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Abstract
The data and information of objects in building 
information modelling (BIM) from different software are 
delivered with incomplete data and misclassified objects. 
This study focuses on classifying mechanical, electrical, 
and plumbing (MEP) objects based on interdomain 
topological relationships and geometry conditions 
through semantic web technologies and semantic 
enrichment with a rule-based inferencing technique. Four 
rule sets were developed and run over 32 knowledge 
graphs of building models with at least 90% accuracy. 
False positives and negatives arose from non-discrete 
geometry and topology features of the objects. To address 
this issue, future work will integrate the proposed method 
with image recognition.

Introduction
In the Architecture, Engineering, and Construction (AEC) 
industry, building information modelling (BIM) serves as 
an object-oriented model enriching objects’ data and 
information with physical and functional properties, for 
visualizing three-dimensional (3D) and analyzing 
building analytical models. BIM allows the creation of 
complicated building shells and physical objects with 
encapsulate rich data and information during the design 
process. In addition, engineering integration of a single 
system or multiple systems based on shared data has 
become easier with the introduction of BIM workflows 
that share information between existing simulation and 
analysis tools (Howard and Björk, 2008; Sacks et al., 
2018).
The Industry Foundation Classes (IFC) provide a
common data schema and structured data model for BIM 
(International Organization for Standardization, 2018). 
Furthermore, Information Delivery Manuals (IDM) 
describe processes with the required information for BIM 
through IFC as an integrated reference. Model View 
Definitions (MVD) specify portions of the IFC Model 
Specification that are needed for information exchanges 
subject to different IDMs (See et al., 2012). 
Although IDMs along with MVDs specify each 
information exchange scenario relevant to the IFC model
(BuildingSMART, 2008), well-functioning information 
exchange among software and all stakeholders is difficult 
(Pauwels et al., 2014, 2017). BIM applications have 

native models (vendor-specific) with different 
aggregating, identifying, and parametrizing objects. 
When extracting data from the BIM model, oftentimes 
inaccurate, incomplete, or false information is generated 
(Bloch and Sacks, 2018). 
Additionally, the IFC, as an open BIM standard, has 
insufficient definitions in its objects' libraries and 
associated standards, which leads to essential elements for 
objects being left out (Howard and Björk, 2008). For 
instance, IFC (even in the latest version IFC4) does not 
support the characterization of entire heating, ventilation, 
and air conditioning (HVAC) systems' elements (El Asmi 
et al., 2015). Therefore, as a distinctive feature of BIM, 
object classification commonly results in incorrect object 
classification, which prevents the full use of BIM models 
(Ma et al., 2018).
To solve the issues of data exchange and missing 
semantics in the BIM models, in terms of mapping 
functional properties or concepts in IFC models, semantic 
web technologies and semantic enrichment have been 
suggested. The semantic web consists of a set of 
technologies and standards to store, share, and reuse data 
on the Web (Sadeghineko et al., 2022). It allows setting 
logical assertions on classes, instances, and properties and 
relationships among not only instances but also instances’ 
properties using axioms. Facts are deduced through a 
knowledge-based ontology in the semantic net, utilizing 
formalized sources of reasoning and inquiry. Thus, a 
deductive approach is achieved by querying and verifying 
the knowledge base and inserting new knowledge. Indeed, 
the semantic web provides the use of multiple and 
different abstraction levels and supports the 
interoperability of concepts (Simeone et al., 2019).
By following the advances in semantic nets, MVD has 
been developed for identification and specification of 
information requirements. Since the data requirements are 
dynamic and use-case specific, buildingSMART has 
developed Information Delivery Specifications (IDS) to 
determine information requirements and compliance with 
IFC (van Berlo et al., 2021). The main purpose is to author 
and validate nongeometrical information requirements in 
a simple but comprehensive way (Tomczak et al., 2022). 
The IDS standard links objects' classes and properties 
through the building Smart Data Dictionary (bSDD) - an 
ontology-based-data dictionary- that includes IFC 
elements and the standard classification systems for 



construction work (e.g. UniClass and MasterFormat) (van 
Berlo et al., 2021; Son et al., 2022). However, in the 
current state of bSDD, it can not assure semantic 
correctness and automated semantic mapping (Son et al., 
2022). 
To summarize, the issues of data exchange and missing 
semantics in BIM models remain, which often results in 
incorrect object classification in extracted building
models. This study aims to classify MEP domain objects 
based on interdomain topological relationships and exact 
geometry conditions through semantic web technologies 
and semantic enrichment with a rule-based inferencing 
technique.

Semantic Web Technologies
In the semantic web, semantics are characterized via web 
ontology language (OWL) and serialized to resource 
description framework (RDF). SPARQL is a query 
language over RDF triple data structure (Domingue et al., 
2011). IfcOWL represents the IFC standard using OWL 
(Pauwels and Terkaj, 2016). Subsequently, the IFCtoRDF 
converter was proposed to enable sufficiently usable 
EXPRESS elements by OWL ontology by mapping each 
element onto its nearest equivalent in OWL (Pauwels and 
van Deursen, 2012). As a comprehensive monolithic 
ontology, IfcOWL has usability and performance 
limitations for querying and reasoning in industrial 
practice (Terkaj and Pauwels, 2017). The available 
ontologies that serve to present the building information 
in a semantic graph are integrated with the help of Linked 
Data technologies. Linked Building Data (LBD) 
conserves the building information in simple, extensible, 
and modular ontologies and links them. The modular 
ontologies include Building Topology Ontology (BOT) as 
a core; ontology for managing geometry (OMG);
ontology for product (PRODUCT); ontology for building 
elements (BEO); ontology for distribution elements
(MEP); ontology for properties (PROPS); ontology for 
managing properties (OPM) (Pauwels et al., 2022; 
Petrova et al., 2019). The IFCtoLBD converter was 
generated for the conversion of BIM models to LBD
graphs (Oraskari et al., 2021). The current graph 
converters (IFCtoRDF and IFCtoLBD), as technical 
enablers of the semantic web in the AEC industry, have 
limitations due to either poor data/information quality in 
the original BIM models or the mapping quality of the 
converters. Even though these converters retain a broad 
range of building object information and convert them 
into IFC, BEO, and BOT-based entity classes, some 
objects' information remains undefined (e.g., building 
element proxy class) and/or lost (e.g., object geometry).

Building object classification through semantic 
enrichment
By semantic enrichment, implicit and missing 
information in a data model is inferred and supplemented 
into the data model for model enrichment, which makes it 
easy to use by any receiving application (Bloch and Sacks, 
2018). The supplemented information (e.g., topology, 

spatial, geometry, and relationships between the model's 
objects) is deduced and appended to the data model by a 
computer program that utilizes artificial intelligence (AI), 
mainly rule-based inferencing and machine learning (ML) 
techniques (Sacks et al., 2017). Koo et al. examined the 
semantic integrity among mapped building elements from 
six architectural BIM models and IFC classes by 
classification of building elements based on their 
geometry and relational behaviors (Koo et al., 2019). Wu 
et al. integrated the invariant features of the building 
objects (i.e., object geometry, location, and metadata) into 
ML for the BIM object classification in five categories 
(beam, column, footing, slab, and wall) (Wu et al., 2022). 
Xue et al. conducted a literature survey on the semantic 
enrichment of the BIM model over ten years. They 
showed that there are 22 enriched BIM cases in the aspect 
of geometric semantics, non-geometric semantics, and 
both over ten years. Additionally, regarding semantic 
enrichment of the physical entities and their subtypes, 
there are over 20 object types. These object types are 
categorized under (i) indoor facility (e.g., furniture and 
room space); (ii) building interior entities, and (iv) 
exterior entities (Xue et al., 2021). As a result, these 
objects belong to mainly the architectural domain and 
followingly the structural domain. Thereby, this shows 
that there is a lack of semantic enrichment of BIM models 
in the aspect of the building object classification in the
mechanical, electrical, and plumbing (MEP) domain.
To sum up, the identified problem is that the data quality 
of building objects in BIM models is not reliable and that
data exchange often leads to incomplete data, incorrect 
object labels, and misclassified objects. Based on the 
identified problem, this study focuses on classifying 
building objects in the MEP domain by applying 
knowledge-graph-driven semantic web technology and 
rule-based inferencing for semantic enrichment. The rule 
sets are founded on interdomain (architectural and MEP 
domains) object relationships based on topology and 
objects’ exact geometry.

Research Method and Tools
Step 1: Dataset preparation
A dataset of 32 residential BIM models with architectural 
and MEP building objects was obtained and used for 
generating the knowledge graphs. Figure 1 shows the 32
residential BIM models.
Export the BIM model to IFC. The 32 BIM models for 
the apartments were separately exported to architectural 
and MEP IFC data models in the IFC4 design transfer 
view using Revit. 
Convert IFC data models to LBD graphs. IFCtoLBD 
converter was used to transform the IFC data models into 
LBD graphs, which allows flattened relationships in the 
graph. In addition, the IFC GUID for each entity was 
automatically converted to a Global Identifier (GlobalID), 



which is a full Universal Unique Identifier (UUID), 
through the IFCtoLBD converter.
Generate exact geometry. The disadvantage of the LBD 
graph is the loss of the geometry relationships. Linked
Data-based Common Data Environment (CDE) was 
suggested combining (i) the core graph layer dataset 
storing semantics and objects' relationships in the BIM 
model and (ii) the extension layer dataset storing BIM-
related resources in any kind of data format (Ouyang et 
al., 2022). Following this approach, each building object 
in an IFC file is extracted in its solid geometry, called 
exact geometry using IfcOpenShell (IfcOpenShell, 2022), 
and Trimesh library in the Python environment (Trimesh, 
2022). The exact geometry files were saved with the 
corresponding building object’s globally unique ID in 
PLY format, containing 3D object data in a collection of 
polygons (McHenry and Bajcsy, 2008), and stored in an 
external dataset. Association of the exact geometry file of 
each building object and the relevant instance in the graph 
was achieved via BOT:has3Dmodel and 
BOT:hasSimple3DModel relationships using RDFLib 
(RDFLib Team, 2021) As a consequence, the exact 
geometry of its relevant instance was appended to the 
LBD graphs.
Set topological relationships. Sacks et al. (2022)
generated a topological relationship algorithm, Cloud-
based Building Information Modelling (CBIM)
algorithm, executing on the graph of each BIM model and 
appended the topological status (in total 27 positions) to 
the corresponding object nodes in the graph. In this study, 
the CBIM algorithm was executed over the architectural 

and MEP LBD graphs for the same BIM model. Finally,
an enriched unique knowledge graph for each model was 
generated by combining the architectural and MEP sub-
graphs with the CBIM topology graph.

Step 2: Rule sets generation
Examine building object classes. The physical objects in 
the dataset, from the BIM models to graphs, were 
examined to figure out: (i) the misclassified (mislabeled 
and/or unlabeled) building objects; and (ii) physically
connected interdomain object pairs. The primary object 
classes in the architectural domain (ceiling, door, floor,
wall) were preserved through the BIM models, IFC files, 
and LBD graphs. On the other hand, in the MEP domain, 
1,405 objects - 47.6% of the total MEP objects in the 
dataset - were exported as building element proxies.
These include electrical equipment (468 switches), 
electrical fixtures (880 sockets), communication devices 
(47 speakers), and mechanical equipment (10 variable air 
volume (VAV) units). Further, the direct relations 
between these MEP objects and architectural objects were 
investigated. The object pairs found were: (i) wall and 
electrical equipment; (ii) wall and electrical fixture; (iii) 
wall and communication device; (iv) ceiling and 
mechanical equipment. These object pairs were used for 
the formation of object classification rule sets.
Generate rule sets. Here, the adopted approach is rule-
based inferencing using object pairs having unique 
conditional sets, developed originally in the SeeBridge 
project (Sacks et al., 2016; SeeBridge, 2017a, 2017b).

Figure 1: BIM Model for Dataset in Step 1 (left); 32 Different Apartment Models (right)
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The object classification rule sets consist of topological 
relationships among interdomain object pairs and the 
comparison of exact geometry conditions among them. 
Table 1 shows the selected rules for object classification.
Four rule sets were generated for each MEP object. In the 
rule sets, the topological conditions were executed over 
each knowledge graph using a SPARQL query. The exact 
geometry conditions were evaluated by Trimesh. As an 
example, Figure 2 displays the topological query and the 
implementation algorithm of the rule set.

Results and Discussion
The number of interdomain direct relations between the 
MEP objects and architectural objects between the object 
pairs, after applying the CBIM algorithm in Step 2, is 
shown in Figure 3. The topological relationships compose 
of nine positions in three coordinates; however, Figure 3 
shows the observed relationships in the examined 32 BIM 
models. The observed topological relations were 
evaluated manually by checking through 32 knowledge 
graphs. These observed topological relations were used as 
a basis for the formation of object classification rule sets. 
Indeed, the topological rule selection (Table 1) including 
the topological query (Figure 2) came from the statistics 
of the interdomain direct relations in Figure 3.

The object labels obtained using the four rule sets and the 
object labels from the original BIM models were 
compared manually. The performance of the generated 
rule sets was evaluated based on false negative and 
positive as well as accuracy values (Table 2). These 
values were calculated according to the object numbers in 
the BIM models and the detected object numbers by rule 
sets. The MEP objects were classified with at least 90 % 
accuracy.
In the detection of mechanical equipment (VAV), one 
object was undefined in the dataset models, which lead to 
a false negative. The number of objects detected by the 
rule set was one less than the real number in the BIM 
models. The reason for the false negative is that the rule 
set structure was unable to detect all the VAV units in the 
dataset. Therefore, the rule set's structure must be 
improved by adding more object geometry features (e.g., 
volume, area, etc.) and more exact geometry comparison 
conditions (e.g., cardinality, orthogonality, and so on).
The communication devices (speakers) were classified 
with the highest accuracy rate. Even though the accuracy 
satisfies the dataset, the existence of different shapes of 
the object in the model could degrade the performance of 
the rule set. More object shapes should be investigated 
with a more advanced and sophisticated rule set.

Table 1: Selected rules for object classification

Mech. Equipment
(VAV) & Ceiling

Comm. Device 
(Speaker) & Wall

Electr. Equipment 
(Switch) & Wall

Electr. Fixture 
(Socket) & Wall

To
po

lo
gy

Position in X-direction Contain, Left, 
Right,

Contain, Left, 
Right, 

RightOverlap, 
LeftOverlap

Contain, Left, 
Right, 

RightOverlap,
LeftOverlap

Contain, Left, 
Right, 

RightOverlap,
LeftOverlap

Position in Y-direction Contain, Back

Contain, 
ContainedIn, 
Back, Front, 
FrontOverlap

Contain,
ContainedIn,
Back, Front, 

FrontOverlap,
BackOverlap

Contain,
ContainedIn,
Back, Front, 

FrontOverlap,
BackOverlap

Position in Z- direction ContainIn, Below Contain Contain Contain

G
eo

m
et

ry

Object1 Length (X-dim) 0.5< X-dim <1 0.1< X-dim <0.5 0< X-dim <0.1 0< X-dim <0.1

Object1 Width (Y-dim) 0.5< Y-dim <1 0.1< Y-dim <0.5 0< Y-dim < 0.1 0< Y-dim < 0.1

Object1 Height (Z-dim) 0.1< Z-dim <0.5 0.1< Z-dim <0.5 0< Z-dim < 0.1 0< Z-dim < 0.1

Is object1 bounding box 
length greater than object2? NO NO NO NO

Is object1 bounding box 
width greater than object2? NO NO NO NO

Is object1 bounding box 
height greater than object2? YES NO NO NO

Distance between object1 Z-
center and Object2 - - 0 <= <= 0.65 0.5 <=

Elevation of Object1 bottom - - 0.6 <= <=1.5 0 <= <=1
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When looking at the electrical equipment (switch) and 
device (socket), in both object classes, two errors were 
observed: (i) false positives, which infers that the number 
of objects detected by rule sets is higher than the real 
number in the BIM models, and (ii) false negatives.
Ideally, the sum of false negatives and positives should be 
zero. However, here, the sum is greater than zero due to 
the disjoint object classes (VAV, speaker, switch, and 
socket). Said another way, if one object is not 
distinguished through the rule set, it will not be 
categorized through the other rule sets. This condition was 
observed in the VAV object class. Alternatively, an object 
might be classified under more than one class - this 
condition was seen in the switch and socket objects’ 
classes.
The false positive came from the non-discrete geometrical

features of the switch and socket. Figure 4 displays an 
example of the non-discrete geometry features of the 
switcher and socket in the dataset. In cases where these 
two objects are located at different heights and positions, 
the rule sets distinguish them. Otherwise, if they are 
located at the same height and even positioned close to 
each other, this situation creates an overlap in the rule sets, 
leading to a false positive. Figure 4 shows the overlapping 
area where the objects' location height is between 500 and 
1200 mm. The socket object, at the height of 1200 mm, 
was detected as a switch object via the rule set.
The highest overlapping rate in the socket cluster was  
61%, where 20 switches were labeled as sockets by the 
rule set. On the other hand, the highest overlapping rate in 
the switch cluster was 42%, where five sockets were 
labeled as switches (Table 3).

Figure 2: (a) Topological query; (b) Rule sets implementation algorithm

Figure 3: The number of  observed interdomain topological relationships in 32 BIM models
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Based on that, in the dataset models, there were very few 
sockets at the height of the switches, which resulted in 
false positives in the switch cluster. On the other hand, the 
switch cluster had a broader range of possible positions, 
and thus any switch would be detected easily as a socket 
through the rule set. Consequently, the switch class had a 
narrower range of false positives than the socket class.
To summarize, non-discrete geometry and topology 
properties for objects result in false positives and 
negatives in classification via rule-based inference. The 
only way to address this situation is to look at the 
appearance of objects, which is the human way of 
understanding physical objects. Therefore, integrating the 
proposed method with image recognition using a 
convolutional neural network (CNN) algorithm (ML 
technique) would potentially be reliable.
The object classification task through ML techniques has 
been examined by researchers. Researchers have 
developed open-source datasets for object classification 
based on IFC entity classes through semantic enrichment 
of BIM models (e.g. IFCNET (Emunds et al., 2021) and 
BIMGEOM (Collins, 2021)).

In light of these previous studies, future work will 
integrate the proposed method with image recognition at 
the design stage of the BIM models. The integration of the 
proposed method with image recognition can be achieved 
via a dual examination of object labels through the multi-
view convolutional neural network (MVCNN) algorithm 
(ML technique) over open-source datasets and rule base 
inferencing over knowledge graphs. By doing that, we 
suppose that the overlapping areas for the objects will be 
eliminated.

Conclusions 
This study aims to classify MEP domain objects based on 
interdomain topological relationships among the MEP 
and architectural objects and exact geometry conditions 
that define the nature of the physical objects. With this 
aim, the suggested approach utilizes (i) semantic web 
technologies for a knowledge graph covering architectural 
and MEP domain subgraphs bonding with the topological 
relations and (ii) semantic enrichment with a rule-based 
inferencing technique that executes rules over the 
knowledge graphs to detect the unclassified/misclassified 
MEP objects among the object pairs.

Table 2: The performance of the generated rule sets over 32 knowledge graphs in the dataset

MEP Object Class Object Number 
in BIM Models

Detected Object 
Number

False 
Negative 

False 
Positive Accuracy (%)

Mech. Equipment (VAV) 10 9 1 0 90
Comm. Device (Speaker) 47 47 0 0 100
Electr. Equipment (Switch) 464 479 19 34 96.77
Electr. Fixture (Socket) 874 961 29 116 90.05

Figure 4: Representation of the non-discrete geometry of the switcher and socket in the dataset

Table 3: The highest overlapping rate in switch and socket clusters

Apart 
Number

Switch Object 
Number in BIM 

Models

Detected 
Switch Object 

Number 

Overlapping 
Rate

Socket Object 
Number in BIM 

Models

Detected Socket 
Object Number

Overlapping 
Rate

 
12 24 25 0.04 33 53 0.61
18 12 17 0.42 31 26 -0.16



In this context, 32 BIM models were converted to 
knowledge graphs and enriched with object topological 
relations. Based on these data models, four rule sets 
containing object pairs topology and exact geometry 
conditions were generated for the object classification 
(mechanical equipment (VAV), communication device 
(speaker), and electrical equipment (switch) and fixture 
(socket)) via rule-based inferencing. The results showed 
that the rule sets had at least 90% accuracy.
Although the results satisfy the examined models, the 
main limation is the lack of unique geometry and topology 
properties for the objects, resulting in false positives and 
negatives that reduced the accuracy of the rule sets. 
Following that, future work will test the integration of the 
proposed method with image recognition.
Consequently, the main conclusion of this study is that 
building object classification can be improved using 
knowledge graph-based semantic enrichment. The main 
beneficiaries are expected to be design teams, who work 
in a multi and inter-disciplinary field in the AEC sector. 
During the design process, the design team utilizes 
different vendor-specific BIM software, and the extracted 
information from this software leads often to incomplete 
and incorrect object labeling and misclassified objects. 
Therefore, the building physical objects with their 
interdomain relations and attributes need to be classified 
explicitly by preserving data integrity and quality. The 
semantic enrichment over the knowledge graph seems to 
be an encouraging way of providing high-resilience object 
classification and relationships.

Acknowledgments
This study is part of the Cloud-based Building 
Information Modelling (CBIM) project, a European 
Training Network. The CBIM project receives funding 
from the European Union’s Horizon 2020 research and 
innovation programme under the Marie Sklodowska-
Curie grant with agreement No 860555.

References
Bloch, T. and Sacks, R. (2018), “Comparing machine 

learning and rule-based inferencing for semantic 
enrichment of BIM models”, Automation in 
Construction, Elsevier, Vol. 91 No. July 2017, pp. 256–
272.

BuildingSMART. (2008), “IFD Library”, Framework, 
No. April, pp. 1–9.

Collins, F. (2021), “BIMGEOM”, Harvard Dataverse, 
Vol. V1, doi: 10.7910/DVN/YK86XK.

Domingue, J., Fensel, D. and Hendler, J.A. (2011), 
Handbook of Semantic Web Technologies, Volume 1, 
Springer, available at:https://doi.org/10.1007/978-3-
540-92913-0.

El Asmi, E., Robert, S., Haas, B. and Zreik, K. (2015), “A 
standardized approach to BIM and energy simulation 
connection”, International Journal of Design Sciences 
and Technology, Vol. 21 No. 1, pp. 59–82.

Emunds, C., Pauen, N., Richter, V., Frisch, J. and van 
Treeck, C. (2021), “IFCNet: A Benchmark Dataset for 
IFC Entity Classification”, EG-ICE 2021 Workshop on 
Intelligent Computing in Engineering, Proceedings, pp. 
166–175.

Howard, R. and Björk, B.C. (2008), “Building 
information modelling – Experts’ views on 
standardisation and industry deployment”, Advanced 
Engineering Informatics, Elsevier, Vol. 22 No. 2, pp. 
271–280.

IfcOpenShell. (2022), “IfcOpenShell”, available at: 
http://ifcopenshell.org/ (accessed 14 September 2022).

International Organization for Standardization. (2018), 
“ISO 16739-1:2018 - Industry Foundation Classes 
(IFC) for data sharing in the construction and facility 
management industries — Part 1: Data schema”, ISO 
16739-1:2018, available at:
https://www.iso.org/standard/70303.html (accessed 13 
August 2022).

Koo, B., La, S., Cho, N.W. and Yu, Y. (2019), “Using 
support vector machines to classify building elements 
for checking the semantic integrity of building 
information models”, Automation in Construction, 
Elsevier, Vol. 98 No. October 2018, pp. 183–194.

Ma, L., Sacks, R., Kattel, U. and Bloch, T. (2018), “3D 
Object Classification Using Geometric Features and 
Pairwise Relationships”, Computer-Aided Civil and 
Infrastructure Engineering, Vol. 33 No. 2, pp. 152–164.

McHenry, K. and Bajcsy, P. (2008), “An overview of 3D 
data content, file formats and viewers”, Technical 
Report Image Spatial Data Analysis Group National 
Center for Supercomputing Applications, p. 21.

Oraskari, J., Bonduel, M., McGlinn, K., Wagner, A., 
Pauwels, P., Kukkonen, V., Steyskaland, S., et al. 
(2021), “IFCtoLBD”, GitHub, 10 September, available 
at: https://github.com/jyrkioraskari/IFCtoLBD 
(accessed 29 January 2022).

Ouyang, B., Wang, Z. and Sacks, R. (2022), “Semantic 
Enrichment of Object Associations Across Federated 
BIM Semantic Graphs in a Common Data 
Environment”, European Conference on Product and 
Process Modeling (ECPPM).

Pauwels, P. and Terkaj, W. (2016), “EXPRESS to OWL 
for construction industry: Towards a recommendable 
and usable ifcOWL ontology”, Automation in 
Construction.

Pauwels, P. and van Deursen, D. (2012), “IFC / RDF : 
Adaptation , Aggregation and Enrichment”, First 
International Workshop on Linked Data in Architecture 
and Construction, No. March, pp. 1–3.

Pauwels, P., Corry, E. and O’Donnell, J. (2014), 
“Representing SimModel in the Web Ontology 
Language”, Computing in Civil and Building 
Engineering, pp. 2271–2278.



Pauwels, P., Costin, A. and Rasmussen, M.H. (2022), 
“Knowledge Graphs and Linked Data for the Built 
Environment”, in Bolpagni, M., Gavina, R. and 
Ribeiro, D. (Eds.), Industry 4.0 for the Built 
Environment. Structural Integrity, Vol. 20, Springer, 
Cham, pp. 157–183.

Pauwels, P., Zhang, S. and Lee, Y.C. (2017), “Semantic 
web technologies in AEC industry: A literature 
overview”, Automation in Construction, Elsevier B.V., 
Vol. 73, pp. 145–165.

Petrova, E., Pauwels, P., Svidt, K. and Jensen, R.L. 
(2019), “In Search of Sustainable Design Patterns: 
Combining Data Mining and Semantic Data Modelling 
on Disparate Building Data”, Advances in Informatics
and Computing in Civil and Construction Engineering, 
No. October, pp. 19–26.

RDFLib Team. (2021), “rdflib ”, Rdflib 6.1.1 
Documentation, available at:
https://rdflib.readthedocs.io/en/stable/ (accessed 29 
January 2022).

Sacks, R., Eastman, C., Lee, G. and Teicholz, P. (2018), 
BIM Handbook: A Guide to Building Information 
Modeling for Owners, Designers, Engineers, 
Contractors, and Facility Managers, John Wiley & 
Sons, available at: (accessed 14 September 2021).

Sacks, R., Kedar, A., Borrmann, A., Ma, L., Singer, D. 
and Kattel, U. (2016), “SeeBridge information delivery 
manual (IDM) for next generation bridge inspection”, 
ISARC 2016 - 33rd International Symposium on 
Automation and Robotics in Construction, No. Isarc, 
pp. 826–834.

Sacks, R., Ma, L., Yosef, R., Borrmann, A., Daum, S. and 
Kattel, U. (2017), “Semantic Enrichment for Building 
Information Modeling: Procedure for Compiling 
Inference Rules and Operators for Complex 
Geometry”, Journal of Computing in Civil 
Engineering, Vol. 31 No. 6, p. 04017062.

Sacks, R., Wang, Z., Ouyang, B., Utkucu, D. and Chen, 
S. (2022), “Toward artificially intelligent cloud-based 
building information modelling for collaborative 
multidisciplinary design”, Advanced Engineering 
Informatics, Elsevier, Vol. 53 No. June, p. 101711.

Sadeghineko, F., Tong, M. and Lawani, K. (2022), 
“Application of semantic web technologies for the 
enhancement of quantity surveying practices: 
classification systems and terminology”, in Park, C., 
Dawood, N., Rahimian, F.P., Pedro, A. and Lee, D. 
(Eds.), The 22nd International Conference on 
Construction Applications of Virtual Reality (CONVR 
2022), Chung-Ang University, Seoul, South Korea, pp. 
89–100.

See, R., Karlshoej, J. and Davis, D. (2012), “An 
Integrated Process for Delivering IFC Based Data 
Exchange Authors”, BuildingSMART, No. 1, pp. 1–52.

SeeBridge. (2017a), “Semantic enrichment engine for 
BIM – SeeBIM”, Deliverable 4.1, pp. 1–49.

SeeBridge. (2017b), “Rule-sets for semantic enrichment 
of bridge information models”, Deliverable 4.2.

Simeone, D., Cursi, S. and Acierno, M. (2019), “BIM 
semantic-enrichment for built heritage representation”, 
Automation in Construction, Vol. 97 No. January, pp. 
122–137, doi: 10.1016/j.autcon.2018.11.004.

Son, S., Lee, G., Jung, J., Kim, J. and Jeon, K. (2022), 
“Automated generation of a model view definition 
from an information delivery manual using idmXSD 
and buildingSMART data dictionary”, Advanced 
Engineering Informatics, Elsevier Ltd, Vol. 54 No. 
August, p. 101731, doi: 10.1016/j.aei.2022.101731.

Terkaj, W. and Pauwels, P. (2017), “A method to generate 
a modular ifcOWL ontology”, CEUR Workshop 
Proceedings, Vol. 2050 No. September 2017.

Tomczak, A., Berlo, L. V., Krijnen, T., Borrmann, A. and 
Bolpagni, M. (2022), “A review of methods to specify 
information requirements in digital construction 
projects”, IOP Conference Series: Earth and 
Environmental Science, Vol. 1101 No. 9, doi: 
10.1088/1755-1315/1101/9/092024.

Trimesh. (2022), “Trimesh 3.14.1 documentation”, 
available at: https://trimsh.org/index.html (accessed 14 
September 2022).

van Berlo, L., Krijnen, T., Tauscher, H., Liebich, T., van 
Kranenburg, A. and Paasiala, P. (2021), “Future of the 
Industry Foundation Classes: towards IFC 5”, Proc. of 
the Conference CIB W78, Luxembourg, pp. 11–15.

Wu, J., Akanbi, T. and Zhang, J. (2022), “Constructing 
Invariant Signatures for AEC Objects to Support BIM-
Based Analysis Automation through Object 
Classification”, Journal of Computing in Civil 
Engineering, Vol. 36 No. 4, pp. 1–14.

Xue, F., Wu, L. and Lu, W. (2021), “Semantic enrichment 
of building and city information models: A ten-year 
review”, Advanced Engineering Informatics, Elsevier 
Ltd, Vol. 47 No. January, p. 101245.


