2023 European Conference on Computing in Construction
40th International CIB W78 Conference

Heraklion, Crete, Greece - w -|8
July 10-12, 2023 Cl

International Council
for Research and Innovation
in Building and Construction

éB

EXTENDING INFORMATION DELIVERY SPECIFICATION FOR LINKING
DISTRIBUTED MODEL CHECKING SERVICES
Noemi Kremer!, and Jakob Beetz!
'RWTH Aachen University, Aachen, Germany

Abstract

Since the amount and representation of required informa-
tion in BIM is extensive, a possible extension of the Infor-
mation Delivery Specification (IDS) format is presented.
This extension is intended to offer the possibility to in-
clude further checking resources in the checking process,
to perform geometric and topological in addition to seman-
tic checks. The IDS extension uses dynamic links to inte-
grate external calculation services into the checking pro-
cess. The functions of the calculation service for concept
validation were identified based on the requirements for
simulation of building energy models. The result is a dy-
namic extension for requirements checking using the IDS
format.

Introduction

Information management and information control are
essential for the use of Building Information Models/
Modelling (BIM) in the Architecture, Engineering, and
Construction (AEC) industry. A BIM can be struc-
tured and exchanged as an IFC data model with se-
mantic properties that are mapped as properties with
values in property sets. In addition, the IFC data
model provides options to explicitly represent geometry-
related properties and topological relationships (e.g.
IfcRelContainedInSpatialStructure to assign ele-
ments to a specific level of the spatial project structure)
(Zhang et al., 2018).

However, these options are not mandatory and at
the same time, the IFC data model structure is too
flexible to ensure consistent data. The example
of the IfcRelContainedInSpatialStructure (build-
ingSMART International Ltd., 2020) relation outlines the
flexibility since there is a possibility to assign an element to
a certain level of the spatial project structure. Which level
is relevant for which type depends on the context of the
project and may vary. Thus, some geometry-related infor-
mation is only implicitly included in the IFC data model.
IFC data models can become inconsistent and geometry-
related information impractical or impossible to map ex-
plicitly to the data model.

Geometric relations between building elements play an
important role in model checking (Borrmann and Rank,
2009), since the required information in the IFC data

949

model must be checked for accuracy and completeness.
To perform automated model checks, information require-
ments are translated in the form of rules into a machine-
readable format. These rule definitions range from simple,
requiring single explicit data, to complex, requiring an ex-
tension to the data structure (Solihin and Eastman, 2015).
To be able to perform rule-based model checking, various
tools, and formats have been developed. These develop-
ments include commercial software tools such as Solibri
Model Checker (SMC)! and Autodesk Navisworks2.
However, both software tools are proprietary systems,
hence their applications are less transparent. As a re-
sult, defined requirements can only be checked, and rule-
saving files are only be exchanged between participants
using these software tools or working within the software
systems. For complete OpenBIM workflows, such formal
definitions for the definition of exchange requirements are
desirable to enable a reusable ecosystem of widely agreed
specifications.

Current vendor-neutral formats which can be exchanged
without a specific native software system are model view
definition XML (mvdXML) (Weise et al., 2017) and In-
formation Delivery Specification (IDS)3. Even though they
both differ in their specific use case, explicit defined infor-
mation can be checked by using both formats. However,
they cannot be used to check implicit geometry-related
properties and topological relationships. Currently, no
available model-checking tool combines and performs all
possible kinds of model checks (Zhang et al., 2018).

In this paper, we present an extension of the IDS structure
to expand the capabilities of requesting and checking ex-
change requirements for model-based exchange. The IDS
format becomes a single source of truth that drives and
incorporates further checking resources. The extension
approach enables a connection between geometric proper-
ties, topological relationships, and semantic model check-
ing.

The proposed IDS extension approach has been applied
and validated as part of the Moodle Model Check project.
In this project, a model checker was developed to sup-

Thttps://www.solibri.com/news/solibri-model-checker-review

2https://www.autodesk.com/autodesk-university/class/Navisworks-
and-classification-based-model-checking-2014

3https://technical.buildingsmart.org/projects/information-delivery-
specification-ids/

port students in performing regular model-checking tasks
on IFC. The model checker takes an IDS file and an IFC
model data file as input and returns the results as a BIM
Collaboration Format (BCF) file.

The checker is currently being developed and tested for
specific use cases integrated into teaching. The first im-
plemented use case is based on building energy simula-
tion requirements. This use case requires checking explicit
and implicit model information. Since an IDS can not pro-
vide for implicit model information checking, additional,
external geometry-based computation services (functions)
for model processing have been implemented. These ser-
vices offer the calculation of geometry-related properties
and topological relationships.

State of the art

Improving the various types of model checking is the sub-
ject of several research and development efforts. These
efforts concern different formats and technologies.

Related work

Especially, the integration of checking and query options
of geometric and topological properties is relevant for
model checking. Borrmann and Rank (2009) for example,
introduced the development of a spatial query language for
BIMs enabling their spatial analysis. Part of the spatial
query language basis is topological relationships between
spatial objects. The relationships are reflected by topolog-
ical operations calculating. This query language approach
focuses on spatial relations and does not include further ge-
ometry calculations and extensions and combinations with
semantic properties.

A more recent method for extending technology and in-
cluding geometric and topological calculations is uses se-
mantic web technology. Zhang et al. (2018) developed an
approach for extending SPARQL# functions for querying
IFC data. The functions are modelled as Resource De-
scription Framework (RDF)> vocabularies and are partly
based on topological relations. The introduced functional
extension approach focuses on SPARQL, hence requiring
knowledge about semantic web technology. Additionally,
the IFC data model to be checked must first be converted
to ifcOWLS®. The authors point out that the knowledge en-
gineering work required is still intensive for domain end
users (Zhang et al., 2018).

Jiang et al. (2019) present an approach to integrate green
construction code checking in construction processes. The
researchers propose an approach for combining mvdXML
and semantic web technologies to organise, store and reuse
knowledge. Code checking classifies into 4 types based
on the difficulty levels of the requirements. This approach
combines two different technologies by converting mvd-
MXL into RDF data. However, according to the authors,
parameters that are not explicitly predefined cannot be

“https://www.w3.org/TR/sparql11-query/
Shttps://www.w3.org/RDF/
https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/

950

checked without additional implementations (Jiang et al.,
2019).

Another approach presented by Werbrouck et al. (2019) in-
vestigates checking distributed linked data building mod-
els using the Shapes Constraint Language (SHACL) 7. To
perform a check, the project data has to be fetched and
combined into a single graph and the SHACL pattern has
to be read. Since the approach relies entirely on semantic
web technology, other file formats must first be converted
and mapped into ontology.

The research approaches are promising and focus on dif-
ferent approaches to expand and improve model-checking
possibilities. However, including additional checking re-
sources in the model checking processes, to perform se-
mantic, topological, and geometric checks, has been less
investigated.

Information delivery specification

The IDS format is designed for specifying and checking
simple, non-geometrical required information in an IFC
data model (buildingSMART International Ltd., 2012).
this formatt can be used to define required information and
check them, independently of native software format. Ac-
cording to buildingSMART International Ltd. (2012) the
purpose of the design is to be a free, lightweight, and stan-
dardized approach for model checking.

To define and specify exchange requirements, an IDS con-
sists of specifications. One specification consists of two
main structural sections — applicability and requirements.
The applicability part provides information to which an en-
tity must comply to apply the specification. Within the re-
quirements part, the information to be checked is defined.
In other words, the applicability filters the IFC elements
and which must contain and provide the information in the
requirements section.

In the applicability and requirements elements, IDS facts
are used for defining and describing information. An
IDS facet is an element for describing the information
that a single model entity (e.g. a wall or a door)
can have. These information-defining IDS facets are:
attribute, property, material, entity, part0f and
classification. Multiple of these facets of informa-
tion can be combined in either section (applicability or re-
quirements). Thus, each IDS specification facet consists of
zero or a combination of information-defining facets. An
information-defining facet contains parameters describing
its information, for example, name and value. The param-
eter type is defined as idsValue, which can either be a
simple value (string data type) or a restriction (further de-
fined in the IDS schema definition).

The IDS format relays strictly on XML markup language
and uses IFC Schema modelling approaches, that have
wide support in the software industry (Tomczak et al.,
nd). Geometrical requirements cannot be mapped in the
IDS. However, some relations between IFC objects can
be described, using the IDS part0f facet. One relation

7https://www.w3.org/TR/shacl/

is recorded per IDS partOf facet by specifying the type
of relation (one of 4 predefined relations), as well as the
entity. The entity refers to the larger IFC class to which
an IFC object should belong. However, in the IDS for
IfcRelContainedInSpatialStructure only the pri-
mary relationship of an IFC object is considered, and all
other sub-relationships or assignments are not considered.
While the focus of IDS is on defining non-geometric ex-
change requirements, the main purpose of MVD is on
software implementation certification(Weise et al., 2017).
However, the combination of MVD and information deliv-
ery manual (IDM)?8 are the base for an information man-
agement system defined by buildingSmart (Weise et al.,
2017). While the IDM contains the essential agreements
on processes and responsibilities, the MVD defines the im-
plementation details (Weise et al., 2017).

On top of the MVD, exchange requirements can be de-
fined. MVDs are encoded in the mvdXML format, it
allows defining values at particular attributes of particu-
lar data types (buildingSMART International Ltd., 2023).
Since the introduction of mvdXML, the application has ex-
panded from documenting an MVD in machine-readable
format to information validation (Weise et al., 2017).

The structure of an mvdXML consists of a concept
templates element that represents arbitrary IFC instance
graphs and template rules, defined to constrain this graph
pattern (Tomczak et al., nd). These template rules are
connected to a specific concept template by referenc-
ing their identifier. Thus, the rule definition is closely
linked to the IFC concept and leaves little scope for ex-
tensions outside this structure. In addition, the definition
of checking rules in a mvdXML is built according to its
grammar specification and therefore, independent of the
XML structure. These checking rules are integrated into
XMl as an attribute for an element (mvdXML element
TemplateRule).

Both formats IDS and mvdXML do not map information
dependencies between two different IFC objects and their
properties. Furthermore, both formats are not designed
for checking geometric properties and topological rela-
tionships. However, in comparison to mvdXMlI, the ex-
istence of objects of an IFC class can be checked in an
IDS. An IDS can be extended by adding more facets with
XML-based methods. In the case of mvdXML, the spe-
cially defined grammar would have to be adapted, which
does not provide any extension methods. In our approach,
IDS 0.9 has been chosen for performing model checking
due to its lightweight structure and the exclusively XML-
based structure.

XLink and dynamic links

XML Linking Language (XLink) ° is a World Wide Web
Consortium (W3C) Recommendation, used to describe
links between different resources. The use of XLink re-

8https://technical.buildingsmart.org/standards/information-delivery-
manual/
https://www.w3.org/TR/xlink11/

951

quires the definition of an additional namespace. The
XLink syntax provides attribute references to further spec-
ify when and how the resource should appear.

href is the locator attribute in XLink. XLink:href spec-
ifies a locator (Uniform Resource Locator (URL)) in an
XML file to find a remote resource. A URL does can be
either static or dynamic implemented. The URL contains
information about the location of the resource, the domain,
and the path, as well as dynamic parameters that contain
and transfer further information to the server.

These parameters are stored at the end of a dynamic URL.
Each parameter can either be generated on the fly or pre-
pared in advance. The use of parameters makes the URL
more flexible and ensures that applications are adapted to
the needs of the clients. Web pages are not stored on the
server as a whole (cf. static URL) but are generated from
server data and an application (database) when queried.

Concept and method

In this research, we have developed an approach to extend
IDS in such a way that further checking resources can be
integrated into the checking process.

IDS extension facet

As described in Section 2, an IDS can define how objects,
classifications, properties, values, and units need to be de-
livered and exchanged. However, for some use case in-
formation requirements, the existing IDS options are not
sufficient. Therefore, we introduce an IDS extension for
integrating external functions for calculating implicit or
difficult-to-access information from the IFC model, using
the W3C Recommendation XLink.

Since external resources shall be integrated into the model-
check routine, a suitable position in the IDS format must be
found. A new IDS type is introduced called extension. The
structure of this IDS extension is based on the structure of
other IDS facets and contains parameters for further infor-
mation definition. These parameters of an IDS extension
facet are resource and value.

The resource parameter contains an XLink attribute href
for referencing an external service resource. Thus, the IDS
schema has to be extended to integrate the XLink names-
pace and a resource type definition. The value element
consists of an idsValue type, that already exists in the
IDS XML Schema Definition (XSD). The IDS extension
attributes are the same as those of an IDS property facet.
The property’s value is calculated externally in the extend-
ing geometric computation service. The value definition
in IDS and the process of comparing the calculated value
with the required value remain the same. This concept
enables integrating functions for geometric-topological
model checks into IDS non-geometric checks by extend-
ing the XSD in a standardised way.

XLink extension modelling

The IDS extension facet definition is used to introduce
the XLink method for extending the original IDS file, as

Using dynamic link
with parameters

NEW: Integration
of XLink

J

Value to be]

Unchanged according

checked to idsValue type

Figure 1: IDS property extension

shown in Figure 1. XLink provides with href (xlink:href)
the dynamic URL for linking and addressing the additional
resources. This resource can be an external calculation ser-
vice that performs a specific calculation, that the original
checking software cannot process. An example of an addi-
tional calculation for IDS is a function for processing ge-
ometry data.

The external resource requires an access point that can be
represented by an interface implemented as an application
programming interface (API). The API structure enables
services to be made available locally for the computation
of events. Implemented as representational state transfer
API (RestAPI), they enable distributed service structures
on different computers.

Listing 1: Example IDS property facet XML with text-based
extension for an IfcWall entity

1 <ids:extension minOccurs="1" maxOccurs="1"
measure="IfcBoolean">

2 <ids:resource

3 xlink:href="https://www.localhost.de/
touches/ifcelementadd=IFCSITE&
ifcelementori=1C_xd4xVPS5R8Y8yHywtYQL"
/>

4 <ids:value>

5 <ids:simpleValue>True</ids:simpleValue>

6 </ids:value>

7 </ids:extension>

Calculating functions are arranged behind the interface of
an external resource. These functions require parameters
and a data basis on which the calculation can be performed.
These parameters including information and specifications
for the external calculation service are provided and trans-
ferred as parameters in a dynamic URL. The data basis for
calculation is the IFC data model, which is always required
and passed when an interface function is called.

The possible parameters are determined depending on the
structure of the functions implemented in the external cal-
culation modules. A function that is supposed to calculate
arelation between two IFC objects may need two different
IFC classes or IFC objects for the calculation. The first
IFC class can be defined in IDS. The other object or class
must be defined additionally since the IDS specification
allowed a maximum of one entity per IDS applicability/
requirements object. As the example in Listing 1 shows,
these parameters are an IFC class additional (URL pa-
rameter ifcelementadd=IFCSLAB) and IFC class the orig-
inal or the IFC object original (URL parameter ifcelemen-
tori=1C_xd4xVP5R8Y8yHywtYQL). Additionally, the IFC

952

data file is passed, however not included in the URL pa-
rameters, since these parameters are text-based informa-
tion, while an IFC file is its data model.

Functions do not have to be reinvented, existing functions
can be adapted and reused. It depends on the use case
which functions are needed, and which results are ex-
pected. A function called by a checker implementation
also returns a value that is compared with the expected
value in the IDS. The possibility of calculating a specific
value depends on the function’s return value. Thus, the re-
turn value of the selected function must be known by the
user.

Implementation

For the implementation of the method, two core compo-
nents must be present. On one side, the IDS reading and
processing modules must be adapted or implemented, in
our case, the ifctester tool. On the other side, the extend-
ing calculation services must be implemented and made
available, in our case a local implementation of different
functions.

Using IDS to verify IFC models

In the Moodle Model check project, IDS 0.9 has been cho-
sen for performing model-checking due to the existence of
an open-source model checker tool - ifctester'®. An ad-
vantage of the application in the Moodle Model Check
project is that the module is openly accessible and flexi-
bly adaptable to the needs of our teaching-oriented model
check. The checker consists of two parts: an XML schema
checker and the IFC model checker. Checking results are
returned to the console, and web page, as JSON and BCF
file(Moult, 2022). Since IDS is an ongoing project, the
ifctester tool is constantly being adapted to new develop-
ments.

The ifctester tool is used to implement the model-checking
process. The tool performs the model-checking process
using an IDS and an IFC model file (see Figure 2). The
tool is openly available and can be flexibly adapted. How-
ever, it is still being developed and can therefore contain
development-related problems.

The algorithm of the ifctester tool performs the model-
checking process by iteratively filtering the information
content of an IFC data file and comparing it with the re-
quirements from the IDS. Thus, each IFC object corre-

10https://github.com/IfcOpenShell/IfcOpenShell/tree/v0.7.0/st-
clifctester

sponding to the IFC class specified in the IDS entity facet is
checked by comparing it and its properties and values with
the information in the IDS. The IFC objects are therefore
checked individually and consecutively for all IDS require-
ments. A basic ifctester model-checking process is carried
out in 5 steps:

1. User passes the required data files: IDS and IFC
model.

2. Checking for the IDS XML file to be according to the
IDS XSD.

3. Incase IDS applicability is given: Check for each IFC
element, that corresponds to the information defined
in the IDS applicability section. If it matches, the IFC
object element is filtered out, otherwise, the next ele-
ment is checked.

4. Check for each (filtered) IFC element whether it ful-
fils the required information in the Requirements sec-
tion. If the requirements are not met by the IFC ob-
ject, save an error message for output.

5. Check results can be returned as JSON and BCF ZIP
formats.

File upload

~
Model Checker

v

XML according to
XSD

v

IDS applicability
filtering

v

IDS requirements
checking

v

Return J

File
download

results

;i

Figure 2: ifctester module checking procedure

953

Integrating the IDS extension

These five model-checking steps remain the same, regard-
less of whether an IDS file contains an extension. In case,
the IDS file contains an extension, the initial checking pro-
cess is interrupted, and an external calculation service is
called, as shown in Figure 3.

The interruption leads to an external interface. The inter-
face establishes the connection, it combines the ifctester
module with the external calculation service, providing
one or more functions (see Figure 3) and therefore, allows
keeping the extensions flexible and independent.

The information that is calculated using an external cal-
culation service and the result value that is returned, are
specifically predefined through the structure of the imple-
mented functions. The parameters used by the function for
the calculation are stored in a dynamic URL. One parame-
ter is the globally unique identifier (GUID) of the currently
checked IFC object. Since the ifctester module processes
one individual IFC object entity at a time, it pre-filters in-
formation from the model for the external calculation ser-
vice. This GUID is extracted on-the-fly, during the model-
checking process, and set as a dynamic URL parameter.
The other parameter, the additional IFC class, is already
embedded when the IDS file is generated. In addition to
these parameters, the IFC model is passed.

The calculation result is returned to the ifctester module
and compared to the given IDS property type value re-
quirement. With the comparison between the calculated
value and the value expected in the IDS, the check process
implemented in the ifctester is continued, by moving on to
the next requirement or the next IFC object.

Finally, all checking results are available as BCF file re-
ports and JSON. Since model data is processed on-the-fly,
no geometric or topological data is stored in the IDS file.
In the BCF and JSON issue report, no distinction is made
between the different checking methods.

Use case requirements

As part of the Moodle Model Check project, only use
cases for tools and processes integrated into teaching at the
RWTH Aachen were considered for practical implementa-
tion. One of these tools is Enercalc 1. The Enercalc tool
balances the energy demand for a building based on DIN
v 18599 12,
Enercalc is suitable as a use case since it has several use-
ful features. The tool is free for use in teaching, is still
being developed, and is therefore not abandoned, easy to
use, as calculations have been partially simplified. In ad-
dition, the number of necessary information can be limited
to a manageable level through simplified calculations.
This required information is (Every other value can be as-
sumed):

e Outer surface of the fagade (including walls) and win-

dows for every geographical direction

Uhttps://ingefo.de/Werkzeuge/EnerCalC/
https://www.din.de/de/mitwirken/normenausschuesse/nabau/ausle-
gungendinv18599-68632

perform

model checking

File download

Return —
(BCF) result Model
. results St Interface Calmﬁa;ion
ha — Call AP ot
: File upload
User o User .
(IDS, IFC) Call additional

Interface

perform
Return calculation

results

resource using
dynamic link

Figure 3: Model check process with extension

Outer surface of roof and slab (against unheated
earth)

General building volume

Outer surface of walls against unheated/ earth
Profile of use per building zone

Net floor space per building zone

Zone height

Most predefined values are based on average assumptions
and calculations. Some required values, for example, stan-
dards, are already predefined and are not to be changed by
the user. A few values are not pre-filled and must be sup-
plemented by properties of the IFC data model, such as
facade areas for different geographic directions.

The properties and their values were categorised in explic-
itly and implicitly available model data. Most of the En-
ercalc requirements are values for properties that can be
recorded in a property set as explicit information. A few
values for properties considering topological relationships
and geometric properties are only implicitly available in
the IFC data model. These values have to be calculated.
For the values that are implicit or cannot be checked with
IDS, corresponding functions (compare Table 1) were im-
plemented. These functions are generalized to be reusable.

Table 1: Implemented functions for the Enercalc use case

Function name Description

hasOrientation Calculate the geo-
graphical direction
according to the
entity’s placement in
the project.

touches Identify connec-
tion relationships
between building
elements. (Zhang
et al., 2018)

externalSurface Calculate the ex-

ternal surface area
without openings.

Calculate volume of
the hole building.

buildingVolume

A specification in an IDS for Enercalc states that there
should be no glass facade areas facing south that are larger
than a certain area. To check this, entities were assumed in

954

the applicabilities IfcCurtainWall thathave the proper-
ties IsExternal and the orientation south. IsExternal
is an explicit property and the orientation is an implicit
property that must be calculated. Another implicit prop-
erty is in the requirements of the IDS specification. The
requirements specify the maximum size of the facade area
that may not be exceeded.

Another specification checks whether walls abut against
the unheated ground. For this specification, the IDS pre-
filters for exterior walls in the applicability part and checks
the filtered walls for contact with the unheated ground in
the requirements. It is calculated whether an IfcWall el-
ement touches an IfcSite element.

Implementation of extended calculation modules

In this research, only services running locally are imple-
mented and tested. Therefore, no RestAPI has been used.
All services are implemented as Python functions based
on the Topologic tool'3.

Topologic is an open-source software modelling library,
it enables the topological and hierarchical representation
of architectural components based on non-manifold topol-
ogy (NMT). The functions implemented with Topologic
are based on the requirements of the Enercalc tool, as part
of the building energy model simulations.

An IFC model can be converted to a Topologic tool class:
vertex, edge. Face, cell, and cellcomplex. Other Topologic
tool classes are not relevant to the project objective and are
not considered. Before the IFC file is converted, the data
is filtered to reduce the computational effort. The GUID
parameter is important, as a calculation only needs to take
place for this one IFC object.

In the implemented Enercalc use case, the touch function
requires an additional IFC class definition. This function is
required to check if two elements are touching. In the En-
ercalc IDS, all walls are checked to see whether they touch
an unheated surface. Consequently, for each IfcWall ob-
ject labelled IsExternal it has to be checked if it touches
an IfcSite object representing an exterior surface. To keep
the functions as generic as possible, this second IFC class
element is additionally specified in the IDS file and not
implemented in the function.

A called function returns a specific value type according
to the required calculated result type. HasDirection for

Bhttps://topologic.app/software/

example returns a string, while ExternalSurface returns a
float value. Since the implemented functions focus on re-
quirements of the Enercalc tool, particularly exterior walls,
and model zones are processed.

In the case of Enercalc, the model checker first filters for
building elements (walls, windows, slabs, roofs) which are
labelled IsExternal. The filtered wall elements are then
further filtered for the applicability definition of geograph-
ical filtering for a specific direction. Since the outer sur-
face function is used within requirements, only wall ele-
ments facing a specific direction have to fulfil these re-
quirements. In addition, external wall objects that touch
the unheated ground are filtered if they are above or un-
der a specific outside surface area. Since geometry-based
checks were included in the model-checking process, all
exchange requirements for the Enercalc use case can be
integrated and checked using an IDS file.

Discussion and result analysis

The practical implementation already shows some advan-
tages and disadvantages, even if only one use case was used
for the testing. In the long run, more use cases and differ-
ent services for calculations are needed.

XLink extension

The XLink-based extension is generic since extending
functions can be provided on web servers for different ap-
plications. The XLink syntax allows further specification
of the resources to be linked. However, the IDS format
has to be extended to define XLink as an attribute of an
XML element. When using dynamic URL addresses for
extension, possible security risks must be considered dur-
ing implementation, since the checking tool does not know
the called extending service. The development of IDS is
a continuing process, future IDS versions may contain ex-
tension facets.

Function evaluation

The implemented functions use topological data struc-
tures. These structures offer further possibilities for in-
formation retrieval and processing. The Topologic library
proved to be suitable for the implementation of extending
Python functions. However, Topologic is only one possi-
bility, there are a variety of other tools and implementation
options.

The implemented functions for Enercalc are independent
of other functions. Dependencies between two functions
can cause issues, as dependency leads to structural con-
fusion. Multi-depending functions could lead to non-
transparent and highly complicated structures. The waiver
of dependencies corresponds to the IDS definition of re-
quirement content.

Extending an IDS file using functions shifts process infor-
mation and requirement definition to the implementation
background. The actual information processing remains a
black box. The checking process becomes less transparent
as a function name is given instead of explicit information,

955

traceable in an IFC model. Contractors may not be able to
identify the required information by reading the IDS file.
To clarify the requirements, the extension should be de-
scribed. Simplification of the extension may lead to not
having enough information for other participants to know
what information to provide.

Implementation results

During the validation of the model-checking tool, the
checking performance depends on the handling of vertices,
edges, and faces. The number of faces should be reduced
to the needed ones, before performing further calculations.
The face reduction implies a reduction of processing time
when running a model check.

The extension with XLink in the ifctester has a clear dis-
advantage in that an extending external resource is called
for each IFC object to be checked. This is not noticeable in
small models, but in larger models with many individual
IFC objects, this external resource is called for each one.
This can make the checking algorithm inefficient. To re-
alise more extensive check calculations other algorithms
must be implemented, for example, to collect IFC objects
for joint processing in functions.

The fact that only one IFC object element is checked at a
time has further disadvantages for the calculation speed.
More extensive models require significantly more time,
since, for example, the additional external function had to
be called for each IFC object of the IfcWall class.

One possibility for scalability of this approach is to call
external resources not for each IFC object, but for IFC
classes. This significantly reduces the number of calls to
external resources, but more calculation content is out-
sourced from the ifctester tool. It would be no longer a
value that is returned, but the IFC objects that did not pass
the test.

The model checker has been developed based on the use
case Enercalc, only four required extending functions have
been identified in developing the Enercalc IDS file. The
extending function implementation depends on the person
performing model-checking, therefore, a function can be
very specific to a problem. Alternatively, a function can be
implemented generally. This leads to an undefined amount
of possible functions. Furthermore, different IFC entities
utilize the same functions. For example, the IFC entities
IfcWall, IfcSlab, and IfcRoof all use the function cal-
culating the outer wall surface. Therefore, a function im-
plementation should not contain any predefined IFC ele-
ment in its code structure.

Conclusions

This paper presents an approach for extending IDS by in-
troducing a new IDS facet containing XLink. The exten-
sion allows performing geometric and topological in addi-
tion to semantic checks in model-checking procedures.

The purpose of the extension presented is to link differ-
ent types of model checking to make the functions of the
IDS model checker more versatile. The implemented IDS

model checker extension was verified by performing sev-
eral testing iterations. We checked the IFC data model con-
tent according to the Enercalc information requirements.
However, further use cases are required and will reveal fur-
ther options for improvements and expansions. Especially
concerning the scalability and structure of extension op-
tions and function implementations.

For some required information, the question arises as to
what extent it is explicit or implicit information. The abil-
ity to check implicit information outlines the possibility
of reducing explicit IFC data model content. However,
the question arises, of how functions are implemented that
check this implicit, geometric properties and topological
relationship information. The type of modelling plays a
decisive role in the classification of the information. Fur-
ther research is needed to determine what and how infor-
mation is best represented in an IFC data model.

The lack of generally applicable requirements for the addi-
tional functions, their implementation, and their use leads
to a very individual application. In future research, these
functions and their use in model checking must be further
reviewed and structured. However, geometric and topolog-
ical calculations enable more comprehensive open-source-
based checking and have the potential to strengthen the po-
sition of open formats among model-checking tools.
Model checks could be controlled and managed more cen-
trally and requirements formulated more coherently. This
way, dependencies verification between different informa-
tion requirements, and model checks can be made more
user-friendly. Connecting various model-checking tools
depending on the properties to be checked makes it possi-
ble to optimally use the focus properties of different soft-
ware in rule-based checking. To implement this, more re-
search in the area of distributed model checking services,
their implementation, and their exchange possibilities is
necessary. Additionally, the exchange possibilities should
be expanded between existing model-checking tools and
become more transparent.

Acknowledgments

We would like to thank Dr. Markus LichtmeS for providing
us with Enercalc access.

References

Borrmann, A. and Rank, E. (2009). Topological analysis
of 3D Building Models using a Spatial Query Language.
Advanced Engineering Informatics, 23:370-385.

buildingSMART International Ltd. (2012). Infor-
mation Delivery Specification IDS. https:
//technical.buildingsmart.org/projects/
information-delivery-specification-ids/
[Accessed: 2022-11-07].

buildingSMART International Ltd. (2020).
IfcRelContainedInSpatialStructure. https:
//standards.buildingsmart.org/
IFC/RELEASE/IFC4/ADD1/HTML/1ink/
ifcrelcontainedinspatialstructure.htm
[Accessed: 2023-04-15].

buildingSMART International Ltd. (2023). mvdXML.
https://technical.buildingsmart.org/
standards/ifc/mvd/mvdxml/ [Accessed: 2023-04-
15].

Jiang, S., Wu, Z., Zhang, B., and Cha, H. S. (2019).
Combined MvdXML and Semantic Technologies for
Green Construction Code Checking. Applied Sciences,
9(7):1463.

Moult (2022). Information Delivery Specification
IDS. https://github.com/IfcOpenShell/
IfcOpenShell/tree/v0.7.0/src/ifctester/
ifctester [Accessed: 2022-11-18].

Solihin, W. and Eastman, C. M. (2015). Classification
of rules for automated BIM rule checking development.
Automation in Construction, 53:69-82.

Tomczak, A., van Berlo, L., and Borrmann, A. (n.d.). A
review of methods to specify information requirements
in digital construction projects. In n.b., page n.p. cib
w78.

Weise, M., Liebich, T., Nisbet, N., and Benghi, C.
(2017). IFC model checking based on mvdXML 1.1.
In eWork and eBusiness in Architecture, Engineering
and Construction, pages 19-26. Mahdavi, Ardeshir and
Martens, Bob and Scherer, Raimar.

Werbrouck, J., Senthilvel, M., Beetz, J., and Pauwels, P.
(2019). A Checking Approach for Distributed Build-
ing Data. In 31st Forum Bauinformatik, Berlin: Univer-
sitdtsverlag der TU Berlin, pages 173-181.

Zhang, C., Beetz, J., and de Vries, B. (2018).
BimSPARQL: Domain-specific functional SPARQL
extensions for querying RDF building data. Semantic
Web, 9:829-855.

956

