

EXPLORING A DESIGN FOR ROBOTIC CONSTRUCTION APPROACH: TWO CASE STUDIES MATCHING ROBOT AND CONSTRUCTION DESIGN FEATURES

Heyaojing Huang¹, Cynthia Brosque¹, Alberto Tono¹, Ashwin Agrawal¹, and Martin Fischer¹

¹Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, USA

Abstract

As robots become more flexible to operate in unstructured environments, the AEC industry needs to facilitate the deployment of robots from design perspectives. However, today's process of deploying robots typically starts while the construction phase is underway, lacking design methods for robotic construction. This paper explores a Design for Robotic Construction approach. First, a set of metrics was defined to analyze the match between the design features of construction projects and robots. Second, a user interface (UI) was prototyped to visualize these metrics and suggest design decisions for robots and construction projects. The approach was preliminarily validated in two pilot studies.

Introduction

Over the past few years, construction robots have become a technical and economic possibility with the decrease in the cost of machinery relative to labor, recent developments in microprocessors, and the advent of low-cost computers, sensing technologies, AI techniques, and other innovations (Saidi et al., 2016). The robustness and task adaptability of construction robots have been further improved, making the application scenarios more diverse (Melenbrink et al., 2020). Previous case studies demonstrated the effectiveness and advantages of construction robots in steel structure welding, interior decoration, inspection and maintenance, material handling and other scenarios (Melenbrink et al., 2020).

However, the adoption of robotics in the construction industry still faces many challenges due to the unique characteristics of the construction process (Davila Delgado et al., 2019). In manufacturing, robots have already been highly adopted, and their benefits are widely understood (An et al., 2020b,a; Dolinšek and Duhovnik, 1998). The successful adoption of robots in manufacturing is also driving the application of robotics in the construction industry. However, the construction environment has a lower level of standardization and is less controllable (Xiao et al., 2022), which makes the application of construction robots more difficult. In the past, construction robots were often confined to structured off-site environments, reducing complexity by transforming a relatively uncontrollable environment into a factory environment, such as prefabrication (Lundeen et al., 2019). Now, the goal of the Architecture Engineering and Construction (AEC) industry also includes the exploration of how construction robots can be applied to unstructured on-site environments (Lundeen et al., 2019). To understand whether a robot can deliver its intended benefits on a construction site, we often need to consider questions such as: *Are the corners reachable for*

the robot? Is the space big enough for the robot to turn around? Can the robot surmount the step to get into another room? Is the elevator large enough for the robot to get in? These questions require us to consider the feasibility of robotic construction from a design perspective.

In previous research (Brosque and Fischer, 2022c; Brosque et al., 2021; Brosque and Fischer, 2022b), challenges in connecting a robot's capabilities to design decisions were identified when evaluating the applicability of robots in unstructured construction environments. In 9 of the 15 cases we studied, there were misalignments between the design features of robots and construction projects. Understanding the construction feasibility and making corresponding decisions during the early design phases of construction projects could effectively avoid potential rework, improve production efficiency, and reduce costs (Bakhshi et al., 2022). However, today's process to deploy robots typically starts while the construction phase is underway. At this time, misalignments between a robot's capabilities and the construction design features are too late to be reconciled. To address this challenge, the AEC industry needs a tool or approach for Design for Robotic Construction (DfRC) that helps to implement efficiencies.

In this paper, we explore a DfRC approach that determines whether robotic construction is feasible by checking the match between the design features of the construction project and the robot or vice versa (i.e., design feasibility). This approach also suggests redesigning decisions for the robots and construction projects to help maximize the benefits of construction robots. This approach is twofold: (1) A set of metrics is suggested to check the design feasibility of the two case studies. (2) A user interface is prototyped to visualize these metrics in 3D and suggest design decisions for robots and construction projects in two case studies. The two pilot studies include an interior grinding robot designed by the HD Lab (Denmark), and a concrete drilling robot (Brosque et al., 2021). The former we focused on the design of the robot, and the latter we focused on the design of the construction project.

Theoretical points of departure

To understand how builders, designers, and robot manufacturers could connect robot capabilities to construction and design decisions, we focus on three theoretical points of departure: 1) Design for Manufacturing and Assembly, 2) Robot-Oriented Design approaches in construction, and 3) Ambient Intelligence Strategies.

Design for Manufacturing and Assembly (DfMA)

In manufacturing, DfMA provides a way to integrate product and machine technology to increase the one-time suc-

cess rate of design and achieve high efficiency (Yuan et al., 2018). DfMA highlights the need to adapt the product structure to the manufacturing system and technology considering the amount of parts variation, the adjustment of the product structure, and the design of components' interfaces with each other (Bock and Linner, 2015). Learning from the successful adoption of robotics in manufacturing (An et al., 2020b,a; Dolinšek and Duhovnik, 1998), previous authors have extended DfMA to integrate construction project design and robot capabilities. For example, Goessens et al. (2018); Dolinšek and Duhovnik (1998) introduced a feasibility study of drone-based masonry construction. In terms of a robot's design, it considered issues such as the size and weight of the drone for lifting blocks, as well as the tolerance needed for the blocks (Goessens et al., 2018). Design changes to the construction project could facilitate the use of robots in construction as well. For instance, design the openings large enough to facilitate robots' access (Slaughter, 1997), or column spacing that reduces the number of manual robot set-ups. Modifying the construction materials and products could also make them to be easily manipulated by robots, including dimensional changes, special connections, new application methods, or different tolerances (Slaughter, 1997).

Robot-Oriented Design approaches in construction

Robot-Oriented Design (ROD), coined by Bock and Linner (2015), refers to a co-adaptation strategy of the construction products and the robot assembly operations to improve the efficiency of the total construction process. Previous Design for Robotic strategies include changing the construction design. For example, Warszawski (1988) conducted a study focusing on robot accessibility and load limits and changing the building components with prefabricated modular elements that were more easily assembled by robots. Another way proposed by Linner et al. (2019) is to determine how the complexity of the robot can be decreased by shifting some complexity to the overall building system. For example, Linner et al. (2019) proposed to simplify the facade by implementing an ROD strategy. The changes to the facade design allow for a simplified robot axes requirement which makes it more economically feasible to complete the construction phase of the project.

Ambient Intelligence Strategies

Based on industry observations from previous case studies related to robotic construction (Brosque and Fischer, 2022c; Brosque et al., 2021; Brosque and Fischer, 2022b), robots are usually equipped with a series of Ambient Intelligence Strategies to adapt to complex, unstructured construction sites, including strategies such as Bluetooth, Lidar, sound and light sensors, position sensors, etc. (Brosque and Fischer, 2022c). For example, Spot uses proximity and depth sensors for purposes such as avoiding collision between robots and obstacles; CANVAS uses Lidar sensor, vision sensors, rotary encoder, and other strategies to achieve 3D spatial mapping and semi-autonomous

movement of the robot (Brosque and Fischer, 2022c). In related literature, Joseph Engelberger's HelpMate robot (Krishnamurthy and Evans, 1992) for hospital material transportation included a set of design guidelines for the unstructured hospital environment, such as parking and battery charging areas for robots. Heilala and Sallinen (2008) also reflected on Ambient Intelligence Strategies to aid robots working in manufacturing. Their approach addressed information processing, signal processing, and production control with high-speed sensing and communication systems in the automation process.

Methodology

This paper explores a Design for Robotic Construction approach that could help builders, designers, and robot manufacturers to check how well a robot matches the design features of a construction project or vice versa. The DfRC approach also helps generate diverse redesign suggestions for robots and construction projects to make robotic construction feasible, and provide the corresponding cost and schedule impacts. We implemented the following two main steps to two pilot studies: (1) First, check how well the robot matches the design features of the construction project or vice versa from the two directions of physical and intelligence metrics. (2) Second, deploy a user interface to visualize these metrics related to design decisions with 3D models and to suggest redesigns for robots and construction projects that may facilitate the use of construction robots.

In previous case studies, we observed that different types of robots need to consider different design factors (Brosque and Fischer, 2022c). For example, Kewazo's Liftbot scaffolding assembly robot uses a vertical rail system to move on a fixed, one-dimensional path to lift heavy objects (Brosque and Fischer, 2022c); while Boston Dynamics' Spot reality capture robot uses a four-legged motion system to capture reality on the construction site, and to ensure that its scanning device would not make direct contact with any building components (Brosque and Fischer, 2022c). Therefore, for the former, we do not take into account its accessibility, as it does not need to move autonomously in or between work spaces. For the latter, no consideration needs to be given to its ability to manipulate physical objects in direct contact. Based on these observations, before the two main steps, it is necessary to adjust the metrics for various types of robots to improve the generality of the approach and avoid inapplicable requirements for the design of robots and construction projects.

Metrics for design feasibility check

There are two main sources of metrics for the design feasibility check. First, we reviewed papers in the fields of Design for Manufacturing and Assembly, Robot-oriented Design, and Ambient Intelligence Strategies in the past three decades. Second, we included industry observations from robot cases involved in Stanford University's Construction Robotics class (Brosque and Fischer, 2022a).

Construction project: Environmental Conditions		Robot: Capabilities/Limitations
Access		
Water		Humidity tolerance
Gravel/rocks/other terrain conditions		Mobile units
Static Load (including permanent and temporary structures such as scaffolding)		Hardwares to withstand adverse terrain conditions
Dynamic load (including permanent and temporary structures such as scaffolding)		Static Weight
Vertical transportation (e.g. elevator, scaffolding)		Vibration + Weight
		Dimensions (width, length and height)
		weight
		Dimensions (width, length and height)
Size of available moving space		Turning radius
Workers/Materials/other obstacles		Hardware to clear/avoid obstacles
Slopes / ramps / stairs		Mobile units
Gaps		Dimension of mobile devices
		Mobile units
Reach		
Relative position of the robot and the physical object (orientation, distance, etc.)		Operating units
Obstacles impeding operation		Range of reachable distance
Total area/quantity to be reached		Hardware to clear/avoid obstacles
Accepted threshold of % accessible		Total reachable area/quantity
		% accessible
Manipulate (direct contact)		
Joints and interfaces - Material of building components		Joints and interfaces - Material of robot
Joints and interfaces - Dimensions of building components		Joints and interfaces - Dimensions of robot
Joints and interfaces - Geometry features of building components		Joints and interfaces - Geometry features of robot
Manipulate (general)		
Performance required		Performance provided
Modularity/Customisation/Variability in material specs		
Modularity/Customisation/Variability in component dimensions		Adjustability of operating devices
Modularity/Customisation/Variability in component geometry features		
Number of parts of building components		Number of parts of the robot equipment
Tolerances of building components		Tolerances of robot

Figure 1: Design feasibility check: physical metrics

Construction project: Environmental Conditions		Robot: Capabilities/Limitations
Power		
Electrical outlets availability		Distance limitations from electrical outlets
Battery recharge station/Backup battery availability		Battery power capability
Connection		
Type of connection available (WIFI, Bluetooth, Cellular Data, Others, etc.)		Type of connection available
Effective distance		Max distance from the signal
Distribution interval (e.g. every n meters / one)		Signal strength requirements
Signal strength distribution		
Geolocation/sensing		
GPS/Other availability		
GPS signal on site		GPS hardware
On-site sensors/equipment/reflector availability (e.g. total station)		
On-site sensors/equipment/reflector (e.g. total station)		Corresponding hardware that receives/reflects signals
Functionality of the sensors/equipment/reflector		Corresponding requirements/constraints
Effective distance		
Distribution interval		Range of distance between the robot and the sensors
Accuracy/Precision/Tolerance		Corresponding requirements
Robot sensors/equipment/reflector availability (e.g. CV sensor, Infrared sensor, etc.)		
/		Robot sensors/equipment/reflector availability
Corresponding requirements/constraints		Functionality of the sensors/equipment/reflector
Range of distance between the sensors and the objects		Effective distance
Corresponding requirements/constraints		Accuracy/Precision/Tolerance
Sensory environment		
Sound		Noise tolerance
Heat		Low/High temperature resistance
Light		Low/Strong light tolerance
Autonomous system		
Corresponding requirements/constraints		Task planning capability
		Path planning capability
		NLP capability
		...

Figure 2: Design feasibility check: intelligence metrics

Table 1 summarizes the literature related to the design of robotic construction, including the selected metrics, and the categories of these metrics. In addition, combined with the metrics observed in industry, such as total sta-

tions, scaffolding, reflector, gravel/rocks/other terrain conditions, vision, etc., we summarize the physical metrics and intelligence metrics in Figure 1 and Figure 2 respectively. Physical metrics are used to check how well a

robot's capabilities, including access, reach, and manipulate, match construction design features, while intelligence metrics are used to check the feasibility of power, connection, geolocation/sensing, and autonomous systems. Each metric checks the match between the environmental conditions of the construction project (first column of Figure 1 and Figure 2) and the corresponding capabilities or limitations of the robot (second column of Figure 1 and Figure 2). For example, when evaluating whether a robot can use vertical transportation (such as elevators, scaffolding, etc.) on a construction site, we need to check whether the weight of the robot is within the load capacity of the vertical transportation, and whether the size of the robot is small enough to get into this vertical transportation. Similarly, when evaluating whether the power supply of the robot is feasible on site, we need to check the availability of electrical outlets on the construction site, and whether the robot has restrictions on the distance from the electrical outlets to its working position.

Case Studies

This section describes the implementation of the DfRC approach based on two pilot case studies. We used Microsoft Excel to record the results of the design feasibility check. Then, we utilized Blender version 3.0.0 and Axure RP 10 to prototype a user interface. Blender 3.0.0 allows users to create complex and detailed 3D scenes and animations, and it also comes with a customizable interface and support for various file formats. Axure RP 10 is a prototyping tool that enables designers and developers to generate interactive and high-fidelity prototypes for websites, mobile apps, and other digital products. Using these tools, we developed a User Interface prototype that can visualize design metrics and provide suggestions for design decisions to demonstrate potential ways to improve the feasibility of robotic construction. In the first case, we explained the design iteration process of HD lab's interior grinding robot, and helped the industry partner understand the feasibility of robot construction, focusing on the accessibility. In the second case, we analyzed a concrete drilling robot and found a series of construction project design features that were not applicable for robot, from which we selected one and redesigned it to better match the robot's capabilities to construction project design features for cost savings.

Case study 1: HD lab's interior grinding robot

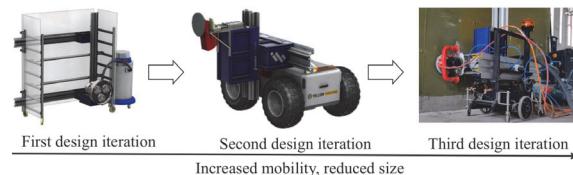


Figure 3: Design iterations of the grinding robot

This interior grinding robot was developed by HD lab in collaboration with two Danish demolition contractors aiming to substitute the manual grinding and blasting work of

renovation projects. Given that the robot is deployed for demolition work, the construction project cannot be modified, so the design changes could only be implemented on the robot design to maximize the access and reach of the robot. The first robot design was developed on the basis of a 2m x 2m workspace with a moving platform. The tool was mounted to the platform and could move in vertical and horizontal directions. However, it was found that the first-iteration design could not access most of the desired work, as obstacles prevented the robot from operating efficiently and limited the robot's access to objects above 2m. In addition, the robot had to be small enough for a site elevator, and light enough for two workers to lift it manually if the robot had to be carried up the stairs. Achieving rugged mobility both indoors and outdoors was key to securing the access of the robot to the right locations. The last robot design focused on mobility and modified the tracks for a combination of wheels for additional flexibility. Figure 3 shows the design iterations of the robot. With the last prototype of the robot design, the industry partner still had some issues communicating the robot's capabilities. If the robot cannot grind more than half of the target of the walls, it is not worth taking it to the construction site. Therefore, we used the DfRC approach to understand what is accessible by the robot, and suggest redesigning the robot to improve its ability to access locations. In terms of physical metrics, the robot needs a certain degree of accessibility to move semi-autonomously on the construction site, and its operating unit needs to actively approach and directly contact the building components, so its capabilities for reaching and manipulation also need to be considered. In terms of intelligence metrics, the robot requires on-site power supply. When it disconnects from the internet, it still functioned properly. GPS and field sensors were not available on site, so only the sensors equipped with the robot itself need to be considered. In addition, the robot does not use advanced autonomous systems when conducting construction tasks. Based on the above descriptions, we selected applicable metrics for checking the design feasibility of this robot.

The result of design feasibility check

By checking each of the physical metrics listed in Figure 1, it is found that the HD lab's grinding robot may have design misalignment in terms of reachability, as the robot cannot operate within 0.1m from corners. Therefore, this part of the work needs to be completed with human assistance, or the operating unit of the robot needs to be redesigned. For the intelligence metrics listed in Figure 2, the robot is feasible in terms of power and geolocation/sensing based on current robot capabilities and construction project design features.

User Interface prototyping

As is shown in Figure 4, in the middle of the UI, the design features of the robot and the construction project are visualized using 3D models, with areas within 0.1m of cor-

Table 1: Metrics for design features related to robotic construction analyzed in previous literature

Author	Physical	Intelligent	Comments
Kunic et al. (2021)	★★	◆	Degrees of freedom; Sensor for positioning
Rogea et al. (2021)	★★★		Joints geometry; Assembly process (obstacles, avoid collisions)
Yang and Kang (2021)	★★		Path planning; Collisions avoidance; Degree of freedom
Anton et al. (2021)	★★		Material; Geometry; Tolerance
An et al. (2020a)	★★		Geometry; Mating plane; Manufacturing plane
An et al. (2020b)	★		Geometry; Mating plane; Manufacturing plane
Orlowski (2020)	★		/
Wagner et al. (2020)	★★★		/
Kontovourkis and Tryfonos (2020)	★★★	◆	Path planning; Dimensions; Material; Geometry
Piroozfar et al. (2019)	★		Modularity, Customisation
Yuan et al. (2018)	★		Geometry
Goessens et al. (2018)	★		/
Jovanović et al. (2017)	★		/
Turek et al. (2017)	★	◆◆	Dimension; Height; Mapping; Path planning; Localization
Correa (2016)	★★		/
Tan et al. (2016)	★★	◆◆	Height; Autonomy level; Vision; Autonomy level; Noise level; Light level
Raspall (2015)	★★		Speed of fabrication; Temperature, Geometry features
Bock and Linner (2015)	★★★	◆	Load limits; Dimensions; Slopes / ramps / stairs; Water; Electricity; Transportation; Conditions on-site (dirt, dust, obstacles on floor, etc.); Tolerance; Interfaces and joints; Number of parts; Product structure; Modular repetition; Payload; Variability in component size
Gambao et al. (2000)	★★★	◆◆	Position resolution; Orientation
Bock et al. (2000)	★★		Tolerance; Transportation
Scott Howe (2000)	★★		Location of components and tools; Gaps
Han et al. (1998)	★★		Component design; Tolerances
Dolinsk and Duhovnik (1998)	★★★		Degree of freedom; Obstacles; Material
Navon and McCrea (1997)	★★		/
Navon (1995)	★★★	◆◆	Position resolution
Bridgewater (1993)	★★		Tolerance; Number of components, Degrees of freedom
Engelberger (1993)	★★	◆◆◆	Robot intelligence such as power, connection and geo-location/sensing; Workstations; Access; Reach; Charging and parking stations
Paulson et al. (1989)		◆◆◆◆◆	/
★ Access ★ Reach ★ Manipulate ◆ Power ◆ Connection ◆ Geolocation/sensing ◆ Autonomous system			

ners marked in red as alerts. On the right side of the UI, a checklist is provided for users to select one or more metrics that need to be checked. The left side of the UI shows the overall process flow of robot construction; the lower part of the UI uses a Gantt chart to mark infeasible time, and the tasks of the grinding robot are decomposed into floor level and zone level to identify infeasible areas/times.

Here, the UI shows that the robotic construction in zone 9 on the second floor is not feasible. The overall reachability of the grinding robot is 98.32% (calculated by subtracting the area within 0.1m of the corner from the total area). If the acceptable threshold for the percentage of accessibility is below this value, then using the grinding robot would be feasible in terms of design in this case.

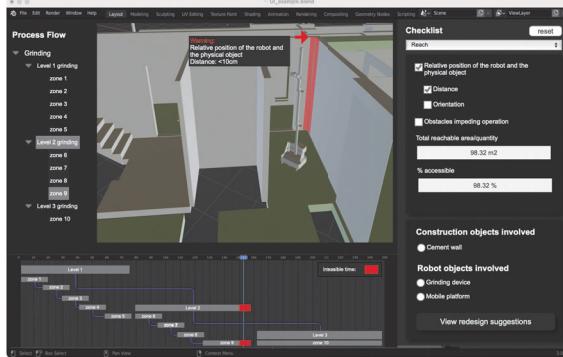
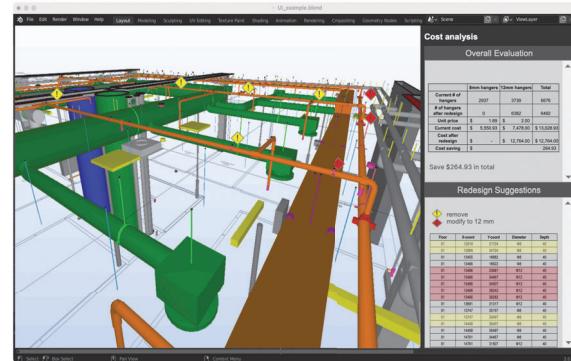


Figure 4: UI for HD lab's grinding robot

Case study 2: the concrete drilling robot


This is a semi-automated concrete drilling construction robot designed for mechanical, electrical, and plumbing installation work. In terms of physical metrics, considerations for deploying this robot include accessibility to the desired workstations, including site obstacles, scaffolding, elevators, slopes (up to 15 degrees), and weight (750 kg). The robot is maneuvered via a joystick to the workstation where it can drill autonomously. Once at the workstation, reachability aspects like the height and type of ceiling (flat vs. T slabs) become important variables to determine the % of work the robot can accomplish. The variability of building components' material, and geometry also need to be considered. From an intelligence perspective, to achieve the required accuracy, the robot must be in the line of sight of a total station.

The result of design feasibility check

We checked each of the intelligence metrics listed in Figure 1 and concluded that the design of the grinding robot and the construction project is feasible. The result of checking the physical metrics listed in Figure 2 helped to identify the following mismatch between the robot's capabilities and the design features of the construction project: In terms of accessibility, the elevator entrance has a ramp with a height of about 15cm and an angle almost perpendicular to the ground, while the integrated tracked platform of the robot can only handle up to 15 degrees of slope. Outside the building, there is an scaffolding connecting two buildings with a limit of only 300 kg, and the robot's weight of 750 kg exceeded the load capacity of this scaffold. In addition, T-slabs' geometry could present unforeseen issues to the depth sensor in the robot which affects the accuracy of the holes. For variability in construction components' dimensions, a mix of 8mm and 12mm diameter hangers could be used, or we could replace all hangers with 12mm diameter hangers. It would be easier for the robot to operate if every hanger has the same diameter, as it would not need to spend time changing the drill bit. If all the hangers were designed to be 12 millimeters, that could be slightly more expensive, but stronger hangers mean that they could be spread out and use fewer hangers. Therefore,

the tradeoff between the number and diameter of the hangers must be considered when making design decisions.

User Interface prototyping

detailed simulation.

Acknowledgments

This research was supported by a CIFE Seed research grant (2022-2023). The authors would like to acknowledge HD Lab for participating in the case study.

References

An, S., Martinez, P., Al-Hussein, M., and Ahmad, R. (2020a). Automated verification of 3d manufacturability for steel frame assemblies. *Automation in Construction*, 118:103287.

An, S., Martinez, P., Al-Hussein, M., and Ahmad, R. (2020b). Bim-based decision support system for automated manufacturability check of wood frame assemblies. *Automation in Construction*, 111:103065.

Anton, A., Reiter, L., Wangler, T., Frangez, V., Flatt, R. J., and Dillenburger, B. (2021). A 3d concrete printing prefabrication platform for bespoke columns. *Automation in Construction*, 122:103467.

Bakhshi, S., Chenaghlu, M. R., Pour Rahimian, F., Edwards, D. J., and Dawood, N. (2022). Integrated bim and dfma parametric and algorithmic design based collaboration for supporting client engagement within offsite construction. *Automation in Construction*, 133:104015.

Bock, T., Kreupl, K., and Herbst, J. (2000). Planning principles for enhancing the implementation of a mobile robot on the construction site.

Bock, T. and Linner, T. (2015). *Robot-Oriented Design: Design and Management Tools for the Deployment of Automation and Robotics in Construction*. Cambridge University Press.

Bridgewater, C. (1993). Principles of design for automation applied to construction tasks. *Automation in Construction*, 2(1):57–64.

Brosque, C. and Fischer, M. (2022a). Project-based curriculum for teaching construction robotics.

Brosque, C. and Fischer, M. (2022b). A robot evaluation framework comparing on-site robots with traditional construction methods. *Construction Robotics*, 6(2):187–206.

Brosque, C. and Fischer, M. (2022c). Safety, quality, schedule, and cost impacts of ten construction robots. *Construction Robotics*, 6(2):163–186.

Brosque, C., Skeie, G., and Fischer, M. A. (2021). Comparative analysis of manual and robotic concrete drilling for installation hangers. *Journal of Construction Engineering and Management-asce*, 147:05021001.

Correa, F. (2016). Robot-oriented design for production in the context of building information modeling. In Sattineni, A. A. U., Azhar, S. A. U., and Castro, D. G. T. U., editors, *Proceedings of the 33rd International Symposium on Automation and Robotics in Construction (ISARC)*, pages 853–861, Auburn, USA. International Association for Automation and Robotics in Construction (IAARC).

Davila Delgado, J. M., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., and Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. *Journal of Building Engineering*, 26:100868.

Dolinšek, B. and Duhovnik, J. (1998). Robotic assembly of rebar cages for beams and columns. *Automation in Construction*, 8(2):195–207.

Engelberger, J. F. (1993). Health-care robotics goes commercial: the ‘helpmate’ experience. *Robotica*, 11(6):517–523.

Gambao, E., Balaguer, C., and Gebhart, F. (2000). Robot assembly system for computer-integrated construction. *Automation in Construction*, 9(5):479–487.

Goessens, S., Mueller, C., and Latteur, P. (2018). Feasibility study for drone-based masonry construction of real-scale structures. *Automation in Construction*, 94:458–480.

Han, C. S., Kunz, J. C., and Law, K. H. (1998). A hybrid prescriptive-/performance-based approach to automated building code checking. *Computing in Civil Engineering*, pages 537–548.

Heilala, J. and Sallinen, M. (2008). Concept for an industrial ubiquitous assembly robot. In Ratchev, S. and Koelemeijer, S., editors, *Micro-Assembly Technologies and Applications*, pages 405–413, Boston, MA. Springer US.

Jovanović, M., Raković, M., Tepavčević, B., Borovac, B., and Nikolić, M. (2017). Robotic fabrication of freeform foam structures with quadrilateral and puzzle shaped panels. *Automation in Construction*, 74:28–38.

Kontovourkis, O. and Tryfonos, G. (2020). Robotic 3d clay printing of prefabricated non-conventional wall components based on a parametric-integrated design. *Automation in Construction*, 110:103005.

Krishnamurthy, B. and Evans, J. (1992). Helpmate: A robotic courier for hospital use. [Proceedings] 1992 IEEE International Conference on Systems, Man, and Cybernetics, pages 1630–1634 vol.2.

Kunic, A., Naboni, R., Kramberger, A., and Schlette, C. (2021). Design and assembly automation of the robotic reversible timber beam. *Automation in Construction*, 123:103531.

Linner, T., Pan, W., Hu, R., Zhao, C., Iturralde, K., Taghavi, M., Trummer, J., Schlandt, M., and Bock, T. (2019). A technology management system for the development of single-task construction robots. *Construction Innovation, ahead-of-print*.

Lundeen, K. M., Kamat, V. R., Menassa, C. C., and McGee, W. (2019). Autonomous motion planning and task execution in geometrically adaptive robotized construction work. *Automation in Construction, 100:24–45*.

Melenbrink, N., Werfel, J., and Menges, A. (2020). On-site autonomous construction robots: Towards unsupervised building. *Automation in Construction, 119:103312*.

Navon, R. (1995). Conceptual design of a flooring robot: development methodology and results. *Automation in Construction, 4(3):225–238*.

Navon, R. and McCrea, A. M. (1997). Selection of optimal construction robot using genetic algorithm. *Journal of Computing in Civil Engineering, 11(3):175–183*.

Orlowski, K. (2020). Automated manufacturing for timber-based panelised wall systems. *Automation in Construction, 109:102988*.

Paulson, B. C., Babar, N., Chua, L., and Froese, T. M. (1989). Simulating construction robot agents and their knowledge environment. *Journal of Computing in Civil Engineering, 3(4):303–319*.

Piroozfar, P., Farr, E. R., Hvam, L., Robinson, D., and Shafiee, S. (2019). Configuration platform for customisation of design, manufacturing and assembly processes of building façade systems: A building information modelling perspective. *Automation in Construction, 106:102914*.

Raspall, F. (2015). A procedural framework for design to fabrication. *Automation in Construction, 51:132–139*.

Rogéau, N., Latteur, P., and Weinand, Y. (2021). An integrated design tool for timber plate structures to generate joints geometry, fabrication toolpath, and robot trajectories. *Automation in Construction, 130:103875*.

Saidi, K. S., Bock, T., and Georgoulas, C. (2016). *Robotics in Construction, pages 1493–1520*. Springer International Publishing, Cham.

Scott Howe, A. (2000). Designing for automated construction. *Automation in Construction, 9(3):259–276*.

Tan, N., Mohan, R. E., and Watanabe, A. (2016). Toward a framework for robot-inclusive environments. *Automation in Construction, 69:68–78*.

Turek, W., Cetnarowicz, K., and Borkowski, A. (2017). On human-centric and robot-centric perspective of a building model. *Automation in Construction, 81:2–16*.

Wagner, H. J., Alvarez, M., Kyjanek, O., Bhi, Z., Buck, M., and Menges, A. (2020). Flexible and transportable robotic timber construction platform – tim. *Automation in Construction, 120:103400*.

Xiao, B., Chen, C., and Yin, X. (2022). Recent advancements of robotics in construction. *Automation in Construction, 144:104591*.

Yang, C.-H. and Kang, S.-C. (2021). Collision avoidance method for robotic modular home prefabrication. *Automation in Construction, 130:103853*.

Yuan, Z., Sun, C., and Wang, Y. (2018). Design for manufacture and assembly-oriented parametric design of prefabricated buildings. *Automation in Construction, 88:13–22*.