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Abstract 
Model based design of building energy systems is 
increasingly used to enable efficient design flows. 
Different types of models have still to be converted 
manually, which is time consuming and error-prone. This 
turns out to be an obstacle for the integration of virtual 
validation by system simulations. As a contribution for 
automated conversion and translation of models, an 
ontology (MoOnt) has been developed that is utilized to 
represent Modelica simulation models as knowledge 
graphs (KG). An automated transcriptor that extracts KG 
from Modelica models has been implemented. A KG 
carrying the transcribed Modelica library and model 
representations was successfully queried for test cases. 
This is the basis towards further steps for automated 
translation of different types of models in the design 
process of buildings and a contribution to the model based 
design of building energy systems. 

Introduction/Motivation 
The demand for energy efficient buildings leads to 
increasingly complex system solutions. Renewable 
energy sources have to be integrated, energy storage has 
to be dimensioned and consumption for HVAC (heating, 
ventilation, air conditioning) has to be controlled by 
predictive algorithms; further, the building owner need 
economical investments and a high reliability of the 
systems. 
As already established in other branches like 
microelectronics, aerospace or automotive, model based 
engineering is more and more used also for building 
energy systems. 
An efficient model based design process integrates tools 
and methods from the early concept stage to the 
mechanical or structural design of components. Key to an 
early validation are building performance simulations 
including HVAC plant simulations: various concepts can 
be evaluated, components can be dimensioned and control 
algorithms developed; i.e. essential development steps 
can be carried out in simulation tools 
Thus building simulation models contain a lot of 
information on the building under investigation that is 
beneficial for all stakeholders involved in the building 
design process, but also useful later in the lifecycle during 
optimization of operation schedules or refurbishments. 
This accounts for building performance simulation as well 

as for HVAC system simulation. To allow for a 
comprehensive and accurate description of the building 
behaviour, it becomes necessary to link different sources 
of information about the building, which is the basic idea 
of Linked Building Data and also the spirit of Building 
Information Management (BIM) and Digital Twins (DT). 
Especially, the link of simulation models with other types 
of models can accelerate the design flow. 
This paper describes how Modelica (Modelica 
Association, 1997) models can become an integrated part 
of the DT of a building. Since Digital Twin is not a well 
defined term, here we understand DT to mean a 
knowledge graph representing the building, built upon 
W3C standards RDF, RDFS and OWL and call it a 
“Semantic Twin”. 
The representation of Modelica models by knowledge 
graphs enables a translation of simulation models into 
other types of models and vice versa. The goal is to have 
a bidirectional link of Modelica and the OpenBIM format 
IFC as a contribution to accelerate and automate the 
design of complex building energy systems. The context 
of this reseach has been described in (Eckstädt, 2021). 

Paper Overview 
The main part of the paper is structured according to the 
5 steps of the applied knowledge engineering 
methodology described by (Pinto & Maertin, 2004): 
We start by defining the goals of the knowledge 
engineering process (step 1). In that context an 
introduction to some basic principles of Modelica is given 
and the architecture of the involved knowledge graphs is 
shown. Conceptualisation, formalisation and 
implementation (steps 2-4) of the developed MoOnt 
ontology are described in the next sections. 
The next steps in knowledge engineering are 
“Maintainance” and “Evaluation” (step 5). To evaluate 
the MoOnt ontology we need to complement the MoOnt 
graph with assertional (“A-Box”) statements that 
represent higher levels of the Modelica library stack. 
Since this is a lot of information to process a so called 
“MoTTL transcriptor” has been developed. We will 
introduce this tool and present the knowledge graphs 
generated by it. Having done that the final Evaluation step 
which is “Answering the Competency Questions”. 
In the end an outlook on the work still pending is given. 



Previous Works 
Semantic representations of Modelica were considered by 
(Pop & Fritzson, 2004), this was only shortly after the idea 
of the semantic web was published by in (Berners Lee, et 
al., 2001). Pop stated "Modelica users and library 
developers would benefit from Semantic Web 
technologies", but no further publications followed for a 
long time. 
(Delgoshaei, et al., 2017) explored the use of semantic 
representations of different simulation models in Dymola 
and MATLAB for coupling HVAC and control 
engineering simulations. They confined to storing merely 
simulation results in semantic format. 
The SPRINT project proposed the “use of OWL 
ontologies to represent several modeling tool languages, 
so that full models maintained in different tools could be 
represented in RDF” (Shani, et al., 2014). In this context 
the “Wolfram SystemModeler Ontology” (WSM) was 
published, which was reused and is therefore discussed in 
depth in this paper. 
The whitepaper by (Zeb & Kortelainen, 2017) 
investigated a semantic representation of Modelica 
Models as an option for longterm data interoperability. 
They concluded that RDF representation is not a good 
solution for long term data interoperability. However, in 
the authors opinion, this is because they have only tried 
with a very basic approach without considering 
appropriate domain libraries. The publication by (Roxin, 
et al., 2021) has the same shortcoming, whereas they have 
described the use of domain libraries as a promising 
approach in their outlook. This has been conducted in this 
paper and is described in the section “Experiment - 
Populating the knowledge graph with the MoTTL 
transcriptor”. 
(Nachawati, et al., 2022) describe a framework for 
systems engineering with Modelica called “GitWorks”. 
One part of it is a model catalogue named “GitWork 
Commons” which is a knowledge graph of existing 
models. Just as shown in this paper they have some parser 
that transcribes existing models. As an ontology they use 
“ModelicaOML” which is their own development. 
Expressed not in terms of OWL but with the “Ontological 
Modeling Language” OML, which was formerly 
developed in the OpenCeasar project but is not a W3C 
standard. While the ModelicaOML ist published on 
github (OpenModelica Consortium, 2022), the 
transcriptor as part of the GitWorks Framework is not. 

Modelica Basics 
Modelica is an object oriented modeling language. It has 
been introduced by the (Modelica Association, 1997), that 
cares for it ever since. Modelica Language Specification 
3.5 is the most recent version. 
Modelica models consist of components. Components 
usually have a number of connectors, which can be 
connected to other suitable connectors. Components are 
usually instances of library elements, that are created by 

“Drag-and-Drop” library elements to the “diagram layer” 
of a model. But they can also be custommade. 
Each Model has 4 layers. Most commonly used is the 
“diagram layer” which shows the model as a “block 
diagram” with its components and their connections (an 
example is shown in Figure 4). This can be switched to the 
other layers. The full information is always represented 
by the text layer, which shows the source code of the 
model. Most elements, but not all elements have a 
graphical representation. Furthermore “Documentation” 
and “icon” layer exist. 
Modelica Models are equation based. This means that 
they are based on equations and not algorithms. A 
sequencing of the calculation is not given. Therefore 
connectors and connections are usually undirected. 
Since the term “model” has a crucial role in the Modelica 
terminology it is important to notice, that library elements 
as well as the instances are both called“models”. There 
are executable models and non executable models. 
Executable models are by convention marked with a 
certain icon, but cannot be distinguished by a keyword in 
their sorce code. 
Even though it is not visible in the GUI or by keywords in 
the source code, there is a library stack in Modelica. It is 
shown in Figure 1 (red pyramid). The Basic Library that 
all others depend on is the Modelica Standard Library 
(orange box in Figure 1). It is a library maintained by the 
Modelica Association. Its current release is 4.0.0, while 
the old MSL 3.2.3 ist still widely used. Next level libraries 
(turquoise levels) depend on the MSL. 
In the domain of buildings simulation the so called 
“IBPSA”(International Building Performance Simulation 
Association)-libraries are important. These are four 
libraries sharing common core. Since this core is shared 
by copying it to the respective libraries it is not consideres 
a separate layer in the library stack (moreover the core is 
not longer maintained as a separate artifact). The major 
Libraries on that level that will be applied in this paper are 
the “AixLib” (RWTH EBC, 2021) and the “Modelica 
Buildings Library” (Berkeley Lab Modeling & 
Simulation, 2014). 
On top of that, every user can define their own libraries. 
Lastly the instance models are created (green level in 
Figure 1) – mostly by “drag-and-drop” the components 
from the underlying libraries. 
Since both libraries (no matter if user defined or from an 
external source) and instance models are usually saved as 
“packages” in Modelica, they cannot be distinguished 
from each other on a technical basis. Just as there is no 
differentiation between the “model” which can be a 
library component or a executable instance model – there 
is also no differentiation between a “package” that is a 
library and a package that is a collection of executables 
models. However there is a convention to mark 
executable models and their packages with a certain icon, 
but this is not technically ensured by the Modelica 
Environments. Furthermore users can create Modelica 
Models without employing a Modelica Environment. 



Figure 1: Modelica Library stack and corresponding stack of knowledge graphs (“KG-stack”)

Knowledge Engineering
Overview – Methodology
Shortly after the emergence of the basic ideas about 
ontologies, semantic web and knowledge graphs, the need 
to develop such knowledge representations with a 
systematic approach was recognised. (Pinto & Maertin, 
2004) compared different methodologies and identified 
the recurring process steps shown in Figure 2. They also 
described the engineering process as an iterative 
procedure.

Figure 2: Knowledge Engineering Methodology
At the beginning there are always the specifications. 
Within this step, the requirements are defined. This is 
usually done as human-readable free text. This step is 
followed by "conceptualisation", i.e. working out the 
essential terms and their relationships to each other. Then 
these concepts and relationships are formalised and 
implemented, two steps that take place simultaneously 
when a software tool is used directly. This is followed by 
the equally important steps of "Maintenance and 
Evaluation".

Step 1: Specification
The goal of the knowledge engineering process was to 
represent any Modelica Model in a form that is ables to 
answer the following competency questions (CQ). These 
are representative of expected other questions arising in 
the context given in the chapter “introduction”.
CQ1 Which executable models contain a certain library 
component?
This is a question typically asked by a modeller still 
learning or investigating new libraries. Typically one

finds a promising component and look for an example on 
how to use and parametrize it.
CQ2 Which alternative implementations for a certain 
model component are available in the libraries?
To act as an alternative, “plug compatibility” between the 
models must be given. This requires that they have the 
same connectors.
CQ3 What is the nominal power of the HVAC plant 
components?
For HVAC plants the nominal power of a component is 
usually the most significant parameter that is also 
interesting to other participants of the design process.
CQ4 How many data points have to be provided by the 
building automation system?
This might help with a rough cost estimate for the 
tendering phase in a design process. Usually costs of the 
building automation system depend on the number of data 
points. These map to Modelica RealInput and 
RealOutputs.
CQ5 Which IfcProducts should be generated from the 
Modelica models components?
The last question cannot be answered with the Knowledge 
Graphs presented in this paper, but will be important for 
further work in the context of BIM and Simulation.

Step 2: Conceptualisation
It was decided to mirror the library stack described before 
with a corresponding stack of knowledge graphs (see 
Figure 1 purple framed pyramid). Below the Modelica 
Standard Library the are two more layers of knowledge 
graphs, which are the Modelica Ontology representing the 
language layer and below that there are the well-known 
W3C standards. The purple pyramid shows the 
namespace prefixes of the different knowledge graphs.
For representing the language layer the so called 
“Modelica Ontology” - abbreviated “MoOnt” – was 
developed (Eckstädt, 2022). Since the goal was to develop 
an ontology representing a programming language 
(Modelica), it was the obvious choice to orient to the 
language specification. It contains the major terms. The



Modelica Language also contains a class hierarchy that 
should be reflected in the ontology. 
As fundamental concepts we found 27 classes, 19 
relations between classes and 21 relations from classes to 
literals to be necessary. No individuals are foreseen in the 
ontology, since these belong to the library layers of the 

KG-stack. Although not all entities identified in the 
language specification are necessary to answer the CQ 
given earlier, it was decided to cover all entities in MoOnt. 
It covers the whole language specification and is therefore 
more flexible for future use. 

 

 
Figure 3: mayor entities of the MoOnt ontology shown as UML class diagram 

 

 

 
Steps 3-4: Formalisation, Implementation – MoOnt 
The next step in knowledge engineering is to formalize 
and implement the concepts. When directly working with 
sofware tools both steps cannot be distinguished. 
It is crucial to consider ontology reuse in this step. 
Wolfram System Modeler (wsm) Ontology (Sprint 
Consortium, 2014) was mentioned earlier in this paper. It 
was developed for representing Modelica Models but has 
– to the authors best knowledge - not been maintained 
since its release in 2014. Therefore it was reused as a basis 
for the MoOnt by copying its contents. 
The most important parts that have remained unchanged 
between the predecessor wsm and the MoOnt are shown 
in the simplified UML diagram in Figure 4. 
There is an abstract superclass representing all Modelica 
classes, where “model” and “package” are the most 
frequently used ones. Another important entity that was 
already mentioned is the so called component, with its 
special cases “ConnectorComponent” and 
“ParameterComponent”. This special cases have been 
added as they were not present in wsm. 

As the affiliation to a certain package or model is also very 
meaningful for a Modelica classes content, a containedIn- 
Relation has been added to the ontology with 
MAbstractClass as domain and range. 
Further small adjustments were made, but are not 
described in this paper. 
The implementation of the ontology was done using the 
free Protégé editor (Protege Team, 2015), it contains 267 
axioms. It was exported as a ttl-File that is published on 
github (Eckstädt, 2022). 

Experiment - Populating the knowledge 
graph with the MoTTL transcriptor 
The next step in the knowledge engineering methodology 
is to evaluate the ontology, to decide whether another 
iteration is necessary or if only minor adjustments are 
necessary that can be qualified as “maintainance” works. 
To be able to evaluate against the competency questions 
given in step 1 “specification” we need to populate the 
knowledge graph with information from the upper layers 
of the library stack 

 
 

 
Figure 4: Heat pump plant - example of a Modelica model1shown as screenshot from Dymola Environment 

 
1 https://github.com/ElisEck/MO-x-IFC/blob/main/src/test/resources/C_HeatPumpPlant/LBDCG_example/HeatPumpPlant_V2.mo 



Buildings.Fluid.HeatPumps.Carnot_y heaPum( 
COP_nominal=4, 
… 
P_nominal=1000*(20/4)) 

… 
connect(heaPum.port_b1, senT_pri_VL.port_a); 

 
 

 
Listing 1: Comparison of representations of library layer (excerpt): (upper listing) Carnot_y- heat pump model in native Modelica 
file2 and (lower listing) turtle syntax3 of the knowledge graph, equivalents are highlighted with same colour (full files available in 

repository (Eckstädt, 2022)) 

 

 
Listing 2: Comparison of representations of instance layer (excerpt): heatPumpPlant as shown in Figure 4 as native Modelica file 
(upper frame) and in turtle syntax4 (lower frame) of the knowledge graph, equivalents are highlighted with same colour (full files 

available in repository (Eckstädt, 2022)) 
 

Since this is a lot of information to process a tool was 
developed to generate a knowledge graph from native 
Modelica    files.   This   tool was   named “MoTTL 
transcriptor” (Eckstädt, 2022) and aims at moving one 
step forward in comparison to what was described on the 
section “previous works”. The major advantage of the 
automated approach is, that it can process large amounts 
of data, also it can be run again if one of the libraries or 
the models are updated. The MoTTL transcriptor 
(Eckstädt, 2022) is available as a command line tool, its 
main input parameter is the path to some Modelica 
package. As an output the transcriptor generates a 
knowledge graph of this package in form of a turtle file. 
The MoTTL transcriptor was implemented in Java. First, 
a Modelica parser frame-work was created using the tool. 
„ANTLR (ANother Tool for Language Recognition, 
(Parr, 2021)) is a powerful parser generator for reading, 
processing, executing, or translating structured text or 
binary files”. ANTLR requires a grammar file in which 
the language to be parsed is formally specified. Such a 
grammar file in BNF form can be found in the appendix 
of   the   Modelica   Language   Specification  (Modelica 

Association, 1997). The grammar file contains e.g. which 
keywords and separators are used and which order is 
relevant for the interpretation of the information in the file 
to be parsed. Based on the grammar, ANTLR generates a 
parser stub that can be used to traverse the tree represented 
by the Modelica file. The generated parser stub consists 
of several Java classes and interfaces, which were 
implemented to provide the necessary functionality to 
transform the Modelica file into an internal data model. 
For the internal data model a method serializeToTTL was 
implemented, which serializes the internal data model as 
a graph (in turtle syntax (W3C, 2014)). 
Only the necessary entities to answer the competency 
questions are transcribed to the knowledge graph, most of 
the DatatypeProperties (that connect instances to literals) 
are therefore not transcribed. 
The sourcecode of the MoTTL transcriptor is available on 
github along with an executable binary (Eckstädt, 2022). 
The Modelica example and the python queries describes 
in the next chapter are also available in this repository. 

 
 

2 https://github.com/lbl-srg/modelica-buildings/blob/master/Buildings/Fluid/HeatPumps/Carnot_y.mo 
3 https://github.com/ElisEck/MO-x-IFC/blob/src/main/resources/ontologies/8_ModelicaLibraries/MBL.ttl 
4 https://github.com/ElisEck/MO-x-IFC/blob/src/test/java/output/ex_20221215_1154_fullclean.ttl 

ex:LBDCG_example.HeatPumpPlant moont:hasPart ex:LBDCG_example.HeatPumpPlant.heaPum. 
ex:LBDCG_example.HeatPumpPlant.heaPum a moont:MComponent ; 

moont:identifier "heaPum"; 
a mbl:Buildings.Fluid.HeatPumps.Carnot_y. 

ex:LBDCG_example.HeatPumpPlant.heaPum.COP_nominal moont:modification "4.0"^^xsd:Real; 
ex:LBDCG_example.HeatPumpPlant.heaPum moont:hasPart 

ex:LBDCG_example.HeatPumpPlant.heaPum.COP_nominal. 
… 
ex:LBDCG_example.HeatPumpPlant.heaPum moont:hasPart ex:LBDCG_example.HeatPumpPlant.heaPum.P_nominal. 
ex:LBDCG_example.HeatPumpPlant.heaPum.P_nominal moont:modification "5000"^^xsd:Real; 
  moont:identifier "P_nominal". 
… 
ex:LBDCG_example.HeatPumpPlant.heaPum moont:hasPart ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1. 
ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1 a moont:MConnectorComponent. 
ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1 moont:identifier "port_b1". 
ex:LBDCG_example.HeatPumpPlant.heaPum.port_b1 moont:connectedTo 

ex:LBDCG_example.HeatPumpPlant.senT_pri_VL.port_a. 

mbl:Buildings.Fluid.Chillers.Carnot_y rdfs:subClassOf moont:MModel; 
moont:stringComment "Chiller with performance curve adjusted based on Carnot 

efficiency"^^xsd:string;  
moont:containedIn mbl:Buildings.Fluid.Chillers. 

mbl:Buildings.Fluid.Chillers.Carnot_y moont:extends 
mbl:Buildings.Fluid.Chillers.BaseClasses.PartialCarnot_y. 

within Buildings.Fluid.HeatPumps; 
model Carnot_y 
"Reversible heat pump with performance curve adjusted based on Carnot efficiency" 
extends Buildings.Fluid.Chillers.BaseClasses.PartialCarnot_y( 
final COP_is_for_cooling = false); 



Library layer graph 
To exemplify this transcription for the Modelica 
Buildings Library (MBL) is processed. It consists of 12 
major subpackages and is delivered in more than 4500 
Modelica files, which are ASCII files. Each of this files 
contains one or more Modelica classes, they require 17.3 
MB of hard disk space.The generated knowledge graph 
contains 644.000 axioms and the turtle-File occupies 
42MB of hard disk space. 
The two excerpts in Listing 1 show the Modelica-File of 
the “Carnot_y”-HeatPump Model and its pendant in the 
knowledge graph. The “extends” and “containedIn”- 
Relations are highlighted in green and yellow. 

Instance layer graph 
Figure 4 shows an example of an executable instance 
model that contains the aforementioned Carnot_y- 
heatpump model. It is a model called “HeatPumpPlant” 
contained in a package names “LBDCG_example”. By 
convention it has the icon designating executable models. 
It contains 25 components representing the heat source, a 
primary circuit to heat up a stratified storage, a secondary 
curcuit to heat the building, a simplified building model 
and a controller for the heatpump and its primary circuit 
pump. 
The Modelica package occupies 30 kB on the hard drive, 
while the knowledge graph (represented as a turtle file) 
needs 88 kB, which is almost triple the size. The graph 
contains 1063 axioms, while the Modelica-file contents 
itself with around 600 lines of text. 
Listing 2 contrasts brief excerpts from both representations 
again. In the upper frame is the native Modelica-File, the 
lower one shows the turtle file of the knowledge graph. 
The Modelica file contains additional annotations that are 
not shown for readability, since they are only important 
for the graphical representation in the diagram layer and 
can therefore be ignored for the semantic representation. 
The contrasting file excerpts for the library and instance 
level graphs show, that the semantic representation is 
verbose although it is incomplete. 

Discussion and Result Analysis – Answering 
Competency Questions 
Formalising competency questions 
Main goal of the presented approach is to show the benefit 
of the semantic representation by querying the KG 
according to the competency questions stated in the 
beginning. To be able to answer them, it is necessary to 
formalize these questions into a computer-readable form. 
SPARQL queries are an appropriate choice, since it is the 
main query language for the Semantic Web. The queries 
are given for CQ1 to 4 in the listings 3 to 7. Answering 
CQ5 is out of the scope of this paper for now. 

Implementing competency questions 
The SPARQL queries have been implemented in a python 
script using the RDFlib (RDFLib developers, 2002). The 
queries are executed on a joined graph of the respective 
level and its underlying levels. These python scripts to test 

the implementation are published along with (Eckstädt, 
2022). 
The questions 3 and 4 also need knowledge of the 
executable instance model, therefore its graph needs also 
to be loaded into the querying engine. The level of user 
defined libraries is not present in the example and is 
therefore omitted. 

Benefit from querying the MBL-graph with SPARQL 
CQ1 - Which executable models contain a certain 
library component? 
The query in Listing 3 is asking for models containing the 
Chiller.Carnot_y model. It returns 3 models that are either 
contained in an “Examples” or “Validation” package, 
which is reasonable. Also the results is inline with the 
expectations. 

 
Listing 3:  CQ1 as SPARQL query (simple implementation) 

Listing 4 shows a more complex form of CQ1: It asks for 
the implementations of a partial type, which is the 
equivalent to an abstract class in Modelica. More 
specifically we look for executable models that contains 
components which implement the abstract class. This is 
especially useful since the Fluid components make heavy 
use of partial Interfaces combined with multi inheritance 
that can hardly be overseen by users, who have not 
implemented these components. The query returns 44 
models, among them the results of the query 1, which is 
inline with expectations. 

 
Listing 4:  CQ1 as SPARQL query (more complex version) 

Benefit from querying the MBL-graph with SPARQL 
CQ2 - Which alternative implementations for a 
certain model component are available in the 
libraries? 
The query in Listing 5 asks for models that contain one real 
Input and two FluidPorts. Developers usually give their 
models two different ports FluidPort_a and FluidPort_B 
due to sign conventions. The query is asking for any 
“controlled flow element”, since controller inputs are 
usually given by a RealInput. 

 
Listing 5:  CQ2 

This query delivers the expected results, among them 
being controlled valves and also the Carnot_y heat Pump 
model. However there are still problems with this query: 

 It is slow: it takes 15 minutes to deliver this 99 models 
 It scales badly: when looking for models that have 4 

different FluidPorts the query doesn’t deliver in hours 

select DISTINCT ?subj ?class where { 
?subj moont:hasPart ?obj . 
?subj moont:extends msl:Modelica.Icons.Example. 
?obj a ?class . 
?class moont:extends* aix:AixLib.Fluid.Interfaces. 

PartialFourPortInterface.} 

select DISTINCT ?subj ?class where { 
?subj moont:hasPart ?obj . 
?subj moont:extends 

msl:Modelica.Icons.Example . 
?obj a ?class . 
?class moont:extends* aix:AixLib.Fluid. 

Interfaces.PartialFourPortInterface.} 

select ?subj ?obj where { 
?subj moont:hasPart ?obj . 
?obj a aix:AixLib.Fluid.Chillers.Carnot_y.} 



 It is not very general: In a first step it has to be 
determined which connectors a model has, in order to 
adjust the query in a second step 

Although the test with respect to CQ2 can be considered 
successful, an improved implementation should be 
considered. The use of alternative triples stores and 
querying engines also appears promising. 

Benefits from querying instance layer KG with CQ3 - 
What is the nominal power of the HVAC plant 
components? 
The query in Listing 6 extracts the values of all parameters 
that are Power values. An alternative implementation 
would be to identify the important parameters by their 
name instead of their type. Since different libraries use 
different naming convetions it was decided to use the 
quantities “power” and “heatFlowRate” for identifying 
the relvant parameters. 
For answering this question a combined graph of the 
instance model and the used libraries needs to be queried, 
since the information of which type a parameter is, is only 
contained in the library if the parameter belongs to a 
library component. 

The query not only asks for the parameter type, but also 
for the string comment of the parameter, which gives 
somes additional context (if available), since the 
parameter names are sometimes not sufficiently 
expressive. Also there is a filter for datatype Real to omit 
indirect parameters that are shown in grey in Listing 7. 

 
Listing  6:  CQ3 

 ?X ?mod ?comment 
ex:LBDCG_example.HeatPumpPlant_V2.heaPum.P_nominal 5000 Nominal compressor power 
ex:LBDCG_example.HeatPumpPlant_V2.Qp_2 1000.0 heating load at 5°C 
ex:LBDCG_example.HeatPumpPlant_V2.Qp_1 10000.0 heating load at -15°C 
ex:LBDCG_example.HeatPumpPlant_V2.Qp_heater_nom 10000.0 Nennleistung Erzeuger 
ex:LBDCG_example.HeatPumpPlant_V2.consumer.Qp_1 Qp_1 Stützleistung 1 
ex:LBDCG_example.HeatPumpPlant_V2.consumer.Qp_2 

Listing 7: Results of CQ3 (grey result lines appear 
only if FILTER clause is not present 

Qp_2 Stützleistung 2 

Benefits from querying instance layer graph with 
CQ4 -How many data points have to be provided by 
the building automation system? 
In Modelica connectors are usually undirected, but there 
is one well justified exception, which are the 
RealInput and RealOutputs. They behave like 
signal ports, which is why they can be used to extract the 
information on building automation data points from the 
model. In the screenshot of the model Figure 4 signal 
connections between RealInputs and RealOutputs 
are designated with a thick dark blue line (while fluid 
connections have light blue lines), 15 Signal Ports are 
visualized and are therefore the expected result. 
The information on the interface type, is not available in 
the knowledge graph that covers the example, it is only 
available in the federated graph of the example and the 
libraries it uses. Also the information of the interface type 
is not attached to the instance of e.g. the heatPump, but it 
is connected to the class of the heat pump or maybe this 
class inherits its connectors from some ancestor. The 
query shown in Listing 8 queries the full graph comprising 
of the example and the library graphs for signal ports. Its 
results are given in Listing 9. 

In order for the result of the query to be interpreted in the 
sense of the CQ, however, there are requirements for the 
design of the Modelica model; it is essential, for example, 
that all components contained at the top level in the 
Modelica model (HeatPumpPlant) also have a real 
physical counterpart, e.g. a controller, a storage unit, ... 
This means that signal connections (thick dark blue lines 
in Figure 4) in the model must correspond to cables in 
reality, and not to internal signal connections within a 
controller. This is given in the example 
HeatPumpPlant_V2, a counter-example is included in 
the Modelica Package (HeatPumpPlant), but cannot 
be discussed here due to lack of space. 

 
Listing 8:  CQ4 

select ?comp ?ident ?class where { 
ex:LBDCG_example.HeatPumpPlant moont:hasPart ?comp . 
?comp rdf:type/moont:extends*/moont:hasPart ?partT . 
?partT moont:identifier ?ident. 
?partT a ?class. 
?comp moont:hasPart ?partA . 
?partA a moont:MConnectorComponent . 
?partA moont:identifier ?ident. 
FILTER (?class = 

msl:Modelica.Blocks.Interfaces.RealOutput || 
?class = 
msl:Modelica.Blocks.Interfaces.RealInput) 

} ORDER BY ASC(?comp) 

select ?X ?mod ?comment where {{ 
ex:LBDCG_example.HeatPumpPlant_V2 moont:hasPart 
?comp . 

?comp rdf:type/moont:extends*/moont:hasPart ?partT . 
?partT moont:identifier ?ident. 
?partT a moont:MParameterComponent. 
{?partT moont:type msl:Modelica.SIunits.Power. } 
UNION {?partT moont:type 
msl:Modelica.SIunits.HeatFlowRate.} 

?comp moont:hasPart ?X . 
?X moont:identifier ?ident. 
?X moont:modification ?mod. 

} UNION { 
ex:LBDCG_example.HeatPumpPlant_V2 moont:hasPart ?X . 
{?X moont:type msl:Modelica.SIunits.Power.} UNION 
{?X moont:type msl:Modelica.SIunits.HeatFlowRate.} 

?X moont:identifier ?ident. 
?X moont:modification ?mod.} 

?X moont:stringComment ?comment. 
FILTER ( datatype(?mod) = xsd:Real) } 



?comp ?ident ?class 
ex:BDCG_example.HeatPumpPlant_V2.W_el u msl:Modelica.Blocks.Interfaces.RealInput 
ex:BDCG_example.HeatPumpPlant_V2.annualTemperatureCurve T_oda msl:Modelica.Blocks.Interfaces.RealOutput 
ex:BDCG_example.HeatPumpPlant_V2.consumer T_oda msl:Modelica.Blocks.Interfaces.RealInput 
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow T_mea msl:Modelica.Blocks.Interfaces.RealInput 
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow pumpSignal msl:Modelica.Blocks.Interfaces.RealOutput 
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow T_set msl:Modelica.Blocks.Interfaces.RealInput 
ex:BDCG_example.HeatPumpPlant_V2.controlGeneratorWithPumpMassFlow generatorSignal msl:Modelica.Blocks.Interfaces.RealOutput 
ex:BDCG_example.HeatPumpPlant_V2.heaPum P msl:Modelica.Blocks.Interfaces.RealOutput 
ex:BDCG_example.HeatPumpPlant_V2.heaPum y msl:Modelica.Blocks.Interfaces.RealInput 
ex:BDCG_example.HeatPumpPlant_V2.measuredStorageTemperature y msl:Modelica.Blocks.Interfaces.RealOutput 
ex:BDCG_example.HeatPumpPlant_V2.pum_pri m_flow_in msl:Modelica.Blocks.Interfaces.RealInput 
ex:BDCG_example.HeatPumpPlant_V2.pum_sou y msl:Modelica.Blocks.Interfaces.RealInput 
ex:BDCG_example.HeatPumpPlant_V2.setPointStorageTemperature y msl:Modelica.Blocks.Interfaces.RealOutput 
ex:BDCG_example.HeatPumpPlant_V2.setPoint_ControlValue_pum_sou y msl:Modelica.Blocks.Interfaces.RealOutput 
ex:BDCG_example.HeatPumpPlant_V2.sou_sou T_in msl:Modelica.Blocks.Interfaces.RealInput 

Listing 9: Results of CQ4 operating on HeatPumpPlant_V2 (15 “datapoints”) 

Conclusions and outlook 
The knowledge graphs generated by the MoTTL 
transcriptor based on the MoOnt ontology have been 
succesfully queried with respect to the competency 
questions 1 to 4. 
Practice-oriented queries such as CQ4 place demands on 
the modelling of the system on the Modelica side, that 
have been described. Implementation improvements for 
CQ2 are preferable, but a proof of concept has been 
shown. 
Next steps are creating an alignment of Modelica to IFC, 
with the vision to generate IFC models from Modelica 
models and vice versa as described in (Eckstädt, 2021). In 
that context CQ5 will become answerable. 
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