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Abstract 
This research utilizes the Neo4j platform to create a graph 
database to represent the graphical components of a 
facility model and their spatial relationships. A graph-
based digital twin is proposed for a 2-story facility by 
embedding systems-centric static data into the graph and 
linking it to the building’s Navisworks BIM using a 
python script. The outputs of this study include a new 
ontology for creating graph-based digital twins, 
implementation of the graph using Neo4j, and a python 
script to link the graph to the model. Linking dynamic 
data to the graph model is explored and discussed. This 
approach can improve the representation and 
understanding of facility systems and their 
interrelationships. 

Introduction 
To improve facility management productivity, increase 
proactive maintenance decision-making, and reduce cost 
it is necessary to have access to operation and 
maintenance (O&M) data and information (Chen et al., 
2020, Becerik-Gerber et al., 2012). This objective can be 
supported by using Building Information Modelling 
(BIM) to act as a central repository of information. But 
for BIM to be an effective tool to support facility 
management and operations it needs to be configured to 
provide critical O&M information along with as-built 
details of the facility and assets within it. Such BIMs are 
also known as FM-Capable BIMs or FM-enabled BIMs 
(Becerik-Gerber et al., 2012, Ensafi et al., 2022). Sacks et 
al., 2018, Sadeghi et al. (2018), and Yang and Ergan 
(2017), provided examples where data embedded in the 
handover BIMs focused only on space and asset 
management. They showed that the utilization of FM-
Capable BIM to support facility management and 
maintenance is slow and is in its infancy. 
Facility managers operate with a systems-driven point of 
view of their facility (Sacks et al., 2018). This means that 
they visually try to identify building systems to determine 
components' relationships and dependencies which would 
allow for faster and more informed decision-making 
during facility emergencies (Ensafi et al., 2022). Ensafi et 
al. (2022) defined and developed requirements and 
procedures for configuring system-centric as-built 
models. The research work defined four characteristics of 
a handover BIM model that can effectively support 
facility management and maintenance: (i) data-centric 
model, (ii) complete and accurate model graphics, (iii) 
systems-centric model, and (iv) ability to link the model 
to the owner’s facility management system. As part of 
their validation, an FM-Capable system-centric BIM 

model was developed within Navisworks along with 
systems-centric data standards. System-centric 
viewpoints were created using the inbuilt “Find Items” 
functionality of Navisworks. The model was tested by 
identifying building systems components related to two 
emergency scenarios. Though the research by Ensafi et al. 
(2022) is relevant and effective in developing a Systems-
Centric FM-Capable BIM, there are areas of improvement 
in its application. This is mainly due to how systems-
centric data is stored and accessed in Navisworks, the 
software used for validating their study and a preferred 
software for the construction industry.  
The area of improvement related to the storage of 
systems-centric data when utilizing tools such as 
Navisworks for creating systems-centric FM-Capable 
BIM remains unexplored. The systems-centric search of 
Navisworks model elements using the “Find Item” 
functionality works similarly to a search query in a 
relational database (tabular database). One of the 
limitations of relational databases is that, complicated 
relationships between individual objects become 
expensive to calculate and represent requiring a large 
number of joins between databases (Batra and Tyagi, 
2012). Given that building assets are related to each other 
through systems, sub-systems, and locations, using only 
relational database-based queries to isolate elements 
would result in sub-par results, leading to sub-par 
utilization of FM-Capable BIM in facility maintenance 
and management.  
To overcome this limitation the authors in this paper 
propose the use of a graph database to store system-
centric data for FM-Capable BIM to perform searches 
required to improve proactive maintenance decision-
making and to respond to a maintenance emergency. 
Graph databases provide equal importance to the 
relationship between the stored objects and the objects 
themselves (Batra and Tyagi, 2012). 

Literature Review 
Resource Description Framework (RDF) and Labeled 
Property Graphs (LPG) are two popular graph models. 
RDF is a World Wide Web Consortium standard model 
with ontologies and vocabularies openly available. Data 
in RDF is linked using a subject-predicate-object structure 
where the subject is a node, the predicate is an 
edge/relationship, and the object can be another node or a 
literal value (Baken, 2020). The nodes and edges in an 
RDF graph are named using an HTTP Unique Resource 
Identifier (URI). This HTTP URI allows the created RDF 
graphs to be seamlessly accessed by other stakeholders on 
the project. Therefore, RDF allows for the integration of 



many different types of data from multiple stakeholders, 
improving the interoperability of the created graph 
database. 
On the other hand, LPG, natively used by the Neo4j 
platform used in this current research, has nodes and 
edges in its internal structure. The main difference 
between the LPG and RDF is that nodes and edges in LPG 
are capable of carrying properties within themselves in a 
key-value pair. Whereas, in RDF properties of a node can 
be described using additional nodes or literal values and 
relationships. This makes LPG graphs more compact in 
structure than the RDF (Baken, 2020). (Baken, 2020) after 
conducting qualitative and quantitative analysis of both 
mode graphs concluded that for real time operation LPG 
performed better than RDF.  
Since the objective of this paper is to create a graph-based 
Digital Twin, the authors adopted a graph model that 
could easily represent the nodes as assets/spaces with 
systems-centric properties and can assist in the integration 
and navigation of real-time operational data. LPG allowed 
for embedding properties in nodes, making nodes a better 
representation of assets and allowed for a faster traversal 
of the network to support real-time data. For this paper the 
authors explored the LPG based graph model created 
using Neo4j. 
The authors acknowledge the superiority of RDF based 
graph model in creating an interoperable graph database 
when compared to LPG due to its open-source ontology 
and use of HTTP URI. But since the objective of this 
research was not to test the interoperability of the created 
graph database but rather to test the useability of the graph 
database to accurately represent the building system and 
support real-time data integration LPG based Neo4j was 
chosen in this research over RDF. 
The basic structure of graph databases is defined by nodes 
that represent the entity, edges that represent the 
relationship between the nodes, and properties. In the 
graph ecosystem, node and edge elements, their 
properties, and the relations between the elements can be 
defined as an ontology (McComb, 2019). Dermeval et al. 
(2016) have investigated multiple literatures and found 
empirical evidence in the field of RE (Requirements 
Engineering) for the benefits of using an ontology, 
focused on reducing ambiguity, inconsistency, and 
incompleteness. Stanciu (2021) along with 
RealEstateCore Consortium, developed a digital twins 
definition Language-based ontology to support the 
creation of digital twins of smart buildings in the real 
estate industry using graphs. Their ontology comprised of 
four main sets of interfaces including “Asset”, 
“LogicalDevice”, “Capability”, and “Space”, six 
additional base interfaces including “Agent”, “Building 
Component”, “Collection”, “Document”, “Event”, and 
“Role”, and nine relationships including  
“isPartOf/hasPart”, “hasCapability”, “includedIn”, 
“locatedIn”, “hosts”, “serves”, “feeds”, 
“hasBuildingComponent”, and “owns”. Gnecco et al. 
(2023) defined their own ontology to create a graph-based 
digital twin generated from a Revit model using Dynamo. 
The work investigated capturing real-time data from 

sensors installed in an academic lab space as well as from 
devices attached to occupants in that space. A Neo4J 
graph was used to represent the relations between the 
different entities such as people, environmental and 
wearable sensors, the supporting equipment used, and the 
facility. The ontology used four relationship types, 
including: IsPartOf, IsMontoredBy, TakesPartin, and 
IsLinkedTo.  
Even though graph databases do not replace relational 
databases, they are especially suitable for storing data that 
contain many related data (Fernandes and Bernardino, 
2018). The use of graph databases has been increasing in 
areas such as Semantic Web and Social Network Analysis 
(Fernandes and Bernardino, 2018). 
The use of graph databases has also been explored in the 
construction industry. Hor et al. (2018) utilized graph 
databases as an efficient way of representing and 
visualizing real-world data. They proposed an 
architectural design that focuses on the integration of 
BIM-GIS data with Resource Description Framework 
graph databases with querying and filtering capabilities. 
This integration was validated by applying the developed 
graph database to an intelligent urban mobility web 
application on a game engine platform. Similarly, 
Malinverni et al. (2020) explored the use of a graph 
database to integrate both BIM and Geographic 
information System (GIS) data into a single graph. Other 
than just the storage of data, graph database has also been 
used to automate clash correction sequences based on a 
clash dependency network. Hu et al. (2020) proposed a 
graph-based network theory to improve the clash 
correction sequence. The paper utilized the graph 
database to analyze clash dependencies to predict the 
most optimum sequence for clash resolution and reduce 
the number of elements required to move to generate a 
clash-free model. Use of graph databases has also been 
explored in the creation of digital twins for the 
construction industry. Abdelrahman et al. (2022) utilized 
a graph database to combine spatial data extracted from 
BIM, the indoor location of the occupants, and thermal 
comfort feedback from the occupants. The database is 
then used as input for a classification machine learning 
algorithm to predict occupant thermal preference with a 
14%-28% accuracy improvement over conventional 
thermal preference prediction input variables. 
Durão et al. (2018) concluded that more applied research 
needs to be conducted in the implementation of digital 
twin. The authors in this paper support such notion and, 
by utilizing graph database to represent building systems, 
are proposing a graph-based digital twin to enhance 
building systems visualization to improve facility 
operations and provide better response to maintenance 
emergencies.  The proposed research addresses three 
main questions: (1) How can a graph database be 
implemented to allow facility managers perform better 
systems-centric searches to improve proactive 
maintenance decision-making and better respond to 
emergencies? (2) What is the required graph ontology to 
facilitate the creation of a systems-centric graph database? 
and (3) How can the proposed graph database be utilized 



to implement a graph-based digital twin to support facility 
maintenance?
The following sections describe the case study used for 
implementation, and the research methods and steps
proposed for developing the graph ontology and the 
graph-based digital twin. An example maintenance 
scenario search queries are presented to test the graph 
model. Finally, the paper concludes with summarizing the 
results and proposed future work.

Case Study Overview
The case study used in this research is an elementary and 
middle school two-story building, with a total gross area 
of 122,525 square feet. The building has spaces for 
classrooms, labs, studios, administrative offices, 
cafeteria, kitchen, and a gymnasium with some ancillary 
spaces. Using the 2D plans and the Revit model, the 
mechanical system was analyzed, and the building was
divided into four (4) thermal mechanical zones based on 
the different configurations of the mechanical system 
components used to cool, heat, and ventilate the different 
spaces. All classrooms, labs, studios, and main 
administrative offices are designated as Zone 1. This zone 
employs four Dedicated Outdoor Air System (DOAS) 
units located on the roof and are the primary system 
providing 100% fresh outside air. A Variable Refrigerant 
Flow (VRF) system with several condenser units on the 
roof and several terminal units in the various spaces of 
Zone-1 are used as a secondary system allowing for
localized temperature conditioning and control. The 
kitchen, cafeteria, and gymnasium areas are served by 
three separate packaged Rooftop Air Handling Units 
(RTUs) and comprise Zones 2, 3 and 4 respectively. The 
RTUs provide fresh intake air into the building that is 
mixed with a percentage of return air for energy savings.
The work presented in this paper will focus on Zone 4 
which comprises the Gymnasium along with additional 
spaces including locker rooms and bathrooms for boys 
and girls, an office space, a storage room, and a small 
corridor. A packaged Rooftop Unit (RTU-1) provides 
supply air to the Gymnasium and other spaces. A 
percentage of air from the gymnasium space is returned 
and mixed with the outside air for energy savings. The 
other percentage is exhausted using two gravity roof 
ventilators (GRH-1 and GRH-2) located in the 
gymnasium ceiling. The gravity roof ventilators GRH-1 
& GRH-2 have no moving parts and provide ventilation 
for the gymnasium space by removing heat (summer) and 
moisture (winter). Air from the toilets and locker rooms
in Zone 4 is 100% exhausted using an exhaust fan (EF-6) 
located on the roof of the 2nd floor and directly above the 
gymnasium toilets. There are transfer ducts connecting 
the office and the storage room with the adjoining corridor 
to allow free air flow between these spaces providing for 
natural ventilation.
Figure 2 shows detailed 3D Revit model of the 
mechanical system for Zone 4 that will be represented 
using our graph-based digital twin. All equipment, 
terminal units (grilles and diffusers), duct and duct fittings 
3D components were assigned a unique ID. Unique IDs 

for equipment (e.g. RTU-1 for roof top units) were 
extracted from the 2D design plans. Ducts, duct fittings 
and terminal units are assigned a unique ID defined by the 
authors based on the mechanical subsystem that the 
component belongs to. For example, duct components 
belonging to the supply air (SA) system are provided a 
sequential number with a SA designation (Duct-SA01 
through Duct-SA27), whereas components belonging to 
the return air (RA) and exhaust air (EA) systems are 
numbered as Duct-RA01 to Duct-RA19 and Duct-EA01 
to Duct-EA28 respectively. Duct fittings are numbered 
similarly to ducts. For example, Duct Fitt-SA01 through 
Duct Fitt-SA-34 were used for all duct fittings belonging 
to the supply air (SA) system. Grilles are numbered as 
GR-SA01 to GR-SA12, GR-RA01 to GR-RA02, and GR-
EA01 to GR-EA02 for supply air, return air, and exhaust 
air systems respectively. Supply diffusers, return diffusers 
and exhaust diffusers are also numbered as Diff-SA01 to 
Diff-SA06, Diff-RA01 to Diff-RA04, and Diff-EA01 to 
Diff-EA06 respectively.

Figure 2: 3D Revit model of Zone 4 mechanical system 
showing components with their unique ID.

Research Methods

Figure 3: Methodology steps.



Figure 3 shows a 5-step methodology that includes (1) a
systems-centric data model and (2) a proposed graph 
ontology (3-4) to develop the graph-based digital model 
and (5) perform the systems-centric analysis using the 
case study.

In Step 1, the data model described in Figure 4 is used to 
define the different data parameters for typical 
components (or instances) of the mechanical system. 
Parameters could be static providing record data about the 
instance, or dynamic (telemetry) providing real-time 
performance data about the instance. The data model does 
not describe any relationships between instances of the 
graph.

Figure 4: Data model for Zone 4 mechanical system.

Step 2 defines a graph model ontology structure using 
nodes (vertices) and relationships (edges) to describe the 
different instances of Zone 4 mechanical system, the 
various relationship types, and their data model. The 
proposed ontology shown in figure 5 is developed to 
support a systems-centric view of the facility through a 
graph database and consists of a main set of interfaces and 
a number of relationship types. Instances of these 
interfaces are defined as nodes using a unique label. 
Nodes are assigned properties based on the data model 
defined in Figure 4. Two interfaces are currently defined: 
1. Asset: An integral component of the facility that is 

not part of its structure. This includes mechanical 
equipment, air terminals (grilles and diffusers), 
electrical equipment (electric panels and circuits), 
ducts, and duct fittings.

2. Space: A continuous area or expanse. Three types of 
spaces are proposed including rooms, floors, and 
zones.

Nodes are interconnected using relationships that maybe 
assigned properties. We define five relationship types:
1. LOCATION_SERVED: Defines the coverage or 

service provided by a given asset (including 
equipment, ducts, duct fittings and air terminals) to 
one or more spaces. For example, a Roof Top Unit 
(RTU) may provide heating, cooling, and ventilation 
service to a number of rooms, floors or zones in a 
building.

2. EQUIPMENT_SERVED: Defines the support 
provided or impact of one equipment on another. For 
example, a fan may provide support to the Roof Top 
Unit (RTU).

3. LOCATION_CODE: Defines the space in which an 
asset (equipment and air terminals only) is physically 
located or installed. For example, a fan maybe 
located in a specific room within a floor and a zone.

4. CONNECTED_TO: Identifies the asset that another 
asset is connected to. For example, a duct component 
is connected to another duct component or a terminal 
unit (e.g. diffuser).

5. EMBEDDED_IN: Identifies the asset that hosts 
another asset.

The arrow direction for the LOCATION_SERVED, and 
LOCATION_CODE relationships is always from the 
specific asset node to its respective space node. For the 
CONNECTED_TO relationship type between different 
assets including, equipment, ducts/duct fittings and air 
terminals, the direction of the arrows follows the direction 
of airflow for the supply, return or exhaust air systems.
The arrow direction orientation for other 
CONNECTED_TO relationships such as equipment and 
panels is from equipment to circuits and panels. For 
EQUIPMENT_SERVED relationships, the arrow 
direction is from the equipment providing service (e.g. 
fan) to the equipment being served (e.g. RTU or AHU). 
In Step 3, the complete graph database for Zone-4 
mechanical system was generated using the Arrows 
application (Arrows, 2020), a JavaScript-based tool from 
Neo4j labs. The application allows to graphically create 
graph nodes and edges and attach data such as node labels, 

Figure 5: Graph Model Ontology.



edge types, and node/edge properties. Arrows allows to 
export graph models into different formats including 
Cypher, JSON, PNG, SVG and GraphQL. Five separate 
component graph databases were first created: Gym-SA, 
Gym-RA_EA, OtherSpaces-SA, OtherSpaces-RA_EA 
and Electrical. This allowed to focus on the specific scope 
of each component graph to ensure accuracy and 
eliminate errors. 
Figure 6 depicts a segment of the Gym-SA graph
database. The graph shows the RTU-1 equipment node 
and its properties, and several defined relationships or 
edges with other nodes, including Room, Floor, Zone, 
Ducts, Duct Fittings, and Electrical Equipment, also with 
their own properties.
The RTU-1 (Node: Mechanical Equipment) has two 
identification properties and six systems-centric 
properties defined. It is connected to DUCT-SA01 (Node: 
Ducts) through a CONNECTED_TO relationship type. 
DUCT-SA01 has one identification property and four 
systems-centric properties defined. The RTU-1 location is 
defined using two LOCATION_CODE relationships 
pointing at two space node types (Node: Floor and Node: 
Zone) with a single property for each node: FLOOR_NO 
= Roof and ZONE_NO = Zone-4. The space that the 
RTU-1 serves (i.e. provides service to) is defined using a 
LOCATION_SERVED relationship type and is 
associated with one space node type (Node: Room) with 
a single property: ROOM_NO = Gymnasium. To identify 
the electrical panel and circuit number that controls the 
electric supply to the roof top unit, the RTU-1 is 
connected to the U-LMPB-MEMA_1 circuit (Node: 
Electrical Equipment) using a CONNECTED_TO 
relationship with an assigned property denoting the circuit 
number. The circuit node is connected to the U-LMPB-
MEMA electrical panel (Node: Electrical Equipment) 
also with a CONNECTED_TO relationship type. The 
panel location is defined using a LOCATION_CODE 
relationship and is associated with one space node type 
(Node: Room) with a single property: FLOOR_NO = 
ELEC 203.

Arrows automatically generates a Cypher query for each 
graph.  In Step 4, the Arrows Cypher query for each of the 
five component graph databases was imported and 
merged in the Neo4j platform to create the complete graph 
model. Nodes that are common (repetitive) are combined 
to avoid creation of duplicate nodes and eliminate broken 
links in the final complete graph. Different common 
nodes exist between the five graphs and are identified 
manually and tabled. For example, the Mechanical 
System node with ASSET_ID = RTU-1 exists in four of 
the five Arrows component graphs created: Gym-SA, 
Gym-RA_EA, OtherSpaces-SA and Electrical. To track 
repetitive nodes and eliminate duplication, graphs were 
imported in the following order: Gym-SA, Gym-RA_EA, 
OtherSpaces-SA, OtherSpaces-RA_EA, and Electrical.
Specific modifications to the Cypher query for each 
component graph to eliminate the common repetitive 
nodes and combine the graphs is illustrated by the 
example shown in Figure 7.

Figure 7: Example to show how the five component graphs are 
merged in Neo4j.

The figure shows two example graphs “Graph A” and 
“Graph B” with a common node “N”. The two graphs can 

Figure 6: A segment of the Gym-SA graph database created using the Arrows application.



be combined to create a single graph database in Neo4j. 
using the following process: 
1. The first Cypher query for “Graph A” imported from 

Arrows is executed in Neo4j to create the graph.  
2. The second Cypher query of “Graph B” also 

imported from Arrows is first modified in Neo4j 
before it is executed:  
a. At the beginning of the Cypher query of “Graph 

B”, a ‘Merge’ query is added to combine the 
common nodes “N” in “Graph B” and “Graph 
A” into a single node. The format for this 
additional query is: 
MERGE nxx: N{NodeProperty: “Property 
Value”} 

b. The Cypher query of “Graph B” is modified for 
the common node to eliminate the creation of a 
duplicate. For example, the node creation 
command nxx: N{NodeProperty: “Property 
Value”} would be changed to only ‘nxx’, since 
all the details of that node are already defined in 
the ‘Merge’ query added earlier. 

c. The modified Cypher query of “Graph B” is then 
executed to create a combined graph database of 
“Graph A” and “Graph B” without any duplicate 
nodes.     

In Step 5, the combined Neo4j graph database customized 
with systems-centric properties is queried to filter and 
identify specific components of Zone 4 mechanical 
system necessary to be visualized during performing a 
standard maintenance task, or to address a maintenance 
emergency. Facility staff can execute pre-defined Cypher 
queries or create new ones to isolate and display nodes 
and edges of mechanical components associated with the 
maintenance task or are contributing to or impacted by the 
emergency. Using the Cypher queries, sub-graph 
databases can be isolated that contains the required asset 
and space nodes along with their relationship. The 
Asset_IDs of the identified assets in these sub-graphs are 
then extracted and exported to a csv file format using a 
Cypher query. An example Cypher query to export Asset 
IDs of nodes with same labels to a csv file format is shown 
in table 1. 
 

Table 1: Cypher query to export graph as CSV 

Cypher Query 
RETURN a.ASSET_ID as Asset ID 
CALL apoc.export.csv.query(query, "file name.csv", {})  

 

In parallel, using the Navisworks case study a search set 
is created to select a building system element in the model 
using the search rule “Category = ASSET 
PROPERTIES”, “Property = ASSET_ID”, “Condition = 
contains”, and “Value = Duct-SA01”. This search set is 
exported out of Navisworks as an XML file. This step is 
done to keep the XML schema intact when modifying the 
XML and importing it back to Navisworks in the next 
step. Once the excel file from neo4j and XML from 
Navisworks are obtained, Python code is used to modify 
the XML file to include additional search rules that have 
the “Value” field equal to the ASSET_IDs present in the 

excel file. The pseudo-code for this python code is 
provided in table 2. Once the XML file is modified it is 
saved and imported back into the Navisworks case study 
model.  
 

Table 2: Pseudo-code to modify an XML file 

Pseudo-code to modify an XML file 
1:    df  Import Excel File 
2:    tree  Import XML File 
3:    a  Find in tree child name “conditions” 
4:    Loop for each value to ASSET_ID in df 
5:               i  ASSET_ID 
6:               c  Find in tree child name “condition” 
with attribute “flags” value as “10” 
7:               dupe  Copy c 
8:               Set dupe attribute “flags” value as “74”  
9:               Set dupe’s third child value as i 
10:             Append dupe to a 
11:   Save modified XML 

 

The following section describes an example maintenance 
scenario and the required Cypher query to identify the 
mechanical system components contributing to or 
impacted by the scenario. 

Systems-Centric Analysis of Zone-4 Mechanical 
System using the Graph Database 
To test the graph database, a system-centric query was 
performed to identify related nodes and relationships 
associated with a facility maintenance scenario. The 
objective of the query was to search and identify the assets 
and spaces needed to be visualized to perform the 
maintenance task. 
Scenario: A facility manager has to switch off the RTU-1 
unit (Mechanical Equipment) for regular maintenance.  
The circuit number (Electrical Equipment) that controls 
the RTU-1 unit and the panel number (Electrical 
Equipment) in which the circuit resides need to be 
identified. The facility manager also needs to determine 
the floor and the room where the electrical panel and 
RTU-1 are located. The Cypher query created in Neo4j to 
perform the search on graph database is shown in table 3. 
 

Table 3: Cypher query to perform search for proposed 
scenario 

Cypher Query: 
Match (a: ‘Mechanical Equipment’ 
{ASSET_ID: 'RTU-1'}) – [:LOCATION_CODE] -
> (b) 
Match (a) – [:CONNECTED_TO] -> (c: ‘Electrical 
Equipment’) 
Match (c)-[:EMBEDDED_IN]->(d: ‘Electrical 
Equipment’) 
Match (d)-[:LOCATION_CODE]->(e:Room) 
Return a, b, c, d, e 

 

The cypher query uses 4 “Match” commands and requests 
5 nodes and 4 relationships as output.  
An alternative Cypher query to perform the same search 
and return the same results using a single “Match” 
command is shown in table 4.  
 



Table 4: Alternative Cypher query to perform search

Alternate Cypher Query:
Match (a)<- [:LOCATION_CODE] - (b: ‘Mechanical
Equipment’{ASSET_ID: 'RTU-1'}) –
[:CONNECTED_TO] -> (c: ‘Electrical Equipment’) -
[:EMBEDDED_IN]->(d: ‘Electrical Equipment’)–
[:LOCATION_CODE]-> (e:Room)
Return a, b, c, d, e

Figure 8: Highlighted components in the Navisworks model 
based on Neo4j scenario query.

The Python code is executed, and the XML file is 
modified. The assets corresponding to the neo4j sub-
graph are isolated in the Navisworks model as shown in 
figure 8.
Any Cypher search query can be saved under a search 
phrase and description using Bloom within Neo4j. Bloom 
is a data visualization tool from Neo4j to explore and 
interact freely with the Neo4j graph database (Bloom, 
2018). By saving different search queries for different 
maintenance scenarios using meaningful save phrases, 
faculty managers can use Bloom to execute any query to 
quickly identify components of their graph database 
without the need for coding. The need of Cypher coding 
by facility managers to query the graph database can be 
eliminated and pre-defined search phrases with 
predefined Cypher queries can be used every time the 
same information needs to be identified.

Dynamic Data
The digital twin developed by authors is a static-based 
twin. Generally speaking, a digital twin is a virtual 
representation of a physical object, system, or process that 
allows for real-time analysis, monitoring, and 
optimization. While digital twins are often associated 
with dynamic live data, it is important to note that this is 
not always the case. In fact, there is no standard definition 
of what a digital twin actually is. By providing a virtual 
model of a physical object or system, digital twins can 
help to optimize performance, reduce costs, and improve 
safety. Dynamic ive data is not in the scope of this paper, 
as the developed digital twin is a representation of a 
building assets only focusing on systems-centric static 
data to achieve the objective of the research. However, 
dynamic data can also be linked to the developed graph 
database from an external storage source. While this may 

not be real-time data, it is often close to real-time and 
allows for a more accurate understanding of how a 
physical object or system is performing.

Conclusion
The graph-based digital twin was tested to perform a 
systems-centric search to identify impacted building 
system components during a typical maintenance 
scenario. The twin graph database was queried to identify 
the circuit and electrical panel numbers associated with 
the roof top unit (RTU-1) and to determine their location 
in the building. The query returned the required 
information necessary to complete the maintenance task. 
Facility Management (FM) staff can also utilize these 
searches to accurately determine impacts across the 
facility and develop strategies to respond rapidly and in 
real-time to any emergency by visualizing how systems 
interact with one another and with building spaces and 
their occupants.
The graph ontology developed is utilized as a blueprint 
for creating the graph database of the selected case study 
maintaining the consistency of the type data associated 
with it. The added advantage of the developed graph 
ontology is that it is dynamic and can be expanded in the 
future to define more nodes (interfaces) and relationships. 
Sensors and their relationships with existing assets and 
spaces can be defined to expand the developed ontology
to include dynamic live data. The graph database 
developed is also flexible to make any changes or add 
extra components with ease, similar to the process of 
merging individual component graphs in this research. 
This makes it easier if the need arises to expand the 
ontology and to update the existing graph database 
accordingly.
Future research will also aim at a more
streamlined/automated approach to link the graph 
database with the 3D model. This will involve creating an 
integrated platform, possibly a web application using 
.NET framework. The framework will host the 3D model
using Autodesk Platform Services and connect it directly 
with the Neo4j graph database, so that users can query the 
graph directly from the web application. The proposed
web application will provide users with an integrated 
solution to query and view assets and their data in a single 
solution.
The authors concur with Durão et al., (Durão et al., 2018)
that more digital twin implementation research is needed 
as it would benefit the AEC industry in accelerating the 
evolution of digital twins. Various entities have reported 
and defined a multi-level scale of a digital twin maturity 
implementation. For example, Autodesk (n.d.) has 
defined five levels of maturity for a digital twin
implementation: (1) Descriptive Twin, (2) Informative 
Twin, (3) Predictive Twin, (4) Comprehensive Twin, and 
(5) Autonomous Twin. Based on this definition, the 
authors have implemented a Descriptive graph-based 
digital twin. The Descriptive twin is limited to collecting 
and visualizing the data through the graph model and the 
associated query searches (What happened?). The work 



presented here will be expanded in the future to integrate 
real-time data collected from sensors. The maturity level 
of the digital twin implementation will also be expanded 
to an Informative level to allow to generate insights 
through aggregating and analyzing the data (Why did it 
happen?). An Informative digital twin will need to be 
supported by expanding the proposed ontology with new 
labels (e.g. to allow for sensor representation), and new 
relationship types.  
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