2023 European Conference on Computing in Construction

40th International CIB W78 Conference
Heraklion, Crete, Greece
July 10-12, 2023

International Council
for Research and Innovation
in Building and Construction

&

ciklU18 -

A PROPOSED SYSTEMS-CENTRIC ONTOLOGY FOR A GRAPH-BASED DIGITAL
TWIN
Akhileswar Yanamala', Ashit Harode', and Walid Thabet' PhD, CM-BIM
'Virginia Tech, Blacksburg, VA, USA

Abstract

This research utilizes the Neo4;j platform to create a graph
database to represent the graphical components of a
facility model and their spatial relationships. A graph-
based digital twin is proposed for a 2-story facility by
embedding systems-centric static data into the graph and
linking it to the building’s Navisworks BIM using a
python script. The outputs of this study include a new
ontology for creating graph-based digital twins,
implementation of the graph using Neo4j, and a python
script to link the graph to the model. Linking dynamic
data to the graph model is explored and discussed. This

approach can improve the representation and
understanding of facility systems and their
interrelationships.
Introduction

To improve facility management productivity, increase
proactive maintenance decision-making, and reduce cost
it is necessary to have access to operation and
maintenance (O&M) data and information (Chen et al.,
2020, Becerik-Gerber et al., 2012). This objective can be
supported by using Building Information Modelling
(BIM) to act as a central repository of information. But
for BIM to be an effective tool to support facility
management and operations it needs to be configured to
provide critical O&M information along with as-built
details of the facility and assets within it. Such BIMs are
also known as FM-Capable BIMs or FM-enabled BIMs
(Becerik-Gerber et al., 2012, Ensafi et al., 2022). Sacks et
al., 2018, Sadeghi et al. (2018), and Yang and Ergan
(2017), provided examples where data embedded in the
handover BIMs focused only on space and asset
management. They showed that the utilization of FM-
Capable BIM to support facility management and
maintenance is slow and is in its infancy.

Facility managers operate with a systems-driven point of
view of their facility (Sacks et al., 2018). This means that
they visually try to identify building systems to determine
components' relationships and dependencies which would
allow for faster and more informed decision-making
during facility emergencies (Ensafi et al., 2022). Ensafi et
al. (2022) defined and developed requirements and
procedures for configuring system-centric as-built
models. The research work defined four characteristics of
a handover BIM model that can effectively support
facility management and maintenance: (i) data-centric
model, (ii) complete and accurate model graphics, (iii)
systems-centric model, and (iv) ability to link the model
to the owner’s facility management system. As part of
their validation, an FM-Capable system-centric BIM

893

model was developed within Navisworks along with
systems-centric ~ data standards. System-centric
viewpoints were created using the inbuilt “Find Items”
functionality of Navisworks. The model was tested by
identifying building systems components related to two
emergency scenarios. Though the research by Ensafi et al.
(2022) is relevant and effective in developing a Systems-
Centric FM-Capable BIM, there are areas of improvement
in its application. This is mainly due to how systems-
centric data is stored and accessed in Navisworks, the
software used for validating their study and a preferred
software for the construction industry.

The area of improvement related to the storage of
systems-centric data when utilizing tools such as
Navisworks for creating systems-centric FM-Capable
BIM remains unexplored. The systems-centric search of
Navisworks model elements using the “Find Item”
functionality works similarly to a search query in a
relational database (tabular database). One of the
limitations of relational databases is that, complicated
relationships between individual objects become
expensive to calculate and represent requiring a large
number of joins between databases (Batra and Tyagi,
2012). Given that building assets are related to each other
through systems, sub-systems, and locations, using only
relational database-based queries to isolate elements
would result in sub-par results, leading to sub-par
utilization of FM-Capable BIM in facility maintenance
and management.

To overcome this limitation the authors in this paper
propose the use of a graph database to store system-
centric data for FM-Capable BIM to perform searches
required to improve proactive maintenance decision-
making and to respond to a maintenance emergency.
Graph databases provide equal importance to the
relationship between the stored objects and the objects
themselves (Batra and Tyagi, 2012).

Literature Review

Resource Description Framework (RDF) and Labeled
Property Graphs (LPG) are two popular graph models.
RDF is a World Wide Web Consortium standard model
with ontologies and vocabularies openly available. Data
in RDF is linked using a subject-predicate-object structure
where the subject is a node, the predicate is an
edge/relationship, and the object can be another node or a
literal value (Baken, 2020). The nodes and edges in an
RDF graph are named using an HTTP Unique Resource
Identifier (URI). This HTTP URI allows the created RDF
graphs to be seamlessly accessed by other stakeholders on
the project. Therefore, RDF allows for the integration of

many different types of data from multiple stakeholders,
improving the interoperability of the created graph
database.

On the other hand, LPG, natively used by the Neo4j
platform used in this current research, has nodes and
edges in its internal structure. The main difference
between the LPG and RDF is that nodes and edges in LPG
are capable of carrying properties within themselves in a
key-value pair. Whereas, in RDF properties of a node can
be described using additional nodes or literal values and
relationships. This makes LPG graphs more compact in
structure than the RDF (Baken, 2020). (Baken, 2020) after
conducting qualitative and quantitative analysis of both
mode graphs concluded that for real time operation LPG
performed better than RDF.

Since the objective of this paper is to create a graph-based
Digital Twin, the authors adopted a graph model that
could easily represent the nodes as assets/spaces with
systems-centric properties and can assist in the integration
and navigation of real-time operational data. LPG allowed
for embedding properties in nodes, making nodes a better
representation of assets and allowed for a faster traversal
of the network to support real-time data. For this paper the
authors explored the LPG based graph model created
using Neo4;.

The authors acknowledge the superiority of RDF based
graph model in creating an interoperable graph database
when compared to LPG due to its open-source ontology
and use of HTTP URI. But since the objective of this
research was not to test the interoperability of the created
graph database but rather to test the useability of the graph
database to accurately represent the building system and
support real-time data integration LPG based Neo4j was
chosen in this research over RDF.

The basic structure of graph databases is defined by nodes
that represent the entity, edges that represent the
relationship between the nodes, and properties. In the
graph ecosystem, node and edge -elements, their
properties, and the relations between the elements can be
defined as an ontology (McComb, 2019). Dermeval et al.
(2016) have investigated multiple literatures and found
empirical evidence in the field of RE (Requirements
Engineering) for the benefits of using an ontology,
focused on reducing ambiguity, inconsistency, and
incompleteness. Stanciu (2021) along with
RealEstateCore Consortium, developed a digital twins
definition Language-based ontology to support the
creation of digital twins of smart buildings in the real
estate industry using graphs. Their ontology comprised of
four main sets of interfaces including “Asset”,
“LogicalDevice”, “Capability”, and “Space”, six
additional base interfaces including “Agent”, “Building
Component”, “Collection”, “Document”, “Event”, and

“Role”, and nine relationships including
“isPartOf/hasPart”, “hasCapability”, “includedIn”,
“locatedIn”, “hosts”, “serves”, “feeds”,

“hasBuildingComponent”, and “owns”. Gnecco et al.
(2023) defined their own ontology to create a graph-based
digital twin generated from a Revit model using Dynamo.
The work investigated capturing real-time data from

894

sensors installed in an academic lab space as well as from
devices attached to occupants in that space. A Neo4lJ
graph was used to represent the relations between the
different entities such as people, environmental and
wearable sensors, the supporting equipment used, and the
facility. The ontology used four relationship types,
including: IsPartOf, IsMontoredBy, TakesPartin, and
IsLinkedTo.

Even though graph databases do not replace relational
databases, they are especially suitable for storing data that
contain many related data (Fernandes and Bernardino,
2018). The use of graph databases has been increasing in
areas such as Semantic Web and Social Network Analysis
(Fernandes and Bernardino, 2018).

The use of graph databases has also been explored in the
construction industry. Hor et al. (2018) utilized graph
databases as an efficient way of representing and
visualizing real-world data. They proposed an
architectural design that focuses on the integration of
BIM-GIS data with Resource Description Framework
graph databases with querying and filtering capabilities.
This integration was validated by applying the developed
graph database to an intelligent urban mobility web
application on a game engine platform. Similarly,
Malinverni et al. (2020) explored the use of a graph
database to integrate both BIM and Geographic
information System (GIS) data into a single graph. Other
than just the storage of data, graph database has also been
used to automate clash correction sequences based on a
clash dependency network. Hu et al. (2020) proposed a
graph-based network theory to improve the clash
correction sequence. The paper utilized the graph
database to analyze clash dependencies to predict the
most optimum sequence for clash resolution and reduce
the number of elements required to move to generate a
clash-free model. Use of graph databases has also been
explored in the creation of digital twins for the
construction industry. Abdelrahman et al. (2022) utilized
a graph database to combine spatial data extracted from
BIM, the indoor location of the occupants, and thermal
comfort feedback from the occupants. The database is
then used as input for a classification machine learning
algorithm to predict occupant thermal preference with a
14%-28% accuracy improvement over conventional
thermal preference prediction input variables.

Durao et al. (2018) concluded that more applied research
needs to be conducted in the implementation of digital
twin. The authors in this paper support such notion and,
by utilizing graph database to represent building systems,
are proposing a graph-based digital twin to enhance
building systems visualization to improve facility
operations and provide better response to maintenance
emergencies. The proposed research addresses three
main questions: (1) How can a graph database be
implemented to allow facility managers perform better
systems-centric ~ searches to improve proactive
maintenance decision-making and better respond to
emergencies? (2) What is the required graph ontology to
facilitate the creation of a systems-centric graph database?
and (3) How can the proposed graph database be utilized

to implement a graph-based digital twin to support facility
maintenance?

The following sections describe the case study used for
implementation, and the research methods and steps
proposed for developing the graph ontology and the
graph-based digital twin. An example maintenance
scenario search queries are presented to test the graph
model. Finally, the paper concludes with summarizing the
results and proposed future work.

Case Study Overview

The case study used in this research is an elementary and
middle school two-story building, with a total gross area
of 122,525 square feet. The building has spaces for
classrooms, labs, studios, administrative offices,
cafeteria, kitchen, and a gymnasium with some ancillary
spaces. Using the 2D plans and the Revit model, the
mechanical system was analyzed, and the building was
divided into four (4) thermal mechanical zones based on
the different configurations of the mechanical system
components used to cool, heat, and ventilate the different
spaces. All classrooms, labs, studios, and main
administrative offices are designated as Zone 1. This zone
employs four Dedicated Outdoor Air System (DOAS)
units located on the roof and are the primary system
providing 100% fresh outside air. A Variable Refrigerant
Flow (VRF) system with several condenser units on the
roof and several terminal units in the various spaces of
Zone-1 are used as a secondary system allowing for
localized temperature conditioning and control. The
kitchen, cafeteria, and gymnasium areas are served by
three separate packaged Rooftop Air Handling Units
(RTUs) and comprise Zones 2, 3 and 4 respectively. The
RTUs provide fresh intake air into the building that is
mixed with a percentage of return air for energy savings.

The work presented in this paper will focus on Zone 4
which comprises the Gymnasium along with additional
spaces including locker rooms and bathrooms for boys
and girls, an office space, a storage room, and a small
corridor. A packaged Rooftop Unit (RTU-1) provides
supply air to the Gymnasium and other spaces. A
percentage of air from the gymnasium space is returned
and mixed with the outside air for energy savings. The
other percentage is exhausted using two gravity roof
ventilators (GRH-1 and GRH-2) located in the
gymnasium ceiling. The gravity roof ventilators GRH-1
& GRH-2 have no moving parts and provide ventilation
for the gymnasium space by removing heat (summer) and
moisture (winter). Air from the toilets and locker rooms
in Zone 4 is 100% exhausted using an exhaust fan (EF-6)
located on the roof of the 2nd floor and directly above the
gymnasium toilets. There are transfer ducts connecting
the office and the storage room with the adjoining corridor
to allow free air flow between these spaces providing for
natural ventilation.

Figure 2 shows detailed 3D Revit model of the
mechanical system for Zone 4 that will be represented
using our graph-based digital twin. All equipment,
terminal units (grilles and diffusers), duct and duct fittings
3D components were assigned a unique ID. Unique IDs

895

for equipment (e.g. RTU-1 for roof top units) were
extracted from the 2D design plans. Ducts, duct fittings
and terminal units are assigned a unique ID defined by the
authors based on the mechanical subsystem that the
component belongs to. For example, duct components
belonging to the supply air (SA) system are provided a
sequential number with a SA designation (Duct-SA01
through Duct-SA27), whereas components belonging to
the return air (RA) and exhaust air (EA) systems are
numbered as Duct-RAO1 to Duct-RA19 and Duct-EA0Q1
to Duct-EA28 respectively. Duct fittings are numbered
similarly to ducts. For example, Duct Fitt-SA0O1 through
Duct Fitt-SA-34 were used for all duct fittings belonging
to the supply air (SA) system. Grilles are numbered as
GR-SAO01 to GR-SA12, GR-RAO01 to GR-RA02, and GR-
EAO01 to GR-EAO02 for supply air, return air, and exhaust
air systems respectively. Supply diffusers, return diffusers
and exhaust diffusers are also numbered as Diff-SA01 to
Diff-SA06, Diff-RA01 to Diff-RA04, and Diff-EA01 to
Diff-EA06 respectively.

GRSAU

GRS

ol

X UGR-SANE

DUt RADG

Duet-RAILZ

.

DRk

(LR

Figure 2: 3D Revit model of Zone 4 mechanical system
showing components with their unique ID.

Research Methods
Define Data Define Graph Create Graph
Model | ModelOntology |~ Models using
ARROWS

n Upload and E Data
Integrate Models in . o
Neodj Platform — | Visualizationand
Analysis

using CYPHER

Figure 3: Methodology steps.

Figure 3 shows a 5-step methodology that includes (1) a
systems-centric data model and (2) a proposed graph
ontology (3-4) to develop the graph-based digital model
and (5) perform the systems-centric analysis using the
case study.

In Step 1, the data model described in Figure 4 is used to
define the different data parameters for typical
components (or instances) of the mechanical system.
Parameters could be static providing record data about the
instance, or dynamic (telemetry) providing real-time
performance data about the instance. The data model does
not describe any relationships between instances of the

graph.
Mechanical Equipment Electrical Equipment
Static

Static
ASSET_ID ASSET_ID
ASSET_TAG ASSET_TAG
ASSET_DESCRIPTION ASSET_DESCRIPTION
SYSTEM
SYSTEM_TYPE
SYSTEM_CLASSIFICATION
SYSTEM_NAME
ASSET_GROUP

Static
ASSET_ID
ASSET_DESCRIPTION
SYSTEM
SYSTEM_TYPE
SYSTEM_CLASSIFICATION
SYSTEM_NAME
ASSET_GROUP

Air Terminals

Static
ASSET_ID
ASSET_TAG
ASSET_DESCRIPTION

Duct Fittings

Static
ASSET_ID
ASSET_DESCRIPTION
SYSTEM
SYSTEM_TYPE
SYSTEM_CLASSIFICATION|
SYSTEM_NAME
ASSET_GROUP

Figure 4: Data model for Zone 4 mechanical system.

Step 2 defines a graph model ontology structure using
nodes (vertices) and relationships (edges) to describe the
different instances of Zone 4 mechanical system, the
various relationship types, and their data model. The
proposed ontology shown in figure 5 is developed to
support a systems-centric view of the facility through a
graph database and consists of a main set of interfaces and
a number of relationship types. Instances of these
interfaces are defined as nodes using a unique label.
Nodes are assigned properties based on the data model
defined in Figure 4. Two interfaces are currently defined:
1. Asset: An integral component of the facility that is
not part of its structure. This includes mechanical
equipment, air terminals (grilles and diffusers),
electrical equipment (electric panels and circuits),
ducts, and duct fittings.

LOCATION_SERVED

./

CICICIONCICIOIO

CONNECTED_TO

2. Space: A continuous area or expanse. Three types of
spaces are proposed including rooms, floors, and
zones.

Nodes are interconnected using relationships that maybe

assigned properties. We define five relationship types:

1. LOCATION_SERVED: Defines the coverage or
service provided by a given asset (including
equipment, ducts, duct fittings and air terminals) to
one or more spaces. For example, a Roof Top Unit
(RTU) may provide heating, cooling, and ventilation
service to a number of rooms, floors or zones in a
building.

2. EQUIPMENT SERVED: Defines the support
provided or impact of one equipment on another. For
example, a fan may provide support to the Roof Top
Unit (RTU).

3. LOCATION_CODE: Defines the space in which an
asset (equipment and air terminals only) is physically
located or installed. For example, a fan maybe
located in a specific room within a floor and a zone.

4. CONNECTED_TO: Identifies the asset that another
asset is connected to. For example, a duct component
is connected to another duct component or a terminal
unit (e.g. diffuser).

5. EMBEDDED IN: Identifies the asset that hosts
another asset.

The arrow direction for the LOCATION_ SERVED, and
LOCATION_CODE relationships is always from the
specific asset node to its respective space node. For the
CONNECTED_TO relationship type between different
assets including, equipment, ducts/duct fittings and air
terminals, the direction of the arrows follows the direction
of airflow for the supply, return or exhaust air systems.
The arrow direction orientation for other
CONNECTED_TO relationships such as equipment and
panels is from equipment to circuits and panels. For
EQUIPMENT SERVED relationships, the arrow
direction is from the equipment providing service (e.g.
fan) to the equipment being served (e.g. RTU or AHU).

In Step 3, the complete graph database for Zone-4
mechanical system was generated using the Arrows
application (Arrows, 2020), a JavaScript-based tool from
Neo4j labs. The application allows to graphically create
graph nodes and edges and attach data such as node labels,

EMBEDDED_IN @

Figure 5: Graph Model Ontology.

896

edge types, and node/edge properties. Arrows allows to
export graph models into different formats including
Cypher, JSON, PNG, SVG and GraphQL. Five separate
component graph databases were first created: Gym-SA,
Gym-RA_EA, OtherSpaces-SA, OtherSpaces-RA_EA
and Electrical. This allowed to focus on the specific scope
of each component graph to ensure accuracy and
eliminate errors.

Figure 6 depicts a segment of the Gym-SA graph
database. The graph shows the RTU-1 equipment node
and its properties, and several defined relationships or
edges with other nodes, including Room, Floor, Zone,
Ducts, Duct Fittings, and Electrical Equipment, also with
their own properties.

The RTU-1 (Node: Mechanical Equipment) has two
identification properties and six systems-centric
properties defined. It is connected to DUCT-SA01 (Node:
Ducts) through a CONNECTED_TO relationship type.
DUCT-SAO1 has one identification property and four
systems-centric properties defined. The RTU-1 location is
defined using two LOCATION_CODE relationships
pointing at two space node types (Node: Floor and Node:
Zone) with a single property for each node: FLOOR_NO
= Roof and ZONE NO = Zone-4. The space that the
RTU-1 serves (i.e. provides service to) is defined using a
LOCATION _SERVED relationship type and is
associated with one space node type (Node: Room) with
a single property: ROOM_NO = Gymnasium. To identify
the electrical panel and circuit number that controls the
electric supply to the roof top unit, the RTU-1 is
connected to the U-LMPB-MEMA 1 circuit (Node:
Electrical Equipment) using a CONNECTED TO
relationship with an assigned property denoting the circuit
number. The circuit node is connected to the U-LMPB-
MEMA electrical panel (Node: Electrical Equipment)
also with a CONNECTED_TO relationship type. The
panel location is defined using a LOCATION CODE
relationship and is associated with one space node type
(Node: Room) with a single property: FLOOR NO =
ELEC 203.

ASSET_ID: U-LMPB-MEMA_1

ASSET_TAG: GALY-CKT-Second-U-LMPB-MEMA_1

ASSET_DESCRIPTION: Electrical Circuit

ASSET_ID: RTU-1 \‘00
ASSET_TAG: CALV-AHU-RT-Roof-RTU-1 'q]‘
ASSET_DESCRIPTION: Roof Top Unit ‘0
SYSTEM: Mechanical System &
SYSTEM_TYPE: Alr Sysiem &
SYSTEM_CLASSIFICATION: Supply Air, Return Air ‘\t\('/ ASSET_ID: Duct-SAD1
SYSTEM_NAME: RTU Supply Air, RTU Return Air & ASSET_DESCRIPTION: Supply Air Duct

ASSET_GROUP: AHU
SYSTEM_TYPE: Alr System
SYSTEM_CLASSIFICATION: Supply Air

e ©
oo

R (350
Neoa &

T.
kS
[]
I+
IJJ
=
@
o
8
@
o
Qo
g
o
Loy
(&)
4]‘,0,\,
ATION_SERVED =

<
&

ASSET_GROUP: CKT
.‘ C““"

EMB;DDED e

C‘ooe
\ ASSET_ID: U-LMPB-MEMA
ASSET_TAG: GALV-EP-Second-U-LMPB-MEMA
< LOCATION_CODE ASSET_DESCRIPTION; Electrical Panel
ASSET_GROUP: EP

SYSTENM: Mechanical System

4 3¢
o " SYSTEM_NAME: RTU Supply Air
NN,
o CrED 4 -

// \C%,

Arrows automatically generates a Cypher query for each
graph. In Step 4, the Arrows Cypher query for each of the
five component graph databases was imported and
merged in the Neo4j platform to create the complete graph
model. Nodes that are common (repetitive) are combined
to avoid creation of duplicate nodes and eliminate broken
links in the final complete graph. Different common
nodes exist between the five graphs and are identified
manually and tabled. For example, the Mechanical
System node with ASSET ID = RTU-1 exists in four of
the five Arrows component graphs created: Gym-SA,
Gym-RA_EA, OtherSpaces-SA and Electrical. To track
repetitive nodes and eliminate duplication, graphs were
imported in the following order: Gym-SA, Gym-RA_EA,
OtherSpaces-SA, OtherSpaces-RA_EA, and Electrical.
Specific modifications to the Cypher query for each
component graph to eliminate the common repetitive
nodes and combine the graphs is illustrated by the
example shown in Figure 7.

Graph A

Graph B

@ Common Node

Common Node

Combined Graph

O Q

Figure 7: Example to show how the five component graphs are
merged in Neodj.

The figure shows two example graphs “Graph A” and
“Graph B” with a common node “N”. The two graphs can

ROOM_NO: ELEC 203

(
O, 4/‘/0

FLOOR_NO: Second

ASBET_ID: Duct Fitt-8A01

a
o
-«
‘L\s
‘Q,
%

LOGATION.
ZONE_NO: Zone-4

)«

ROOM_NO: Gymnasium

)
ASSET_DESGRIPTION: Supply Afr Duct Fitting
SYSTEM: Mechanical System
LOCATION_GODE. ___________ SYSTEM_TYPE: Air System
SERVED SYSTEM_CLASSIFICATION: Supply Air

SYSTEM_NAME: RTU Supply Air

Figure 6: A segment of the Gym-SA graph database created using the Arrows application.

be combined to create a single graph database in Neo4j.
using the following process:

1. The first Cypher query for “Graph A” imported from
Arrows is executed in Neo4j to create the graph.

2. The second Cypher query of “Graph B” also
imported from Arrows is first modified in Neo4;j
before it is executed:

a. At the beginning of the Cypher query of “Graph

B”, a ‘Merge’ query is added to combine the

common nodes “N” in “Graph B” and “Graph

A” into a single node. The format for this

additional query is:

MERGE nxx: N{NodeProperty:

Value”}

The Cypher query of “Graph B” is modified for

the common node to eliminate the creation of a

duplicate. For example, the node creation

command nxx: N{NodeProperty: ‘Property

Value”} would be changed to only ‘nxx’, since

all the details of that node are already defined in

the ‘Merge’ query added earlier.

c. The modified Cypher query of “Graph B” is then
executed to create a combined graph database of
“Graph A” and “Graph B” without any duplicate
nodes.

“Property

In Step 5, the combined Neo4j graph database customized
with systems-centric properties is queried to filter and
identify specific components of Zone 4 mechanical
system necessary to be visualized during performing a
standard maintenance task, or to address a maintenance
emergency. Facility staff can execute pre-defined Cypher
queries or create new ones to isolate and display nodes
and edges of mechanical components associated with the
maintenance task or are contributing to or impacted by the
emergency. Using the Cypher queries, sub-graph
databases can be isolated that contains the required asset
and space nodes along with their relationship. The
Asset_IDs of the identified assets in these sub-graphs are
then extracted and exported to a csv file format using a
Cypher query. An example Cypher query to export Asset
IDs of nodes with same labels to a csv file format is shown
in table 1.

Table 1: Cypher query to export graph as CSV

excel file. The pseudo-code for this python code is
provided in table 2. Once the XML file is modified it is
saved and imported back into the Navisworks case study
model.

Table 2: Pseudo-code to modify an XML file
Pseudo-code to modify an XML file

1: df < Import Excel File

2: tree < Import XML File

3: a « Find in tree child name “conditions”

4: Loop for each value to ASSET ID in df

5: i< ASSET ID

6: ¢ « Find in tree child name “condition”
with attribute “flags” value as “10”

7: dupe < Copy ¢

8: Set dupe attribute “flags” value as “74”
9: Set dupe’s third child value as i

10: Append dupe to a

11: Save modified XML

The following section describes an example maintenance
scenario and the required Cypher query to identify the
mechanical system components contributing to or
impacted by the scenario.

Systems-Centric Analysis of Zone-4 Mechanical
System using the Graph Database

To test the graph database, a system-centric query was
performed to identify related nodes and relationships
associated with a facility maintenance scenario. The
objective of the query was to search and identify the assets
and spaces needed to be visualized to perform the
maintenance task.

Scenario: A facility manager has to switch off the RTU-1
unit (Mechanical Equipment) for regular maintenance.
The circuit number (Electrical Equipment) that controls
the RTU-1 unit and the panel number (Electrical
Equipment) in which the circuit resides need to be
identified. The facility manager also needs to determine
the floor and the room where the electrical panel and
RTU-1 are located. The Cypher query created in Neo4;j to
perform the search on graph database is shown in table 3.

Table 3: Cypher query to perform search for proposed
scenario

Cypher Query

Cypher Query:

RETURN a.ASSET_ID as Asset ID
CALL apoc.export.csv.query(query, "file name.csv", {})

In parallel, using the Navisworks case study a search set
is created to select a building system element in the model
using the search rule “Category ASSET
PROPERTIES”, “Property = ASSET_ID”, “Condition =
contains”, and “Value = Duct-SA01”. This search set is
exported out of Navisworks as an XML file. This step is
done to keep the XML schema intact when modifying the
XML and importing it back to Navisworks in the next
step. Once the excel file from neo4j and XML from
Navisworks are obtained, Python code is used to modify
the XML file to include additional search rules that have
the “Value” field equal to the ASSET IDs present in the

898

Match (a: ‘Mechanical Equipment’

{ASSET ID: 'RTU-1'}) — [:LOCATION_CODE] -
> (b)

Match (a) — [:CONNECTED_ TO] -> (c: ‘Electrical
Equipment’)

Match (c)-[:EMBEDDED_IN]->(d: ‘Electrical
Equipment’)

Match (d)-[:LOCATION_CODE]->(e:Room)
Returna, b, c, d, e

The cypher query uses 4 “Match” commands and requests
5 nodes and 4 relationships as output.

An alternative Cypher query to perform the same search
and return the same results using a single “Match”
command is shown in table 4.

Table 4: Alternative Cypher query to perform search

Alternate Cypher Query:

Match (a)<- [:LOCATION CODE] - (b: ‘Mechanical
Equipment’ {ASSET ID: 'RTU-1"}) —
[:CONNECTED_TO] -> (c: ‘Electrical Equipment”) -
[:EMBEDDED_IN]->(d: ‘Electrical Equipment’)—
[:LOCATION_CODE]-> (e:Room)

Returna, b, ¢, d, e

U-LMPE-MEMA
(Electrical Equipment - Panel)

U-LMPB-MEMA_I

RTU-1
(Mechanlcal Equipment) (Electrical Equipment - Clrcult)

o
&

ectrical Equipment - Clrcult

&7 3
/ ‘ P
: ’ @\:&

Figure 8: nghllghted components in the Navisworks model
based on Neo4j scenario query.
The Python code is executed, and the XML file is
modified. The assets corresponding to the neo4j sub-
graph are isolated in the Navisworks model as shown in
figure 8.

-
(,
&

Room

Electrical Equipment - Panel

Any Cypher search query can be saved under a search
phrase and description using Bloom within Neo4j. Bloom
is a data visualization tool from Neo4j to explore and
interact freely with the Neo4j graph database (Bloom,
2018). By saving different search queries for different
maintenance scenarios using meaningful save phrases,
faculty managers can use Bloom to execute any query to
quickly identify components of their graph database
without the need for coding. The need of Cypher coding
by facility managers to query the graph database can be
eliminated and pre-defined search phrases with
predefined Cypher queries can be used every time the
same information needs to be identified.

Dynamic Data

The digital twin developed by authors is a static-based
twin. Generally speaking, a digital twin is a virtual
representation of a physical object, system, or process that
allows for real-time analysis, monitoring, and
optimization. While digital twins are often associated
with dynamic live data, it is important to note that this is
not always the case. In fact, there is no standard definition
of what a digital twin actually is. By providing a virtual
model of a physical object or system, digital twins can
help to optimize performance, reduce costs, and improve
safety. Dynamic ive data is not in the scope of this paper,
as the developed digital twin is a representation of a
building assets only focusing on systems-centric static
data to achieve the objective of the research. However,
dynamic data can also be linked to the developed graph
database from an external storage source. While this may

899

not be real-time data, it is often close to real-time and
allows for a more accurate understanding of how a
physical object or system is performing.

Conclusion

The graph-based digital twin was tested to perform a
systems-centric search to identify impacted building
system components during a typical maintenance
scenario. The twin graph database was queried to identify
the circuit and electrical panel numbers associated with
the roof top unit (RTU-1) and to determine their location
in the building. The query returned the required
information necessary to complete the maintenance task.

Facility Management (FM) staff can also utilize these
searches to accurately determine impacts across the
facility and develop strategies to respond rapidly and in
real-time to any emergency by visualizing how systems
interact with one another and with building spaces and
their occupants.

The graph ontology developed is utilized as a blueprint
for creating the graph database of the selected case study
maintaining the consistency of the type data associated
with it. The added advantage of the developed graph
ontology is that it is dynamic and can be expanded in the
future to define more nodes (interfaces) and relationships.
Sensors and their relationships with existing assets and
spaces can be defined to expand the developed ontology
to include dynamic live data. The graph database
developed is also flexible to make any changes or add
extra components with ease, similar to the process of
merging individual component graphs in this research.
This makes it easier if the need arises to expand the
ontology and to update the existing graph database
accordingly.

Future research will also aim at a more
streamlined/automated approach to link the graph
database with the 3D model. This will involve creating an
integrated platform, possibly a web application using
NET framework. The framework will host the 3D model
using Autodesk Platform Services and connect it directly
with the Neo4j graph database, so that users can query the
graph directly from the web application. The proposed
web application will provide users with an integrated
solution to query and view assets and their data in a single
solution.

The authors concur with Durdo et al., (Durdo et al., 2018)
that more digital twin implementation research is needed
as it would benefit the AEC industry in accelerating the
evolution of digital twins. Various entities have reported
and defined a multi-level scale of a digital twin maturity
implementation. For example, Autodesk (n.d.) has
defined five levels of maturity for a digital twin
implementation: (1) Descriptive Twin, (2) Informative
Twin, (3) Predictive Twin, (4) Comprehensive Twin, and
(5) Autonomous Twin. Based on this definition, the
authors have implemented a Descriptive graph-based
digital twin. The Descriptive twin is limited to collecting
and visualizing the data through the graph model and the
associated query searches (What happened?). The work

presented here will be expanded in the future to integrate
real-time data collected from sensors. The maturity level
of the digital twin implementation will also be expanded
to an Informative level to allow to generate insights
through aggregating and analyzing the data (Why did it
happen?). An Informative digital twin will need to be
supported by expanding the proposed ontology with new
labels (e.g. to allow for sensor representation), and new
relationship types.

References

Abdelrahman, M. M., Chong, A. & Miller, C. 2022.
Personal Thermal Comfort Models Using Digital
Twins: Preference Prediction With Bim-Extracted
Spatial-Temporal Proximity Data From Build2vec.
Building And Environment, 207, 108532.

Arrows. 2020. Arrows [Online]. Neo4j Labs. Available:
Https://Arrows.App/ [Accessed December 17, 2023].

Autodesk. N.D. Digital Twins In Construction,
Engineering & Architecture [Online]. Available:
Https://Www.Autodesk.Com/Solutions/Digital-

Twin/Architecture-Engineering-Construction
[Accessed December, 17 2022].

Baken, N. Linked Data For Smart Homes: Comparing Rdf
And Labeled Property Graphs. Ldac2020—8th Linked
Data In Architecture And Construction Workshop,
2020. 23-36.

Batra, S. & Tyagi, C. 2012. Comparative Analysis Of
Relational And Graph Databases. International Journal
Of Soft Computing And Engineering (Ijsce), 2, 509-
512.

Becerik-Gerber, B., Jazizadeh, F., Li, N. & Calis, G.
2012. Application Areas And Data Requirements For
Bim-Enabled Facilities Management. Journal Of
Construction Engineering And Management, 138, 431-
442.

Bloom, N. J. 2018. Bloom [Online]. Neo4j. Available:
Https://Neo4j.Com/Product/Bloom/ [Accessed
December 17, 2022].

Chen, W., Das, M., Chen, K. & Cheng, J. C. Ontology-
Based Data Integration And Sharing For Facility
Maintenance Management. Construction Research
Congress 2020: Computer Applications, 2020.
American Society Of Civil Engineers Reston, Va,
1353-1362.

Dermeval, D., Vilela, J., Bittencourt, 1. 1., Castro, J.,
Isotani, S., Brito, P. & Silva, A. 2016. Applications Of
Ontologies In Requirements Engineering: A
Systematic Review Of The Literature. Requirements
Engineering, 21, 405-437.

Durdo, L. F., Haag, S., Anderl, R., Schiitzer, K. & Zancul,
E. Digital Twin Requirements In The Context Of
Industry 4.0. Ifip International Conference On Product
Lifecycle Management, 2018. Springer, 204-214.

900

Ensafi, M., Harode, A. & Thabet, W. 2022. Developing
Systems-Centric As-Built Bims To Support Facility
Emergency Management: A Case Study Approach.
Automation In Construction, 133, 104003.

Fernandes, D. & Bernardino, J. 2018. Graph Databases
Comparison: Allegrograph, Arangodb, Infinitegraph,
Neo4j, And Orientdb.

Gnecco, V. M., Vittori, F. & Pisello, A. L. 2023. Digital
Twins For Decoding Human-Building Interaction In
Multi-Domain Test-Rooms For Environmental
Comfort And Energy Saving Via Graph
Representation. Energy And Buildings, 279, 112652.

Hor, A., Gunho, S., Claudio, P., Jadidi, M. & Afnan, A.
2018. A Semantic Graph Database For Bim-Gis
Integrated Information Model For An Intelligent Urban
Mobility Web Application. Isprs Annals Of
Photogrammetry, Remote Sensing & Spatial
Information Sciences, 4.

Hu, Y., Castro-Lacouture, D., Eastman, C. M. & Navathe,
S. B. 2020. Automatic Clash Correction Sequence
Optimization Using A Clash Dependency Network.
Automation In Construction, 115, 103205.

Malinverni, E. S., Naticchia, B., Lerma Garcia, J. L.,
Gorreja, A., Lopez Uriarte, J. & Di Stefano, F. 2020. A
Semantic Graph Database For The Interoperability Of
3d Gis Data. Applied Geomatics, 1-14.

Mccomb, D. 2019. Semantic Ontology: The Basics
[Online]. Available:
Https://Www.Semanticarts. Com/Semantic-Ontology-
The-Basics/ [Accessed December 11, 2022].

Sacks, R., Eastman, C., Lee, G. & Teicholz, P. 2018. Bim
Handbook: A Guide To Building Information
Modeling For Owners, Designers, Engineers,
Contractors, And Facility Managers, John Wiley &
Sons.

Sadeghi, M., Mehany, M. & Strong, K. Integrating
Building Information Models And Building Operation
Information Exchange Systems In A Decision Support
Framework For Facilities Management. Construction
Research Congress 2018, 2018. 770-779.

Stanciu, A. 2021. Realestatecore, A Smart Building
Ontology For Digital Twins, Is Now Available
[Online]. Internet Of Things Blog By Microsoft:
Microsoft. Available:
Https://Techcommunity.Microsoft. Com/T5/Internet-
Of-Things-Blog/Realestatecore-A-Smart-Building-
Ontology-For-Digital-Twins-Is/Ba-P/1914794
[Accessed December 12, 2022].

Yang, X. & Ergan, S. 2017. Bim For Fm: Information
Requirements To Support Hvac-Related Corrective
Maintenance. Journal Of Architectural Engineering,
23,04017023.

