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Abstract

Modular construction has great potential to address
persistent problems in the construction industry, such as
lack of labor and resources. In the implementation of
modular construction, modularization is a crucial task that
overwhelms designers. Different modular solutions
influence manufacturing operations significantly, yet this
has rarely been studied in the past. This paper proposed
an optimization model considering the operations of
manufacturing and set-up changes. A modified genetic
algorithm was devised to solve the model. Its
effectiveness and efficiency were demonstrated in a case
study. This study contributes to the knowledge body by
untangling the effects of modularity on manufacturing
operations.

Introduction

The construction industry has been instrumental in
worldwide development, which contributes to GDP
growth, creates jobs, and provides substantial built
infrastructure for economic development (Lu ez al., 2021).
However, the construction industry is still struggling with
several tough issues including, but not limited to, high
costs, poor on-site safety performance, decreased
productivity, lack of professional expertise, resource
scarcity, etc. (Project Strategy and Governance Office
[PSGO], 2018).

Modular construction can serve as a remedy to alleviate
the above torments. It does so by splitting the building into
blocks, moving the manufacturing of these blocks offsite,
and finally transporting them to the construction site for
assembly (Innella et al., 2019; Lou and Lu, 2022).
Outsourcing 80-95% of the construction work to offsite
factories, allows it to alleviate some of its local problems,
e.g., poor safety performance, labor and resource
shortages, and high costs (Li e al., 2022). Moreover,
leveraging the well-controlled manufacturing
environment within factories, modular construction
makes itself tempting by realizing better quality and
higher productivity (Yang and Lu, 2023). Such a way of
making building a house as easy as building LEGO has
earned modular construction a huge potential market. In
Hong Kong, according to Construction Industry Council

1003

(CIC), the estimated demand for modular construction
modules will reach 50,300 (approximately 596,000 m?)
by 2024 and 241,100 (approximately 2,821,600 m?) by
2029 (CIC, 2021).

When implementing modular construction, design is one
of the most burdensome tasks. Modular construction
involves numerous processes and stakeholders. Each
process has specific constraints, and each stakeholder has
their own interests. This requires the design phase to fully
consider the various process constraints and stakeholder
requirements (Lou ef al., 2022). More and more decisions
are expected to be made at an early design stage. One of
the important decisions is how to modularize the floorplan
design (Building and Construction Authority [BCA],
2018). Figure 1 shows a real-world example of
modularized design. Taken as a whole, the overall design
does not change much. Looking at it locally, the designer
has made some detail adjustments to accommodate the
requirements of other processes and stakeholders. Before
making these detail adjustments, the designer needs to
prepare a general modularization solution. In a typical
modularization solution, the designer usually has to
determine the type of module, the area of each module
type, and the number of each module type. With these
major decisions in mind, the designer can then adjust local
details accordingly.
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Figure 1: An example of floor plan modularization

However, designers are often overwhelmed when making
these decisions and have difficulty in determining an
optimal modular solution. Because modularization, as a
critical step in design, can result in a significant impact on
all the downstream phases of manufacturing, transport,
and assembly. Designers need to consider numerous



factors during modularization. Design for manufacturing
and assembly (DfMA) has been coined as an innovative
design paradigm (Gao et al., 2018). It fits right in with the
above discussion of placing decisions in the early design
phase. The strengths of modular construction can be
maximized using DfMA. In recent years, DfMA has
gradually evolved into DfX (Wuni et al., 2021), where
“X” represents any excellence criteria, e.g.,
transportation, sustainability, resilience, and so on. In this
paper, the manufacturing criteria are taken as the focus of
our consideration. In other words, we will explore the
optimal modularization solution, while considering the
manufacturing operations.

The influence of modularization solutions on
manufacturing operations is manifested in many ways.
For example, it is desirable to have as many of the same
modules as possible in order to obtain economies of scale
in the manufacturing process. In addition, the size of the
module also has an impact on the difficulty of
manufacturing. Unlike product modules from other
industries, building modules are often bulky and heavy
(Piller, 2010). Oversized building blocks have a negative
impact on manufacturing operations, e.g., adding to costs
for lifting and transport, and increasing the number of
components and interactions among them.

Many studies have been carried out in the area of
optimizing manufacturing operations. A common
research stream is the optimization of manufacturing
schedules. For example, Hammad et al. (2020) proposed
a novel mixed integer non-linear programming model to
optimize the schedule of manufacturing activities. Lee
and Hyun (2019) used genetic algorithms (GA) to solve a
multiple modular construction scheduling problem.
Moreover, other studies have been conducted to optimize
the factory facility layout (Yang and Lu, 2023), resource
allocation (Hyun et al., 2021), and energy consumption
(Xie et al., 2018) within the manufacturing stage.
However, to the best of our knowledge, very few studies,
if any, have been conducted to consider the influence of
modularization solutions on manufacturing operations
when optimizing.

The aim of this paper is to propose an optimization model
to obtain the near-optimal modularization solution
considering manufacturing operations and solve the
model by adopting GA. Near-optimal in this context
means good enough but not globally optimal. With GA it
is possible to obtain near-optimal results very quickly,
balancing computational efficiency with accuracy. The
rest of this paper is written as follows. The following
section will introduce the proposed model. Then, a case
study will be described. Finally, conclusions and future
directions will be drawn.

Model formulation

Problem statement

The problems to be solved in this paper are described as
follows. In modular construction, given a building floor

plan that is to be modularized, the primary decision
variables include the number of types of modules n, the
area of each type of module s;, and the number of each
type of module m;, where i denotes the i-th type of module.
All these decision variables carry important effects on
manufacturing operations. For example, a larger n
requires more frequent adjustments to the manufacturing
settings and increases the complexity of manufacturing
(Khalili & Chua, 2014). Unlike products in other
industries, building products are usually large and bulky,
resulting in additional manufacturing costs that cannot be
ignored (Piller, 2010). Generally speaking, the larger the
si, the greater the manufacturing costs incurred along with
the production lines during the manufacturing process. In
addition, if the number of modules with the same type is
larger, i.e., the larger the m;, the benefits of economies of
scale are likely to be reaped (Lawson et al., 2012).

The roles of these variables are usually not completely
concerted, but more often conflicting and need to be
traded off. In the early design stage, designers often need
to consider various aspects of the manufacturing process,
weighing different decision variables to choose the best
modularization solution. However, the sophisticated
interactions between decision variables make identifying
the best modularization solution a challenging task. Thus,
an optimization model that abstracts the real-world
problem is proposed in the following sections for
designers to provide assistance in decision-making when
implementing modularization.

Mathematical notations

The mathematical notations used in the proposed model
include subscripts, parameters, and decision variables.
They are summarized with detailed explanations in
Table 1.

Table 1: Notations for the optimization model

Notations  Explanations

Subscripts

i 1,2, ..., n, module type index

m Items related to manufacturing

c Items related to set-up changes

Parameters

Cm Total cost of manufacturing

Cmi Unit area manufacturing cost of the modules of
type i

a Linear increasing rate of unit area
manufacturing cost with area growth

tm Total time of manufacturing

tmi Unit area manufacturing time of the modules of
type i

b Linear increasing rate of unit area

manufacturing time with area growth

Total cost for set-up changes to manufacturing
different modules
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Cost for set-up changes to manufacturing the
modules of type i
te Total time for set-up changes to manufacturing

different modules
Time for set-up changes to manufacturing the

modules of type i

T Time constraints for manufacturing completion
of all modules

f Unit time fines to be paid for exceeding time
constraints

S Total area of the floor plan

Decision variables

n Number of module types
S Area of modules of type i
m; Number of modules of type i

The proposed optimization model

The proposed optimization model is introduced in two
parts, i.e., objective function and constraints. The
objective function of this model primarily takes into
account the requirements of cost and time, which are spent
for manufacturing and set-up changes. We propose the
following model with the production of a typical floor as
a scope.

The cost and time spent on manufacturing are related to
the module area, number of modules, and module type. In
practice, the cost and time of individual modules, are
usually calculated as the cost and time per unit area
multiplied by the area. Therefore, the larger the module
area, the higher the cost and time spent. The number of
modules is also linearly and positively related to the cost
and time of manufacturing. The module type also has a
significant impact on manufacturing costs and time.
Different types of modules are manufactured at different
speeds and unit costs. For simplicity, the distinction
between module types is deemed here to be made by the
size of the area. Moreover, it is assumed that the larger the
area, the higher the cost and time per unit area for
manufacturing. This assumption is based on two
considerations. Firstly, in general, the larger the module
area, the more building components it contains.
Therefore, it may take more cost and time to coordinate
the interaction between these building components to
form a complete module (Ramaji et al., 2017). Secondly,
due to the characteristics of bulky and heavy building
products, when the area increases, the need for lifting and
transportation per unit area may also increase (BCA,
2018). To be more specific, the effect of module type,
namely, the relationship between cost and time per unit
area and module area, is assumed to be as shown in
Equation (1) and Equation (2):

c,; =as, (N
@)

where a and b are the coefficients of these linear
relationships. The specific values of a and b can be

Ly = bSi
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obtained by collecting data on unit area costs and time,
and regressing them against area data. The total
manufacturing cost and time can be obtained by
multiplying the cost and time per unit area, module area,
and number of modules. The calculations are specified in
Equation (3) and Equation (4):

n n
_ _ 2
Cp = Zcmisimi _Zasi m;
i=1 i=l1
n
b=2.
i=1

The cost and time spent on set-up changes are often
required in the factory manufacturing environment. Set-
up changes refer to the changes in factory settings to
enable the manufacturing of other different types of
modules. For example, for modules made of reinforced
concrete, custom molds of specific sizes are commonly
needed to shape the concrete into desired dimensions
(Khalili & Chua, 2014). For steel frame modules, specific
jigs need to be set up or adjusted to accommodate
different module manufacturing (CIC, 2021). The total
cost and time for set-up changes are simply the sum of the
cost and time of each change. In this paper, the cost and
time of each change are considered to be the same for
simplicity. Their calculations are illustrated in Equation
(5) and Equation (6):

)
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(6)

The proposed model also considers the time constraint in
modular construction projects. Manufacturers are usually
required to deliver a specific number of modules within a
certain time frame, and fines are imposed for late delivery.
According to Equation (4) and Equation (6), the real-time
consumed by the manufacturing of modules can be
calculated using the following formula:

T =t +t,

tc = ntci

%

The difference between the time consumed and the time
constraint is AT, as calculated in Equation (8):

AT =T T ®)

If the time difference AT is greater than 0, it will result in
a loss or a corresponding fine due to the schedule delay.
Thus, the objective function can be written as Equation

9):

¢=cm+cc+max(AT,0)'j ©)

The constraint of the optimization model is derived from
an assumption that the area of the floor plan remains
constant before and after modularization. In other words,
the individual modules add up to an area equal to the area
of the original floor plan, as shown in Equation (10):



D sm; =S (10)
i=1
To summarize, the final model can be written in the
following standard form:

(11

The adopted solving algorithm

In this model, there are three main types of decision
variables, i.e., the number of module types (n), the area of
modules of type i (s;), and the number of modules of type
i (m;). A unique characteristic of this model is that the
value of n affects the number of other decision variables
(si and m;), which in turn generates different models. To
deal with this dilemma, we control the variable n as
different discrete values (e.g., 1, 2, ..., 10), each discrete
value corresponding to a separate model. By doing so the
number of decision variables in each separate model is
fixed, and each separate model is then optimized
individually.

Mathematical programming algorithms try to obtain exact
analytical solutions, but they are time-consuming and
ineffective in the face of complex nonlinear problems.
Typically, construction problems are complex, and their
modelling is consequently non-linear. In the proposed
model, both the constraints and objective functions are
highly nonlinear, thus making it difficult to yield an exact
analytical solution by traditional programming methods.
The metaheuristic algorithm, on the other hand, can come
to a balance between effectiveness and accuracy in
handling such nonlinear problems (Civera et al., 2021,
Lee and Hyun, 2018). The genetic algorithm (GA), as one
of the most powerful metaheuristic algorithms, is adopted
to solve the proposed optimization model. The detailed
flowchart of the adopted solving algorithm in this study is
shown in Figure 2.

Case study

We present a hypothetical case study to demonstrate the
application of the proposed optimization model and
validate the solving algorithm. The values of each process
parameter are displayed in Table 2. These values are
estimated by the authors from interviews and surveys with
module manufacturers. In this case, it is assumed that the
cost and time for set-up changes are the same for all
module types.

The control parameters of GA include the size of the
population, the maximum number of genetic generations,
the probability of performing crossover, and the
probability of mutation. Their values are shown in Table
3.
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Figure 2: Flowchart of the adopted solving algorithm

Table 2: Values of process parameters in the case study

Parameters Values Units

a 0.01 10* $/m*
b 0.05 day/m*
Cei 0.2 104§

tei 2 day

T 80 day

f 5000 $

S 120 m?

Table 3: Values of control parameters of GA

Parameters Values
Size of the population 50
Maximum number of genetic generations 10000
Probability of performing crossover 0.5
Probability of mutation 0.5




According to the flowchart in Figure 2, the value range of
module type 7 is set to 2 to 10. Each n corresponds to a
separate optimization model, meaning that a total of 9
optimization models are required to be solved. Figure 3
illustrates typical records of optimizing an objective
function with a GA. In the population, the average
objective value keeps converging to the best objective
value. Eventually, they become identical and stabilize.
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Figure 3: Decrease of the objective values with the generation
number

Table 4: Near-optimal modularization solutions

Modularization solutions (s; and m;)

n
Si mi
2 9.2,9.2 6,7
3 4.3,79,9.9 8,2,7
4 8.8,9.1,9.5,10.2 1,10,1,1
5 4.0,16.7,5.2,4.0,4.0 6,4,1,5,1
6 18.8,4.0,4.3,5.2,5.0,13.0 2,1,2,8,3,1
7 15.9,18.2,19.4,4.0,4.0, 14.5, 4.0 1,1,1,4,3,1,6
8 5.0,6.1,23.4,9.6, 5.0, 20.0, 4.0, 8, 1,1,1,1,1,
4.0 3,1
9 4.1, 10.6, 8.6, 5.8, 4.6, 7.7, 4.0, 1,1,2,4,2, 1,
28.0,4.0 3,1,2
10 16.4,12.4,2.0,16.1,3.3,2.8, 2.0, 3,1,10, 1,1, 1,
2.0,2.0,2.1 2,2,3,1

Table 4 shows the near-optimal modularization solutions
for each n (number of module types). The objective
function values for each option are shown in Figure 4. It
follows that the total cost of the modularization solution
is lowest when 7 is 3. More specifically, the lowest total
cost is achieved when there are three module types, each
with an area of 4.3 m?, 7.9 m?, and 9.9 m?, and when the
number of modules of the three types is 8, 2, and 7
respectively. The lowest cost of the modularization
solution is $ 10.30 x 10*. As can be seen from the Figure,
the general trend of the objective function values
decreases first and then increases as n increases. But
within this general trend, there are also small fluctuations.
For example, when »n increases from 5 to 6, there is a
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decline in the value of the objective function. This may be
because when # is 5, the objective function value is near-
optimal, but not sufficiently optimal. If a more optimal
result is desired, the number of iterations or genetic
generations needs to be extended.

Figure 5 shows the time consumed for solving the
optimization model. The computing device is “Intel(R)
Core(TM) 17-10700 CPU @ 2.90GHz”. All the models
are solved within the range from 3.011s to 3.834s. It can
be seen that the solving algorithm can yield a near-optimal
solution that is sufficiently satisfying in a very short time.
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Discussion

Modularization is a very complex issue. On one hand, it
requires consideration of the details on drawings, such as
building axes and internal wall divisions. These factors
come from the requirements of the product. However, in
practice, considering only these factors is not sufficient to
generate a good modularized solution. On the other hand,
it also needs to consider some requirements related to
business processes (e.g., manufacturing, transportation,
and installation). Designers usually need to consider many
factors in these two aspects to make the final decision,
which is a very difficult process.



To solve this problem, we start with the requirements of
the business process, and only consider the manufacturing
stage (i.e., DfM) for now. After making some simplifying
assumptions, we transform this problem into solving the
proposed model. We conducted interviews with two
modular construction designers. We showed them our
model, assumptions, and calculation results. The feedback
we received indicates that the model can preliminarily
consider the designer's logic of DfM in decision-making.
But at the same time, it is pointed out that there is still a
lot of room for improvement for the model in the future.

Just as this paper is only a preliminary exploration in the
arca of modularization issues, further research is still
needed to improve it in the following aspects. Firstly, it is
necessary to include more business process stages such as
transportation and installation stages to establish a more
comprehensive model. Secondly, future studies should
consider the requirements of both business processes and
product development, that is to say, segmentation and
modularization should be based on building axis and
interior wall positions. Thirdly, more specific constraints,
such as requiring a module to have an area of no less than
15 square meters, need to be taken into consideration.

Conclusions

Different modular solutions for floor plans have a
considerable impact on manufacturing operations. But
few studies have explored the optimal modularization
solution in consideration of manufacturing operations.
This paper proposed a newly developed optimization
model. The model mainly considered manufacturing
costs, set-up change costs, manufacturing time, and set-up
change time. A modified genetic algorithm (GA) was
adopted to obtain near-optimal solutions. A case study has
been conducted to demonstrate the efficiency and
effectiveness of the solving algorithm.

Future studies are suggested as follows. Firstly, more
detailed constraints (e.g., the area of a specific module)
should be added to the model. Secondly, the
transportation and installation stages should be integrated
into the model and considered collectively with the
manufacturing stage. Thirdly, uncertainty should be

addressed  using  techniques, e.g.,  stochastic
programming.
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