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Abstract

The data and information of objects in building
information modelling (BIM) from different software are
delivered with incomplete data and misclassified objects.
This study focuses on classifying mechanical, electrical,
and plumbing (MEP) objects based on interdomain
topological relationships and geometry conditions
through semantic web technologies and semantic
enrichment with a rule-based inferencing technique. Four
rule sets were developed and run over 32 knowledge
graphs of building models with at least 90% accuracy.
False positives and negatives arose from non-discrete
geometry and topology features of the objects. To address
this issue, future work will integrate the proposed method
with image recognition.

Introduction

In the Architecture, Engineering, and Construction (AEC)
industry, building information modelling (BIM) serves as
an object-oriented model enriching objects’ data and
information with physical and functional properties, for
visualizing three-dimensional (3D) and analyzing
building analytical models. BIM allows the creation of
complicated building shells and physical objects with
encapsulate rich data and information during the design
process. In addition, engineering integration of a single
system or multiple systems based on shared data has
become easier with the introduction of BIM workflows
that share information between existing simulation and
analysis tools (Howard and Bjork, 2008; Sacks et al.,
2018).

The Industry Foundation Classes (IFC) provide a
common data schema and structured data model for BIM
(International Organization for Standardization, 2018).
Furthermore, Information Delivery Manuals (IDM)
describe processes with the required information for BIM
through IFC as an integrated reference. Model View
Definitions (MVD) specify portions of the IFC Model
Specification that are needed for information exchanges
subject to different IDMs (See et al., 2012).

Although IDMs along with MVDs specify each
information exchange scenario relevant to the IFC model
(BuildingSMART, 2008), well-functioning information
exchange among software and all stakeholders is difficult
(Pauwels et al., 2014, 2017). BIM applications have
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native models (vendor-specific) with  different
aggregating, identifying, and parametrizing objects.
When extracting data from the BIM model, oftentimes
inaccurate, incomplete, or false information is generated
(Bloch and Sacks, 2018).

Additionally, the IFC, as an open BIM standard, has
insufficient definitions in its objects' libraries and
associated standards, which leads to essential elements for
objects being left out (Howard and Bjork, 2008). For
instance, IFC (even in the latest version IFC4) does not
support the characterization of entire heating, ventilation,
and air conditioning (HVAC) systems' elements (El1 Asmi
et al., 2015). Therefore, as a distinctive feature of BIM,
object classification commonly results in incorrect object
classification, which prevents the full use of BIM models
(Ma et al., 2018).

To solve the issues of data exchange and missing
semantics in the BIM models, in terms of mapping
functional properties or concepts in IFC models, semantic
web technologies and semantic enrichment have been
suggested. The semantic web consists of a set of
technologies and standards to store, share, and reuse data
on the Web (Sadeghineko et al., 2022). It allows setting
logical assertions on classes, instances, and properties and
relationships among not only instances but also instances’
properties using axioms. Facts are deduced through a
knowledge-based ontology in the semantic net, utilizing
formalized sources of reasoning and inquiry. Thus, a
deductive approach is achieved by querying and verifying
the knowledge base and inserting new knowledge. Indeed,
the semantic web provides the use of multiple and
different  abstraction levels and supports the
interoperability of concepts (Simeone et al., 2019).

By following the advances in semantic nets, MVD has
been developed for identification and specification of
information requirements. Since the data requirements are
dynamic and use-case specific, buildingSMART has
developed Information Delivery Specifications (IDS) to
determine information requirements and compliance with
IFC (van Berlo et al., 2021). The main purpose is to author
and validate nongeometrical information requirements in
a simple but comprehensive way (Tomczak et al., 2022).

The IDS standard links objects' classes and properties
through the building Smart Data Dictionary (bSDD) - an
ontology-based-data dictionary- that includes IFC
elements and the standard classification systems for



construction work (e.g. UniClass and MasterFormat) (van
Berlo et al., 2021; Son et al., 2022). However, in the
current state of bSDD, it can not assure semantic
correctness and automated semantic mapping (Son et al.,
2022).

To summarize, the issues of data exchange and missing
semantics in BIM models remain, which often results in
incorrect object classification in extracted building
models. This study aims to classify MEP domain objects
based on interdomain topological relationships and exact
geometry conditions through semantic web technologies
and semantic enrichment with a rule-based inferencing
technique.

Semantic Web Technologies

In the semantic web, semantics are characterized via web
ontology language (OWL) and serialized to resource
description framework (RDF). SPARQL is a query
language over RDF triple data structure (Domingue et al.,
2011). IfcOWL represents the IFC standard using OWL
(Pauwels and Terkaj, 2016). Subsequently, the [IFCtoRDF
converter was proposed to enable sufficiently usable
EXPRESS elements by OWL ontology by mapping each
element onto its nearest equivalent in OWL (Pauwels and
van Deursen, 2012). As a comprehensive monolithic
ontology, IfcOWL has wusability and performance
limitations for querying and reasoning in industrial
practice (Terkaj and Pauwels, 2017). The available
ontologies that serve to present the building information
in a semantic graph are integrated with the help of Linked
Data technologies. Linked Building Data (LBD)
conserves the building information in simple, extensible,
and modular ontologies and links them. The modular
ontologies include Building Topology Ontology (BOT) as
a core; ontology for managing geometry (OMG);
ontology for product (PRODUCT); ontology for building
elements (BEO); ontology for distribution elements
(MEP); ontology for properties (PROPS); ontology for
managing properties (OPM) (Pauwels et al.,, 2022,
Petrova et al.,, 2019). The IFCtoLBD converter was
generated for the conversion of BIM models to LBD
graphs (Oraskari et al., 2021). The current graph
converters (IFCtoRDF and IFCtoLBD), as technical
enablers of the semantic web in the AEC industry, have
limitations due to either poor data/information quality in
the original BIM models or the mapping quality of the
converters. Even though these converters retain a broad
range of building object information and convert them
into IFC, BEO, and BOT-based entity classes, some
objects' information remains undefined (e.g., building
element proxy class) and/or lost (e.g., object geometry).

Building object classification through semantic
enrichment

By semantic enrichment, implicit and missing
information in a data model is inferred and supplemented
into the data model for model enrichment, which makes it
easy to use by any receiving application (Bloch and Sacks,
2018). The supplemented information (e.g., topology,
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spatial, geometry, and relationships between the model's
objects) is deduced and appended to the data model by a
computer program that utilizes artificial intelligence (Al),
mainly rule-based inferencing and machine learning (ML)
techniques (Sacks et al., 2017). Koo et al. examined the
semantic integrity among mapped building elements from
six architectural BIM models and IFC classes by
classification of building elements based on their
geometry and relational behaviors (Koo et al., 2019). Wu
et al. integrated the invariant features of the building
objects (i.e., object geometry, location, and metadata) into
ML for the BIM object classification in five categories
(beam, column, footing, slab, and wall) (Wu et al., 2022).
Xue et al. conducted a literature survey on the semantic
enrichment of the BIM model over ten years. They
showed that there are 22 enriched BIM cases in the aspect
of geometric semantics, non-geometric semantics, and
both over ten years. Additionally, regarding semantic
enrichment of the physical entities and their subtypes,
there are over 20 object types. These object types are
categorized under (i) indoor facility (e.g., furniture and
room space); (ii) building interior entities, and (iv)
exterior entities (Xue et al., 2021). As a result, these
objects belong to mainly the architectural domain and
followingly the structural domain. Thereby, this shows
that there is a lack of semantic enrichment of BIM models
in the aspect of the building object classification in the
mechanical, electrical, and plumbing (MEP) domain.

To sum up, the identified problem is that the data quality
of building objects in BIM models is not reliable and that
data exchange often leads to incomplete data, incorrect
object labels, and misclassified objects. Based on the
identified problem, this study focuses on classifying
building objects in the MEP domain by applying
knowledge-graph-driven semantic web technology and
rule-based inferencing for semantic enrichment. The rule
sets are founded on interdomain (architectural and MEP
domains) object relationships based on topology and
objects’ exact geometry.

Research Method and Tools

Step 1: Dataset preparation

A dataset of 32 residential BIM models with architectural
and MEP building objects was obtained and used for
generating the knowledge graphs. Figure 1 shows the 32
residential BIM models.

Export the BIM model to IFC. The 32 BIM models for
the apartments were separately exported to architectural
and MEP IFC data models in the IFC4 design transfer
view using Revit.

Convert IFC data models to LBD graphs. I[IFCtoLBD
converter was used to transform the IFC data models into
LBD graphs, which allows flattened relationships in the
graph. In addition, the IFC GUID for each entity was
automatically converted to a Global Identifier (GloballD),



Figure 1: BIM Model for Dataset in Step 1 (left); 32 Different Apartment Models (right)

which is a full Universal Unique Identifier (UUID),
through the IFCtoLBD converter.

Generate exact geometry. The disadvantage of the LBD
graph is the loss of the geometry relationships. Linked
Data-based Common Data Environment (CDE) was
suggested combining (i) the core graph layer dataset
storing semantics and objects' relationships in the BIM
model and (ii) the extension layer dataset storing BIM-
related resources in any kind of data format (Ouyang et
al., 2022). Following this approach, each building object
in an IFC file is extracted in its solid geometry, called
exact geometry using IfcOpenShell (IfcOpenShell, 2022),
and Trimesh library in the Python environment (Trimesh,
2022). The exact geometry files were saved with the
corresponding building object’s globally unique ID in
PLY format, containing 3D object data in a collection of
polygons (McHenry and Bajcsy, 2008), and stored in an
external dataset. Association of the exact geometry file of
each building object and the relevant instance in the graph
was achieved via BOT:has3Dmodel and
BOT:hasSimple3DModel relationships using RDFLib
(RDFLib Team, 2021) As a consequence, the exact
geometry of its relevant instance was appended to the
LBD graphs.

Set topological relationships. Sacks et al. (2022)
generated a topological relationship algorithm, Cloud-
based Building Information Modelling (CBIM)
algorithm, executing on the graph of each BIM model and
appended the topological status (in total 27 positions) to
the corresponding object nodes in the graph. In this study,
the CBIM algorithm was executed over the architectural
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and MEP LBD graphs for the same BIM model. Finally,
an enriched unique knowledge graph for each model was
generated by combining the architectural and MEP sub-
graphs with the CBIM topology graph.

Step 2: Rule sets generation

Examine building object classes. The physical objects in
the dataset, from the BIM models to graphs, were
examined to figure out: (i) the misclassified (mislabeled
and/or unlabeled) building objects; and (ii) physically
connected interdomain object pairs. The primary object
classes in the architectural domain (ceiling, door, floor,
wall) were preserved through the BIM models, IFC files,
and LBD graphs. On the other hand, in the MEP domain,
1,405 objects - 47.6% of the total MEP objects in the
dataset - were exported as building element proxies.
These include electrical equipment (468 switches),
electrical fixtures (880 sockets), communication devices
(47 speakers), and mechanical equipment (10 variable air
volume (VAV) units). Further, the direct relations
between these MEP objects and architectural objects were
investigated. The object pairs found were: (i) wall and
electrical equipment; (ii) wall and electrical fixture; (iii)
wall and communication device; (iv) ceiling and
mechanical equipment. These object pairs were used for
the formation of object classification rule sets.

Generate rule sets. Here, the adopted approach is rule-
based inferencing using object pairs having unique
conditional sets, developed originally in the SeeBridge
project (Sacks et al., 2016; SeeBridge, 2017a, 2017b).
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The object classification rule sets consist of topological
relationships among interdomain object pairs and the
comparison of exact geometry conditions among them.
Table 1 shows the selected rules for object classification.

Four rule sets were generated for each MEP object. In the
rule sets, the topological conditions were executed over
each knowledge graph using a SPARQL query. The exact
geometry conditions were evaluated by Trimesh. As an
example, Figure 2 displays the topological query and the
implementation algorithm of the rule set.

Results and Discussion

The number of interdomain direct relations between the
MEP objects and architectural objects between the object
pairs, after applying the CBIM algorithm in Step 2, is
shown in Figure 3. The topological relationships compose
of nine positions in three coordinates; however, Figure 3
shows the observed relationships in the examined 32 BIM
models. The observed topological relations were
evaluated manually by checking through 32 knowledge
graphs. These observed topological relations were used as
a basis for the formation of object classification rule sets.
Indeed, the topological rule selection (Table 1) including
the topological query (Figure 2) came from the statistics
of the interdomain direct relations in Figure 3.

The object labels obtained using the four rule sets and the
object labels from the original BIM models were
compared manually. The performance of the generated
rule sets was evaluated based on false negative and
positive as well as accuracy values (Table 2). These
values were calculated according to the object numbers in
the BIM models and the detected object numbers by rule
sets. The MEP objects were classified with at least 90 %
accuracy.

In the detection of mechanical equipment (VAV), one
object was undefined in the dataset models, which lead to
a false negative. The number of objects detected by the
rule set was one less than the real number in the BIM
models. The reason for the false negative is that the rule
set structure was unable to detect all the VAV units in the
dataset. Therefore, the rule set's structure must be
improved by adding more object geometry features (e.g.,
volume, area, etc.) and more exact geometry comparison
conditions (e.g., cardinality, orthogonality, and so on).

The communication devices (speakers) were classified
with the highest accuracy rate. Even though the accuracy
satisfies the dataset, the existence of different shapes of
the object in the model could degrade the performance of
the rule set. More object shapes should be investigated
with a more advanced and sophisticated rule set.

Table 1: Selected rules for object classification

Mech. Equipment

Comm. Device

Electr. Equipment Electr. Fixture

(VAV) & Ceiling  (Speaker) & Wall (Switch) & Wall (Socket) & Wall
Contain, Left, Contain, Left, Contain, Left,
e L Contain, Left, Right, Right, Right,
Position in X-direction Right, RightOverlap, RightOverlap, RightOverlap,
> LeftOverlap LeftOverlap LeftOverlap
5]
% Contain Contain, Contain,
& Containe d’ln ContainedIn, ContainedlIn,
= Position in Y-direction Contain, Back ? Back, Front, Back, Front,
Back, Front,
FrontOverlap FrontOverlap, FrontOverlap,
BackOverlap BackOverlap
Position in Z- direction Containln, Below Contain Contain Contain
Objectl Length (X-dim) 0.5< X-dim <1 0.1< X-dim <0.5 0< X-dim <0.1 0< X-dim <0.1
Object] Width (Y-dim) 0.5<Y-dim <1 0.1<Y-dim <0.5 0<Y-dim <0.1 0<Y-dim <0.1
Objectl Height (Z-dim) 0.1< Z-dim <0.5 0.1<Z-dim <0.5 0<Z-dim <0.1 0<Z-dim <0.1
Is object] bounding box
% length greater than object2? NO NO NO NO
=) . .
5) Is object] bounding box
3 width greater than object2? NO NO NO NO
Is object] bounding box
height greater than object2? YES NO NO NO
Distance between objectl Z- S _
center and Object2 ) . 0<=8<=065 0.5 ==&
Elevation of Objectl bottom - - 0.6 <=g,<=1.5 0 <= g,<=1
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Topological query ="""
SELECT ?s 70l 202
WHERE

?s CBIM:hasObject 701 .

?s CBIM:hasSubject 702 .

OPTIONAL

{17s CBIM:topology "Contain, Contain, Contain" . }
{?s CBIM:topology "Contain, ContainedIn, Contain" .}
{?s CBIM:topology "Contain, Back, Contain" . }
{?s CBIM:topology "Contain, Front, Contain" .}
1?s CBIM:topology "Right, Contain, Contain" .}
{?s CBIM:topology "Left, Contain, Contain" .}
{?s CBIM:topology "RightOverlap, Contain, Contain" .}
{?s CBIM:topology "LeftOverlap, Contain, Contain" .}
{?s CBIM:topology "Contain, FrontOverlap, Contain"
{?s CBIM:topology "Contain, BackOverlap, Contain"
{?s CBIM:topology "Right, Back, Contain" .}
{?s CBIM:topology "Left, Back, Contain" .}
{?s CBIM:topology "FrontOverlap, Front, Contain" .}
{?s CBIM:topology "FrontOverlap, Back, Contain" .}
1?s CBIM:topology "RightOverlap, Front, Contain" .}
{?s CBIM:topology "RightOverlap, Back, Contain" .}
{?s CBIM:topology "Left, Front, Contain" .}
1?s CBIM:topology "Left, FrontOverlap, Contain" .}
1?7s CBIM:topology "Right, Front, Contain" .}
{?s CBIM:topology "Right, FrontOverlap, Contain" .} }

L
J

3
3

end for

for each result of the Topological query:

if Objectl_type == "Buildingelement" & Object2_type = "Wall":

if 0 <Object]_Xdim<0.1 & 0<Object]_Ydim<0.1 & 0<Object]l_Zdim < 0.1:
if Object]_BB_Xdim <= Object2_BB_Xdim == True:

end if

if Object]_BB_Ydim <= Object2_BB_Ydim == True:
if Object]_BB_Zdim <= Object2_BB_Zdim == True:
if 0 <= £1<=0.65 & 0.6 <= £y<=1.5:
List SWITCH.append(Objectl)
for i in SWITCH:
if i not in result:
result.append(i)
end if
end for
0.5 <= &1 & 0<= Ex<=1
List SOCKET.append(Objectl)
for i in SOCKET:
if i not in result:
result.append(i)
end if
end for

—
=

Figure 2: (a) Topological query, (b) Rule sets implementation algorithm

Ceiling

Interdomain Topological Relationships X Y zZ
L C RO R F FO C CI B C CI B
Mechanical Equipment (VAV) 0 0 0 0 8 0 2 1 9

Wall

Interdomain Topological Relationships X Y zZ
L] c[ro[R][F]r] c Ja] s c [a]l] s
Electrical Equipment (Switcher) 140 215 45 64 93 29 152 0 190 451 0 13
Electrical Fixture (Socket) 231 405 111 126 | 141 53 345 0 334 826 0 49
Communication Device (Speaker) 13 26 2 6 13 2 17 1 14 47 0 0

*Positions in X-direction: (L) Left, (LC) Left Contact, (LO) Left Overlap, (C) Contain, (CI) Contained In, (EO) Exact Overlap,
(RO) Right Overlap, (RC) Right Contact, (R) Right

*Positions in Y-direction: (F) Front, (FC) Front Contact, (FO) Front Overlap, (C) Contain, (C1) Contained In, (EQ) Exact Overlap,
(BO) Back Overlap, (BC) Back Contact, (B) Back

*Positions in Z- direction: (4) Above, (AC) Above Contact, (40) Above Overlap, (C) Contain, (CI) Contained In, (EO) Exact Overlap,
(BO) Below Overlap, (BC) Below Contact, (B) Below

Figure 3: The number of observed interdomain topological relationships in 32 BIM models

When looking at the electrical equipment (switch) and
device (socket), in both object classes, two errors were
observed: (i) false positives, which infers that the number
of objects detected by rule sets is higher than the real
number in the BIM models, and (ii) false negatives.

Ideally, the sum of false negatives and positives should be
zero. However, here, the sum is greater than zero due to
the disjoint object classes (VAV, speaker, switch, and
socket). Said another way, if one object is not
distinguished through the rule set, it will not be
categorized through the other rule sets. This condition was
observed in the VAV object class. Alternatively, an object
might be classified under more than one class - this
condition was seen in the switch and socket objects’
classes.

The false positive came from the non-discrete geometrical
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features of the switch and socket. Figure 4 displays an
example of the non-discrete geometry features of the
switcher and socket in the dataset. In cases where these
two objects are located at different heights and positions,
the rule sets distinguish them. Otherwise, if they are
located at the same height and even positioned close to
each other, this situation creates an overlap in the rule sets,
leading to a false positive. Figure 4 shows the overlapping
area where the objects' location height is between 500 and
1200 mm. The socket object, at the height of 1200 mm,
was detected as a switch object via the rule set.

The highest overlapping rate in the socket cluster was
61%, where 20 switches were labeled as sockets by the
rule set. On the other hand, the highest overlapping rate in
the switch cluster was 42%, where five sockets were
labeled as switches (Table 3).
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Based on that, in the dataset models, there were very few
sockets at the height of the switches, which resulted in
false positives in the switch cluster. On the other hand, the
switch cluster had a broader range of possible positions,
and thus any switch would be detected easily as a socket
through the rule set. Consequently, the switch class had a
narrower range of false positives than the socket class.

To summarize, non-discrete geometry and topology
properties for objects result in false positives and
negatives in classification via rule-based inference. The
only way to address this situation is to look at the
appearance of objects, which is the human way of
understanding physical objects. Therefore, integrating the
proposed method with image recognition using a
convolutional neural network (CNN) algorithm (ML
technique) would potentially be reliable.

The object classification task through ML techniques has
been examined by researchers. Researchers have
developed open-source datasets for object classification
based on IFC entity classes through semantic enrichment
of BIM models (e.g. IFCNET (Emunds et al., 2021) and
BIMGEOM (Collins, 2021)).

In light of these previous studies, future work will
integrate the proposed method with image recognition at
the design stage of the BIM models. The integration of the
proposed method with image recognition can be achieved
via a dual examination of object labels through the multi-
view convolutional neural network (MVCNN) algorithm
(ML technique) over open-source datasets and rule base
inferencing over knowledge graphs. By doing that, we
suppose that the overlapping areas for the objects will be
eliminated.

Conclusions

This study aims to classify MEP domain objects based on
interdomain topological relationships among the MEP
and architectural objects and exact geometry conditions
that define the nature of the physical objects. With this
aim, the suggested approach utilizes (i) semantic web
technologies for a knowledge graph covering architectural
and MEP domain subgraphs bonding with the topological
relations and (ii) semantic enrichment with a rule-based
inferencing technique that executes rules over the
knowledge graphs to detect the unclassified/misclassified
MEP objects among the object pairs.

Table 2: The performance of the generated rule sets over 32 knowledge graphs in the dataset

MEpOweclas  Oeenber  DussedOeer Rl R e 0
Mech. Equipment (VAV) 10 9 1 0 90
Comm. Device (Speaker) 47 47 0 0 100
Electr. Equipment (Switch) 464 479 19 34 96.77
Electr. Fixture (Socket) 874 961 29 116 90.05

D e e SRy Gl Sl S s D s S S ey S Sm SR S S S ST L S S p e

Division 16 - Electrical
DOUBLE STAGE SWITCH

Division 16 - Electrical
DOUBLE STAGE SWITCH

A

Division 16 - Electrical

Division 16 - Electrical
SOCKET OUTLET SCHUKO
. SOCKET SINGLE SCHUKO IP54

Division 16 - Electrical
B _R_SOCKET OUTLET SCHUKO.
SOCKET SINGLE SCHUKO P54

NASAAANAND

DOUBLE STAGE SWITCH

Division 16 - Electrical
SOCKET OUTLET SCHUKO
SOCKET SINGLE SCHUKO IP54

Figure 4: Representation of the non-discrete geometry of the switcher and socket in the dataset

Table 3: The highest overlapping rate in switch and socket clusters

Apart Switch .ObJ ect ]?etecteq Overlapping Socket ij ect Detected Socket ~ Overlapping
Number Number in BIM  Switch Object Rat Number in BIM Obicct Number Rate
umbe Models Number ate Models ject Numbe
12 24 25 0.04 33 53 0.61
18 12 17 0.42 31 26 -0.16
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In this context, 32 BIM models were converted to
knowledge graphs and enriched with object topological
relations. Based on these data models, four rule sets
containing object pairs topology and exact geometry
conditions were generated for the object classification
(mechanical equipment (VAV), communication device
(speaker), and electrical equipment (switch) and fixture
(socket)) via rule-based inferencing. The results showed
that the rule sets had at least 90% accuracy.

Although the results satisfy the examined models, the
main limation is the lack of unique geometry and topology
properties for the objects, resulting in false positives and
negatives that reduced the accuracy of the rule sets.
Following that, future work will test the integration of the
proposed method with image recognition.

Consequently, the main conclusion of this study is that
building object classification can be improved using
knowledge graph-based semantic enrichment. The main
beneficiaries are expected to be design teams, who work
in a multi and inter-disciplinary field in the AEC sector.
During the design process, the design team utilizes
different vendor-specific BIM software, and the extracted
information from this software leads often to incomplete
and incorrect object labeling and misclassified objects.
Therefore, the building physical objects with their
interdomain relations and attributes need to be classified
explicitly by preserving data integrity and quality. The
semantic enrichment over the knowledge graph seems to
be an encouraging way of providing high-resilience object
classification and relationships.
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