% €5.15
100% €4.04
Conclusions

In this paper, the proposed integration of CDT and BDT
is demonstrated in a real-world test case scenario to
evaluate the consumer's flexibility potential and reduce
the total costs for each building. The testing and validation
of the flexibility algorithm were successful, with results
meeting expectations in simulated test cases and verified
at the Benetutti pilot site. The next steps include
connecting the algorithm to Bristol’s, Hagedorn’s, and
Athens’ pilot sites once the modeling is finished.

The future work in the field of distributed energy
resources (DER) is expected to involve a comprehensive
evaluation of simulation results for shared assets, such as
EV charging stations, PV systems, small wind turbines,
and batteries. This evaluation will include analysis of
associated analytics and operational parameters such as
voltage, current flow, and frequency of the electricity
grid. Another topic for further research is to enable near
real-time flexibility services and develop relevant
business models. A recommendation-based solution for
modifying end-user performance or behavior is being
considered, which will facilitate the implementation of the
aforementioned services. Furthermore, evaluating  our
thermal comfort framework by implementing a
quantitative analysis of its impact on the demand response
output will provide valuable insights into the effect of
demand response adoption on occupant comfort and
satisfaction.
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