
2023 European Conference on Computing in Construction
40th International CIB W78 Conference

Heraklion, Crete, Greece
July 10-12, 2023

REPRESENTING MODELICA MODELS AS KNOWLEDGE GRAPHS USING THE
MOONT ONTOLOGY

Elisabeth Eckstädt1, Karsten Menzel2, Hervé Pruvost1 and Dirk Mayer1

1Fraunhofer IIS/EAS, Dresden, Germany
2Institute of Construction Informatics, TU Dresden, Germany

Abstract
Model based design of building energy systems is
increasingly used to enable efficient design flows.
Different types of models have still to be converted
manually, which is time consuming and error-prone. This
turns out to be an obstacle for the integration of virtual
validation by system simulations. As a contribution for
automated conversion and translation of models, an
ontology (MoOnt) has been developed that is utilized to
represent Modelica simulation models as knowledge
graphs (KG). An automated transcriptor that extracts KG
from Modelica models has been implemented. A KG
carrying the transcribed Modelica library and model
representations was successfully queried for test cases.
This is the basis towards further steps for automated
translation of different types of models in the design
process of buildings and a contribution to the model based
design of building energy systems.

Introduction/Motivation
The demand for energy efficient buildings leads to
increasingly complex system solutions. Renewable
energy sources have to be integrated, energy storage has
to be dimensioned and consumption for HVAC (heating,
ventilation, air conditioning) has to be controlled by
predictive algorithms; further, the building owner need
economical investments and a high reliability of the
systems.
As already established in other branches like
microelectronics, aerospace or automotive, model based
engineering is more and more used also for building
energy systems.
An efficient model based design process integrates tools
and methods from the early concept stage to the
mechanical or structural design of components. Key to an
early validation are building performance simulations
including HVAC plant simulations: various concepts can
be evaluated, components can be dimensioned and control
algorithms developed; i.e. essential development steps
can be carried out in simulation tools
Thus building simulation models contain a lot of
information on the building under investigation that is
beneficial for all stakeholders involved in the building
design process, but also useful later in the lifecycle during
optimization of operation schedules or refurbishments.
This accounts for building performance simulation as well

as for HVAC system simulation. To allow for a
comprehensive and accurate description of the building
behaviour, it becomes necessary to link different sources
of information about the building, which is the basic idea
of Linked Building Data and also the spirit of Building
Information Management (BIM) and Digital Twins (DT).
Especially, the link of simulation models with other types
of models can accelerate the design flow.
This paper describes how Modelica (Modelica
Association, 1997) models can become an integrated part
of the DT of a building. Since Digital Twin is not a well
defined term, here we understand DT to mean a
knowledge graph representing the building, built upon
W3C standards RDF, RDFS and OWL and call it a
“Semantic Twin”.
The representation of Modelica models by knowledge
graphs enables a translation of simulation models into
other types of models and vice versa. The goal is to have
a bidirectional link of Modelica and the OpenBIM format
IFC as a contribution to accelerate and automate the
design of complex building energy systems. The context
of this reseach has been described in (Eckstädt, 2021).

Paper Overview
The main part of the paper is structured according to the
5 steps of the applied knowledge engineering
methodology described by (Pinto & Maertin, 2004):
We start by defining the goals of the knowledge
engineering process (step 1). In that context an
introduction to some basic principles of Modelica is given
and the architecture of the involved knowledge graphs is
shown. Conceptualisation, formalisation and
implementation (steps 2-4) of the developed MoOnt
ontology are described in the next sections.
The next steps in knowledge engineering are
“Maintainance” and “Evaluation” (step 5). To evaluate
the MoOnt ontology we need to complement the MoOnt
graph with assertional (“A-Box”) statements that
represent higher levels of the Modelica library stack.
Since this is a lot of information to process a so called
“MoTTL transcriptor” has been developed. We will
introduce this tool and present the knowledge graphs
generated by it. Having done that the final Evaluation step
which is “Answering the Competency Questions”.
In the end an outlook on the work still pending is given.

Previous Works
Semantic representations of Modelica were considered by
(Pop & Fritzson, 2004), this was only shortly after the idea
of the semantic web was published by in (Berners Lee, et
al., 2001). Pop stated "Modelica users and library
developers would benefit from Semantic Web
technologies", but no further publications followed for a
long time.
(Delgoshaei, et al., 2017) explored the use of semantic
representations of different simulation models in Dymola
and MATLAB for coupling HVAC and control
engineering simulations. They confined to storing merely
simulation results in semantic format.
The SPRINT project proposed the “use of OWL
ontologies to represent several modeling tool languages,
so that full models maintained in different tools could be
represented in RDF” (Shani, et al., 2014). In this context
the “Wolfram SystemModeler Ontology” (WSM) was
published, which was reused and is therefore discussed in
depth in this paper.
The whitepaper by (Zeb & Kortelainen, 2017)
investigated a semantic representation of Modelica
Models as an option for longterm data interoperability.
They concluded that RDF representation is not a good
solution for long term data interoperability. However, in
the authors opinion, this is because they have only tried
with a very basic approach without considering
appropriate domain libraries. The publication by (Roxin,
et al., 2021) has the same shortcoming, whereas they have
described the use of domain libraries as a promising
approach in their outlook. This has been conducted in this
paper and is described in the section “Experiment -
Populating the knowledge graph with the MoTTL
transcriptor”.
(Nachawati, et al., 2022) describe a framework for
systems engineering with Modelica called “GitWorks”.
One part of it is a model catalogue named “GitWork
Commons” which is a knowledge graph of existing
models. Just as shown in this paper they have some parser
that transcribes existing models. As an ontology they use
“ModelicaOML” which is their own development.
Expressed not in terms of OWL but with the “Ontological
Modeling Language” OML, which was formerly
developed in the OpenCeasar project but is not a W3C
standard. While the ModelicaOML ist published on
github (OpenModelica Consortium, 2022), the
transcriptor as part of the GitWorks Framework is not.

Modelica Basics
Modelica is an object oriented modeling language. It has
been introduced by the (Modelica Association, 1997), that
cares for it ever since. Modelica Language Specification
3.5 is the most recent version.
Modelica models consist of components. Components
usually have a number of connectors, which can be
connected to other suitable connectors. Components are
usually instances of library elements, that are created by

“Drag-and-Drop” library elements to the “diagram layer”
of a model. But they can also be custommade.
Each Model has 4 layers. Most commonly used is the
“diagram layer” which shows the model as a “block
diagram” with its components and their connections (an
example is shown in Figure 4). This can be switched to the
other layers. The full information is always represented
by the text layer, which shows the source code of the
model. Most elements, but not all elements have a
graphical representation. Furthermore “Documentation”
and “icon” layer exist.
Modelica Models are equation based. This means that
they are based on equations and not algorithms. A
sequencing of the calculation is not given. Therefore
connectors and connections are usually undirected.
Since the term “model” has a crucial role in the Modelica
terminology it is important to notice, that library elements
as well as the instances are both called“models”. There
are executable models and non executable models.
Executable models are by convention marked with a
certain icon, but cannot be distinguished by a keyword in
their sorce code.
Even though it is not visible in the GUI or by keywords in
the source code, there is a library stack in Modelica. It is
shown in Figure 1 (red pyramid). The Basic Library that
all others depend on is the Modelica Standard Library
(orange box in Figure 1). It is a library maintained by the
Modelica Association. Its current release is 4.0.0, while
the old MSL 3.2.3 ist still widely used. Next level libraries
(turquoise levels) depend on the MSL.
In the domain of buildings simulation the so called
“IBPSA”(International Building Performance Simulation
Association)-libraries are important. These are four
libraries sharing common core. Since this core is shared
by copying it to the respective libraries it is not consideres
a separate layer in the library stack (moreover the core is
not longer maintained as a separate artifact). The major
Libraries on that level that will be applied in this paper are
the “AixLib” (RWTH EBC, 2021) and the “Modelica
Buildings Library” (Berkeley Lab Modeling &
Simulation, 2014).
On top of that, every user can define their own libraries.
Lastly the instance models are created (green level in
Figure 1) – mostly by “drag-and-drop” the components
from the underlying libraries.
Since both libraries (no matter if user defined or from an
external source) and instance models are usually saved as
“packages” in Modelica, they cannot be distinguished
from each other on a technical basis. Just as there is no
differentiation between the “model” which can be a
library component or a executable instance model – there
is also no differentiation between a “package” that is a
library and a package that is a collection of executables
models. However there is a convention to mark
executable models and their packages with a certain icon,
but this is not technically ensured by the Modelica
Environments. Furthermore users can create Modelica
Models without employing a Modelica Environment.

Figure 1: Modelica Library stack and corresponding stack of knowledge graphs (“KG-stack”)

Knowledge Engineering
Overview – Methodology
Shortly after the emergence of the basic ideas about
ontologies, semantic web and knowledge graphs, the need
to develop such knowledge representations with a
systematic approach was recognised. (Pinto & Maertin,
2004) compared different methodologies and identified
the recurring process steps shown in Figure 2. They also
described the engineering process as an iterative
procedure.

Figure 2: Knowledge Engineering Methodology
At the beginning there are always the specifications.
Within this step, the requirements are defined. This is
usually done as human-readable free text. This step is
followed by "conceptualisation", i.e. working out the
essential terms and their relationships to each other. Then
these concepts and relationships are formalised and
implemented, two steps that take place simultaneously
when a software tool is used directly. This is followed by
the equally important steps of "Maintenance and
Evaluation".

Step 1: Specification
The goal of the knowledge engineering process was to
represent any Modelica Model in a form that is ables to
answer the following competency questions (CQ). These
are representative of expected other questions arising in
the context given in the chapter “introduction”.
CQ1 Which executable models contain a certain library
component?
This is a question typically asked by a modeller still
learning or investigating new libraries. Typically one

finds a promising component and look for an example on
how to use and parametrize it.
CQ2 Which alternative implementations for a certain
model component are available in the libraries?
To act as an alternative, “plug compatibility” between the
models must be given. This requires that they have the
same connectors.
CQ3 What is the nominal power of the HVAC plant
components?
For HVAC plants the nominal power of a component is
usually the most significant parameter that is also
interesting to other participants of the design process.
CQ4 How many data points have to be provided by the
building automation system?
This might help with a rough cost estimate for the
tendering phase in a design process. Usually costs of the
building automation system depend on the number of data
points. These map to Modelica RealInput and
RealOutputs.
CQ5 Which IfcProducts should be generated from the
Modelica models components?
The last question cannot be answered with the Knowledge
Graphs presented in this paper, but will be important for
further work in the context of BIM and Simulation.

Step 2: Conceptualisation
It was decided to mirror the library stack described before
with a corresponding stack of knowledge graphs (see
Figure 1 purple framed pyramid). Below the Modelica
Standard Library the are two more layers of knowledge
graphs, which are the Modelica Ontology representing the
language layer and below that there are the well-known
W3C standards. The purple pyramid shows the
namespace prefixes of the different knowledge graphs.
For representing the language layer the so called
“Modelica Ontology” - abbreviated “MoOnt” – was
developed (Eckstädt, 2022). Since the goal was to develop
an ontology representing a programming language
(Modelica), it was the obvious choice to orient to the
language specification. It contains the major terms. The

Modelica Language also contains a class hierarchy that
should be reflected in the ontology.
As fundamental concepts we found 27 classes, 19
relations between classes and 21 relations from classes to
literals to be necessary. No individuals are foreseen in the
ontology, since these belong to the library layers of the

KG-stack. Although not all entities identified in the
language specification are necessary to answer the CQ
given earlier, it was decided to cover all entities in MoOnt.
It covers the whole language specification and is therefore
more flexible for future use.

Figure 3: mayor entities of the MoOnt ontology shown as UML class diagram

Steps 3-4: Formalisation, Implementation – MoOnt
The next step in knowledge engineering is to formalize
and implement the concepts. When directly working with
sofware tools both steps cannot be distinguished.
It is crucial to consider ontology reuse in this step.
Wolfram System Modeler (wsm) Ontology (Sprint
Consortium, 2014) was mentioned earlier in this paper. It
was developed for representing Modelica Models but has
– to the authors best knowledge - not been maintained
since its release in 2014. Therefore it was reused as a basis
for the MoOnt by copying its contents.
The most important parts that have remained unchanged
between the predecessor wsm and the MoOnt are shown
in the simplified UML diagram in Figure 4.
There is an abstract superclass representing all Modelica
classes, where “model” and “package” are the most
frequently used ones. Another important entity that was
already mentioned is the so called component, with its
special cases “ConnectorComponent” and
“ParameterComponent”. This special cases have been
added as they were not present in wsm.

As the affiliation to a certain package or model is also very
meaningful for a Modelica classes content, a containedIn-
Relation has been added to the ontology with
MAbstractClass as domain and range.
Further small adjustments were made, but are not
described in this paper.
The implementation of the ontology was done using the
free Protégé editor (Protege Team, 2015), it contains 267
axioms. It was exported as a ttl-File that is published on
github (Eckstädt, 2022).

Experiment - Populating the knowledge
graph with the MoTTL transcriptor
The next step in the knowledge engineering methodology
is to evaluate the ontology, to decide whether another
iteration is necessary or if only minor adjustments are
necessary that can be qualified as “maintainance” works.
To be able to evaluate against the competency questions
given in step 1 “specification” we need to populate the
knowledge graph with information from the upper layers
of the library stack

Figure 4: Heat pump plant - example of a Modelica model1shown as screenshot from Dymola Environment

1 https://github.com/ElisEck/MO-x-IFC/blob/main/src/test/resources/C_HeatPumpPlant/LBDCG_example/HeatPumpPlant_V2.mo

Buildings.Fluid.HeatPumps.Carnot_y heaPum(
COP_nominal=4,
…
P_nominal=1000*(20/4))

…
connect(heaPum.port_b1, senT_pri_VL.port_a);

Listing 1: Comparison of representations of library layer (excerpt): (upper listing) Carnot_y- heat pump model in native Modelica
file2 and (lower listing) turtle syntax3 of the knowledge graph, equivalents are highlighted with same colour (full files available in

repository (Eckstädt, 2022))

Listing 2: Comparison of representations of instance layer (excerpt): heatPumpPlant as shown in Figure 4 as native Modelica file
(upper frame) and in turtle syntax4 (lower frame) of the knowledge graph, equivalents are highlighted with same colour (full files

available in repository (Eckstädt, 2022))

Since this is a lot of information to process a tool was
developed to generate a knowledge graph from native
Modelica files. This tool was named “MoTTL
transcriptor” (Eckstädt, 2022) and aims at moving one
step forward in comparison to what was described on the
section “previous works”. The major advantage of the
automated approach is, that it can process large amounts
of data, also it can be run again if one of the libraries or
the models are updated. The MoTTL transcriptor
(Eckstädt, 2022) is available as a command line tool, its
main input parameter is the path to some Modelica
package. As an output the transcriptor generates a
knowledge graph of this package in form of a turtle file.
The MoTTL transcriptor was implemented in Java. First,
a Modelica parser frame-work was created using the tool.
„ANTLR (ANother Tool for Language Recognition,
(Parr, 2021)) is a powerful parser generator for reading,
processing, executing, or translating structured text or
binary files”. ANTLR requires a grammar file in which
the language to be parsed is formally specified. Such a
grammar file in BNF form can be found in the appendix
of the Modelica Language Specification (Modelica

Association, 1997). The grammar file contains e.g. which
keywords and separators are used and which order is
relevant for the interpretation of the information in the file
to be parsed. Based on the grammar, ANTLR generates a
parser stub that can be used to traverse the tree represented
by the Modelica file. The generated parser stub consists
of several Java classes and interfaces, which were
implemented to provide the necessary functionality to
transform the Modelica file into an internal data model.
For the internal data model a method serializeToTTL was
implemented, which serializes the internal data model as
a graph (in turtle syntax (W3C, 2014)).
Only the necessary entities to answer the competency
questions are transcribed to the knowledge graph, most of
the DatatypeProperties (that connect instances to literals)
are therefore not transcribed.
The sourcecode of the MoTTL transcriptor is available on
github along with an executable binary (Eckstädt, 2022).
The Modelica example and the python queries describes
in the next chapter are also available in this repository.

2 https://github.com/lbl-srg/modelica-buildings/blob/master/Buildings/Fluid/HeatPumps/Carnot_y.mo
3 https://github.com/ElisEck/MO-x-IFC/blob/src/main/resources/ontologies/8_ModelicaLibraries/MBL.ttl
4 https://github.com/ElisEck/MO-x-IFC/blob/src/test/java/output/ex_20221215_1154_fullclean.ttl

ex:LBDCG_example.HeatPumpPlant moont:hasPart ex:LBDCG_example.HeatPumpPlant.heaPum.
ex:LBDCG_example.HeatPumpPlant.heaPum a moont:MComponent ;

moont:identifier "heaPum";
a mbl:Buildings.Fluid.HeatPumps.Carnot_y.

ex:LBDCG_example.HeatPumpPlant.heaPum.COP_nominal moont:modification "4.0"^^xsd:Real;
ex:LBDCG_example.HeatPumpPlant.heaPum moont:hasPart

ex:LBDCG_example.HeatPumpPlant.heaPum.COP_nominal.
…
ex:LBDCG_example.HeatPumpPlant.heaPum moont:hasPart ex:LBDCG_example.HeatPumpPlant.heaPum.P_nominal.
ex:LBDCG_example.HeatPumpPlant.heaPum.P_nominal moont:modification "5000"^^xsd:Real;
 moont:identifier "P_nominal".
…
ex:LBDCG_example.HeatPumpPlant.heaPum moont:hasPart ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1.
ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1 a moont:MConnectorComponent.
ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1 moont:identifier "port_b1".
ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1 moont:connectedTo

ex:LBDCG_example.HeatPumpPlant.senT_pri_VL.port_a.

mbl:Buildings.Fluid.Chillers.Carnot_y rdfs:subClassOf moont:MModel;
moont:stringComment "Chiller with performance curve adjusted based on Carnot

efficiency"^^xsd:string;
moont:containedIn mbl:Buildings.Fluid.Chillers.

mbl:Buildings.Fluid.Chillers.Carnot_y moont:extends
mbl:Buildings.Fluid.Chillers.BaseClasses.PartialCarnot_y.

within Buildings.Fluid.HeatPumps;
model Carnot_y
"Reversible heat pump with performance curve adjusted based on Carnot efficiency"
extends Buildings.Fluid.Chillers.BaseClasses.PartialCarnot_y(
final COP_is_for_cooling = false);

Library layer graph
To exemplify this transcription for the Modelica
Buildings Library (MBL) is processed. It consists of 12
major subpackages and is delivered in more than 4500
Modelica files, which are ASCII files. Each of this files
contains one or more Modelica classes, they require 17.3
MB of hard disk space.The generated knowledge graph
contains 644.000 axioms and the turtle-File occupies
42MB of hard disk space.
The two excerpts in Listing 1 show the Modelica-File of
the “Carnot_y”-HeatPump Model and its pendant in the
knowledge graph. The “extends” and “containedIn”-
Relations are highlighted in green and yellow.

Instance layer graph
Figure 4 shows an example of an executable instance
model that contains the aforementioned Carnot_y-
heatpump model. It is a model called “HeatPumpPlant”
contained in a package names “LBDCG_example”. By
convention it has the icon designating executable models.
It contains 25 components representing the heat source, a
primary circuit to heat up a stratified storage, a secondary
curcuit to heat the building, a simplified building model
and a controller for the heatpump and its primary circuit
pump.
The Modelica package occupies 30 kB on the hard drive,
while the knowledge graph (represented as a turtle file)
needs 88 kB, which is almost triple the size. The graph
contains 1063 axioms, while the Modelica-file contents
itself with around 600 lines of text.
Listing 2 contrasts brief excerpts from both representations
again. In the upper frame is the native Modelica-File, the
lower one shows the turtle file of the knowledge graph.
The Modelica file contains additional annotations that are
not shown for readability, since they are only important
for the graphical representation in the diagram layer and
can therefore be ignored for the semantic representation.
The contrasting file excerpts for the library and instance
level graphs show, that the semantic representation is
verbose although it is incomplete.

Discussion and Result Analysis – Answering
Competency Questions
Formalising competency questions
Main goal of the presented approach is to show the benefit
of the semantic representation by querying the KG
according to the competency questions stated in the
beginning. To be able to answer them, it is necessary to
formalize these questions into a computer-readable form.
SPARQL queries are an appropriate choice, since it is the
main query language for the Semantic Web. The queries
are given for CQ1 to 4 in the listings 3 to 7. Answering
CQ5 is out of the scope of this paper for now.

Implementing competency questions
The SPARQL queries have been implemented in a python
script using the RDFlib (RDFLib developers, 2002). The
queries are executed on a joined graph of the respective
level and its underlying levels. These python scripts to test

the implementation are published along with (Eckstädt,
2022).
The questions 3 and 4 also need knowledge of the
executable instance model, therefore its graph needs also
to be loaded into the querying engine. The level of user
defined libraries is not present in the example and is
therefore omitted.

Benefit from querying the MBL-graph with SPARQL
CQ1 - Which executable models contain a certain
library component?
The query in Listing 3 is asking for models containing the
Chiller.Carnot_y model. It returns 3 models that are either
contained in an “Examples” or “Validation” package,
which is reasonable. Also the results is inline with the
expectations.

Listing 3: CQ1 as SPARQL query (simple implementation)

Listing 4 shows a more complex form of CQ1: It asks for
the implementations of a partial type, which is the
equivalent to an abstract class in Modelica. More
specifically we look for executable models that contains
components which implement the abstract class. This is
especially useful since the Fluid components make heavy
use of partial Interfaces combined with multi inheritance
that can hardly be overseen by users, who have not
implemented these components. The query returns 44
models, among them the results of the query 1, which is
inline with expectations.

Listing 4: CQ1 as SPARQL query (more complex version)

Benefit from querying the MBL-graph with SPARQL
CQ2 - Which alternative implementations for a
certain model component are available in the
libraries?
The query in Listing 5 asks for models that contain one real
Input and two FluidPorts. Developers usually give their
models two different ports FluidPort_a and FluidPort_B
due to sign conventions. The query is asking for any
“controlled flow element”, since controller inputs are
usually given by a RealInput.

Listing 5: CQ2

This query delivers the expected results, among them
being controlled valves and also the Carnot_y heat Pump
model. However there are still problems with this query:

 It is slow: it takes 15 minutes to deliver this 99 models
 It scales badly: when looking for models that have 4

different FluidPorts the query doesn’t deliver in hours

select DISTINCT ?subj ?class where {
?subj moont:hasPart ?obj .
?subj moont:extends msl:Modelica.Icons.Example.
?obj a ?class .
?class moont:extends* aix:AixLib.Fluid.Interfaces.

PartialFourPortInterface.}

select DISTINCT ?subj ?class where {
?subj moont:hasPart ?obj .
?subj moont:extends

msl:Modelica.Icons.Example .
?obj a ?class .
?class moont:extends* aix:AixLib.Fluid.

Interfaces.PartialFourPortInterface.}

select ?subj ?obj where {
?subj moont:hasPart ?obj .
?obj a aix:AixLib.Fluid.Chillers.Carnot_y.}

 It is not very general: In a first step it has to be
determined which connectors a model has, in order to
adjust the query in a second step

Although the test with respect to CQ2 can be considered
successful, an improved implementation should be
considered. The use of alternative triples stores and
querying engines also appears promising.

Benefits from querying instance layer KG with CQ3 -
What is the nominal power of the HVAC plant
components?
The query in Listing 6 extracts the values of all parameters
that are Power values. An alternative implementation
would be to identify the important parameters by their
name instead of their type. Since different libraries use
different naming convetions it was decided to use the
quantities “power” and “heatFlowRate” for identifying
the relvant parameters.
For answering this question a combined graph of the
instance model and the used libraries needs to be queried,
since the information of which type a parameter is, is only
contained in the library if the parameter belongs to a
library component.

The query not only asks for the parameter type, but also
for the string comment of the parameter, which gives
somes additional context (if available), since the
parameter names are sometimes not sufficiently
expressive. Also there is a filter for datatype Real to omit
indirect parameters that are shown in grey in Listing 7.

Listing 6: CQ3

 ?X ?mod ?comment
ex:LBDCG_example.HeatPumpPlant_V2.heaPum.P_nominal 5000 Nominal compressor power
ex:LBDCG_example.HeatPumpPlant_V2.Qp_2 1000.0 heating load at 5°C
ex:LBDCG_example.HeatPumpPlant_V2.Qp_1 10000.0 heating load at -15°C
ex:LBDCG_example.HeatPumpPlant_V2.Qp_heater_nom 10000.0 Nennleistung Erzeuger
ex:LBDCG_example.HeatPumpPlant_V2.consumer.Qp_1 Qp_1 Stützleistung 1
ex:LBDCG_example.HeatPumpPlant_V2.consumer.Qp_2

Listing 7: Results of CQ3 (grey result lines appear
only if FILTER clause is not present

Qp_2 Stützleistung 2

Benefits from querying instance layer graph with
CQ4 -How many data points have to be provided by
the building automation system?
In Modelica connectors are usually undirected, but there
is one well justified exception, which are the
RealInput and RealOutputs. They behave like
signal ports, which is why they can be used to extract the
information on building automation data points from the
model. In the screenshot of the model Figure 4 signal
connections between RealInputs and RealOutputs
are designated with a thick dark blue line (while fluid
connections have light blue lines), 15 Signal Ports are
visualized and are therefore the expected result.
The information on the interface type, is not available in
the knowledge graph that covers the example, it is only
available in the federated graph of the example and the
libraries it uses. Also the information of the interface type
is not attached to the instance of e.g. the heatPump, but it
is connected to the class of the heat pump or maybe this
class inherits its connectors from some ancestor. The
query shown in Listing 8 queries the full graph comprising
of the example and the library graphs for signal ports. Its
results are given in Listing 9.

In order for the result of the query to be interpreted in the
sense of the CQ, however, there are requirements for the
design of the Modelica model; it is essential, for example,
that all components contained at the top level in the
Modelica model (HeatPumpPlant) also have a real
physical counterpart, e.g. a controller, a storage unit, ...
This means that signal connections (thick dark blue lines
in Figure 4) in the model must correspond to cables in
reality, and not to internal signal connections within a
controller. This is given in the example
HeatPumpPlant_V2, a counter-example is included in
the Modelica Package (HeatPumpPlant), but cannot
be discussed here due to lack of space.

Listing 8: CQ4

select ?comp ?ident ?class where {
ex:LBDCG_example.HeatPumpPlant moont:hasPart ?comp .
?comp rdf:type/moont:extends*/moont:hasPart ?partT .
?partT moont:identifier ?ident.
?partT a ?class.
?comp moont:hasPart ?partA .
?partA a moont:MConnectorComponent .
?partA moont:identifier ?ident.
FILTER (?class =

msl:Modelica.Blocks.Interfaces.RealOutput ||
?class =
msl:Modelica.Blocks.Interfaces.RealInput)

} ORDER BY ASC(?comp)

select ?X ?mod ?comment where {{
ex:LBDCG_example.HeatPumpPlant_V2 moont:hasPart
?comp .

?comp rdf:type/moont:extends*/moont:hasPart ?partT .
?partT moont:identifier ?ident.
?partT a moont:MParameterComponent.
{?partT moont:type msl:Modelica.SIunits.Power. }
UNION {?partT moont:type
msl:Modelica.SIunits.HeatFlowRate.}

?comp moont:hasPart ?X .
?X moont:identifier ?ident.
?X moont:modification ?mod.

} UNION {
ex:LBDCG_example.HeatPumpPlant_V2 moont:hasPart ?X .
{?X moont:type msl:Modelica.SIunits.Power.} UNION
{?X moont:type msl:Modelica.SIunits.HeatFlowRate.}

?X moont:identifier ?ident.
?X moont:modification ?mod.}

?X moont:stringComment ?comment.
FILTER (datatype(?mod) = xsd:Real) }

?comp ?ident ?class
ex:BDCG_example.HeatPumpPlant_V2.W_el u msl:Modelica.Blocks.Interfaces.RealInput
ex:BDCG_example.HeatPumpPlant_V2.annualTemperatureCurve T_oda msl:Modelica.Blocks.Interfaces.RealOutput
ex:BDCG_example.HeatPumpPlant_V2.consumer T_oda msl:Modelica.Blocks.Interfaces.RealInput
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow T_mea msl:Modelica.Blocks.Interfaces.RealInput
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow pumpSignal msl:Modelica.Blocks.Interfaces.RealOutput
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow T_set msl:Modelica.Blocks.Interfaces.RealInput
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow generatorSignal msl:Modelica.Blocks.Interfaces.RealOutput
ex:BDCG_example.HeatPumpPlant_V2.heaPum P msl:Modelica.Blocks.Interfaces.RealOutput
ex:BDCG_example.HeatPumpPlant_V2.heaPum y msl:Modelica.Blocks.Interfaces.RealInput
ex:BDCG_example.HeatPumpPlant_V2.measuredStorageTemperature y msl:Modelica.Blocks.Interfaces.RealOutput
ex:BDCG_example.HeatPumpPlant_V2.pum_pri m_flow_in msl:Modelica.Blocks.Interfaces.RealInput
ex:BDCG_example.HeatPumpPlant_V2.pum_sou y msl:Modelica.Blocks.Interfaces.RealInput
ex:BDCG_example.HeatPumpPlant_V2.setPointStorageTemperature y msl:Modelica.Blocks.Interfaces.RealOutput
ex:BDCG_example.HeatPumpPlant_V2.setPoint_ControlValue_pum_sou y msl:Modelica.Blocks.Interfaces.RealOutput
ex:BDCG_example.HeatPumpPlant_V2.sou_sou T_in msl:Modelica.Blocks.Interfaces.RealInput

Listing 9: Results of CQ4 operating on HeatPumpPlant_V2 (15 “datapoints”)

Conclusions and outlook
The knowledge graphs generated by the MoTTL
transcriptor based on the MoOnt ontology have been
succesfully queried with respect to the competency
questions 1 to 4.
Practice-oriented queries such as CQ4 place demands on
the modelling of the system on the Modelica side, that
have been described. Implementation improvements for
CQ2 are preferable, but a proof of concept has been
shown.
Next steps are creating an alignment of Modelica to IFC,
with the vision to generate IFC models from Modelica
models and vice versa as described in (Eckstädt, 2021). In
that context CQ5 will become answerable.

Acknowledgments
This work has been accomplished within the FMI4BIM
project funded by the German Federal Ministry for
Economic Affairs and Energy (BMWI) under reference
number 03ET1603A and iECO project funded by the
German Federal Ministry for Economic Affairs and
Climate Action under grant agreement 68GX21011D.
Special Thanks to all authors of the mentioned open-
source tools for sharing their work and enabling pursued
research.

References

Berkeley Lab Modeling & Simulation, 2014. Modelica
Buildings Library, https://github.com/lbl-
srg/modelica- buildings

Berners Lee, T., Hendler, J. & Lassila, O., 2001. The
Semantic Web. Scientific American.

Delgoshaei, P., Heidarinejad, M. & Austin, M., 2017.
Semantic Inference-Based Control Strategies for
Building HVAC Systems Using Modelica-Based
Physical Models. Procedia Engineering.

Eckstädt, E., 2021. Bidirectional coupling of Building
Information Modeling and Building Simulation unsing
ontologies. EGICE.

Eckstädt, E., 2022. MoOnt.:
https://github.com/ElisEck/MO-x-IFC

Eckstädt, E., 2022. MoTTL transcriptor.
https://github.com/ElisEck/MO-x-IFC

Modelica Association, 1997. Modelica,
https://modelica.org/

Nachawati, M. O. et al., 2022. Towards an Open Platform for
Democratized Model-Based. Proceedings of the American
Modelica Conference.

OpenModelica Consortium, 2022. ModelicaOML,
https://github.com/OpenModelica/ModelicaOML

Parr, T., 2021. ANTLR, https://www.antlr.org/

Pinto, H. S. & Maertin, J. P., 2004. Ontologies: How can
They be Built?. Knowledge Information Systems.

Pop, A. & Fritzson, P., 2004. The Modelica Standard Library
as an Ontology for Modelling and Simulation of Pyhsical
Systems. Whitepaper.

Protege Team, 2015. The Protégé Project,
https://protege.stanford.edu/

RDFLib developers, 2002. RDFLib https://rdflib.dev/

Roxin, A., Dundee, V. & Vukovic, V., 2021. Investigating
Potential Alignments between Modelica Standard Library
and SAREF Ontologies. LDAC.

RWTH EBC, 2021. AixLib 1.0.0,
https://github.com/RWTH-EBC/AixLib

Shani, et al., 2014. SPRINT Software Platform for
Integration of Eng. and Things D5.11 Final Report.

Sprint Consortium, 2014. Wolfram System Modeller
Ontology. http://www.sprint-iot.eu/Wolfram-Modelica-
ontology.zip

W3C, 2014. Terse RDF Triple Language.
https://www.w3.org/TR/turtle/

Zeb, A. & Kortelainen, J., 2017. Web Ontology Language
data modelling of Modelica simulation models.
Whitepaper.

