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A
Modular construction has great potential to address 
persistent problems in the construction industry, such as 
lack of labor and resources. In the implementation of 
modular construction, modularization is a crucial task that 
overwhelms designers. Different modular solutions 
influence manufacturing operations significantly, yet this 
has rarely been studied in the past. This paper proposed 
an optimization model considering the operations of 
manufacturing and set-up changes. A modified genetic 
algorithm was devised to solve the model. Its 
effectiveness and efficiency were demonstrated in a case 
study. This study contributes to the knowledge body by 
untangling the effects of modularity on manufacturing 
operations.

I
The construction industry has been instrumental in 
worldwide development, which contributes to GDP
growth, creates jobs, and provides substantial built 
infrastructure for economic development (Lu et al., 2021). 
However, the construction industry is still struggling with 
several tough issues including, but not limited to, high 
costs, poor on-site safety performance, decreased 
productivity, lack of professional expertise, resource 
scarcity, etc. (Project Strategy and Governance Office 
[PSGO], 2018).  
Modular construction can serve as a remedy to alleviate 
the above torments. It does so by splitting the building into 
blocks, moving the manufacturing of these blocks offsite, 
and finally transporting them to the construction site for 
assembly (Innella et al., 2019; Lou and Lu, 2022). 
Outsourcing 80-95% of the construction work to offsite 
factories, allows it to alleviate some of its local problems, 
e.g., poor safety performance, labor and resource
shortages, and high costs (Li et al., 2022). Moreover,
leveraging the well-controlled manufacturing
environment within factories, modular construction
makes itself tempting by realizing better quality and
higher productivity (Yang and Lu, 2023). Such a way of
making building a house as easy as building LEGO has
earned modular construction a huge potential market. In
Hong Kong, according to Construction Industry Council

(CIC), the estimated demand for modular construction 
modules will reach 50,300 (approximately 596,000 m2)
by 2024 and 241,100 (approximately 2,821,600 m2) by 
2029 (CIC, 2021). 
When implementing modular construction, design is one 
of the most burdensome tasks. Modular construction 
involves numerous processes and stakeholders. Each 
process has specific constraints, and each stakeholder has 
their own interests. This requires the design phase to fully 
consider the various process constraints and stakeholder 
requirements (Lou et al., 2022). More and more decisions 
are expected to be made at an early design stage. One of 
the important decisions is how to modularize the floorplan 
design (Building and Construction Authority [BCA], 
2018). Figure 1 shows a real-world example of 
modularized design. Taken as a whole, the overall design 
does not change much. Looking at it locally, the designer 
has made some detail adjustments to accommodate the
requirements of other processes and stakeholders. Before 
making these detail adjustments, the designer needs to 
prepare a general modularization solution. In a typical 
modularization solution, the designer usually has to 
determine the type of module, the area of each module 
type, and the number of each module type. With these 
major decisions in mind, the designer can then adjust local 
details accordingly. 

Figure 1: An example of floor plan modularization

However, designers are often overwhelmed when making 
these decisions and have difficulty in determining an 
optimal modular solution. Because modularization, as a 
critical step in design, can result in a significant impact on 
all the downstream phases of manufacturing, transport, 
and assembly. Designers need to consider numerous 



factors during modularization. Design for manufacturing 
and assembly (DfMA) has been coined as an innovative 
design paradigm (Gao et al., 2018). It fits right in with the 
above discussion of placing decisions in the early design 
phase. The strengths of modular construction can be 
maximized using DfMA. In recent years, DfMA has 
gradually evolved into DfX (Wuni et al., 2021), where 
“X” represents any excellence criteria, e.g., 
transportation, sustainability, resilience, and so on. In this 
paper, the manufacturing criteria are taken as the focus of 
our consideration. In other words, we will explore the 
optimal modularization solution, while considering the 
manufacturing operations.  
The influence of modularization solutions on 
manufacturing operations is manifested in many ways. 
For example, it is desirable to have as many of the same 
modules as possible in order to obtain economies of scale 
in the manufacturing process. In addition, the size of the 
module also has an impact on the difficulty of 
manufacturing. Unlike product modules from other 
industries, building modules are often bulky and heavy 
(Piller, 2010). Oversized building blocks have a negative 
impact on manufacturing operations, e.g., adding to costs 
for lifting and transport, and increasing the number of 
components and interactions among them.  
Many studies have been carried out in the area of 
optimizing manufacturing operations. A common 
research stream is the optimization of manufacturing 
schedules. For example, Hammad et al. (2020) proposed 
a novel mixed integer non-linear programming model to 
optimize the schedule of manufacturing activities. Lee 
and Hyun (2019) used genetic algorithms (GA) to solve a 
multiple modular construction scheduling problem. 
Moreover, other studies have been conducted to optimize 
the factory facility layout (Yang and Lu, 2023), resource 
allocation (Hyun et al., 2021), and energy consumption 
(Xie et al., 2018) within the manufacturing stage. 
However, to the best of our knowledge, very few studies, 
if any, have been conducted to consider the influence of 
modularization solutions on manufacturing operations 
when optimizing.  
The aim of this paper is to propose an optimization model 
to obtain the near-optimal modularization solution 
considering manufacturing operations and solve the 
model by adopting GA. Near-optimal in this context 
means good enough but not globally optimal. With GA it 
is possible to obtain near-optimal results very quickly, 
balancing computational efficiency with accuracy. The 
rest of this paper is written as follows. The following 
section will introduce the proposed model. Then, a case 
study will be described. Finally, conclusions and future 
directions will be drawn.

Problem statement 
The problems to be solved in this paper are described as 
follows. In modular construction, given a building floor 

plan that is to be modularized, the primary decision 
variables include the number of types of modules n, the 
area of each type of module si, and the number of each 
type of module mi, where i denotes the i-th type of module. 
All these decision variables carry important effects on 
manufacturing operations. For example, a larger n
requires more frequent adjustments to the manufacturing 
settings and increases the complexity of manufacturing 
(Khalili & Chua, 2014). Unlike products in other 
industries, building products are usually large and bulky, 
resulting in additional manufacturing costs that cannot be 
ignored (Piller, 2010). Generally speaking, the larger the 
si, the greater the manufacturing costs incurred along with 
the production lines during the manufacturing process. In 
addition, if the number of modules with the same type is 
larger, i.e., the larger the mi, the benefits of economies of 
scale are likely to be reaped (Lawson et al., 2012). 
The roles of these variables are usually not completely 
concerted, but more often conflicting and need to be 
traded off. In the early design stage, designers often need 
to consider various aspects of the manufacturing process, 
weighing different decision variables to choose the best 
modularization solution. However, the sophisticated 
interactions between decision variables make identifying 
the best modularization solution a challenging task. Thus, 
an optimization model that abstracts the real-world 
problem is proposed in the following sections for 
designers to provide assistance in decision-making when 
implementing modularization. 

Mathematical notations
The mathematical notations used in the proposed model 
include subscripts, parameters, and decision variables.
They are summarized with detailed explanations in 
Table 1. 

Table 1: Notations for the optimization model

Notations Explanations
Subscripts
i 1, 2, …, n, module type index
m Items related to manufacturing
c Items related to set-up changes
Parameters
cm Total cost of manufacturing
cmi Unit area manufacturing cost of the modules of 

type i
a Linear increasing rate of unit area 

manufacturing cost with area growth
tm Total time of manufacturing
tmi Unit area manufacturing time of the modules of 

type i
b Linear increasing rate of unit area 

manufacturing time with area growth
cc Total cost for set-up changes to manufacturing 

different modules



cci Cost for set-up changes to manufacturing the 
modules of type i

tc Total time for set-up changes to manufacturing 
different modules

tci Time for set-up changes to manufacturing the 
modules of type i

T Time constraints for manufacturing completion 
of all modules

f Unit time fines to be paid for exceeding time 
constraints

S Total area of the floor plan
Decision variables
n Number of module types
si Area of modules of type i

mi Number of modules of type i

The proposed optimization model
The proposed optimization model is introduced in two 
parts, i.e., objective function and constraints. The 
objective function of this model primarily takes into 
account the requirements of cost and time, which are spent 
for manufacturing and set-up changes. We propose the 
following model with the production of a typical floor as 
a scope.
The cost and time spent on manufacturing are related to 
the module area, number of modules, and module type. In 
practice, the cost and time of individual modules, are 
usually calculated as the cost and time per unit area 
multiplied by the area. Therefore, the larger the module 
area, the higher the cost and time spent. The number of 
modules is also linearly and positively related to the cost 
and time of manufacturing. The module type also has a 
significant impact on manufacturing costs and time. 
Different types of modules are manufactured at different 
speeds and unit costs. For simplicity, the distinction 
between module types is deemed here to be made by the 
size of the area. Moreover, it is assumed that the larger the 
area, the higher the cost and time per unit area for 
manufacturing. This assumption is based on two 
considerations. Firstly, in general, the larger the module 
area, the more building components it contains. 
Therefore, it may take more cost and time to coordinate 
the interaction between these building components to 
form a complete module (Ramaji et al., 2017). Secondly, 
due to the characteristics of bulky and heavy building 
products, when the area increases, the need for lifting and 
transportation per unit area may also increase (BCA, 
2018). To be more specific, the effect of module type, 
namely, the relationship between cost and time per unit 
area and module area, is assumed to be as shown in 
Equation (1) and Equation (2):

mi ic as (1)

mi it bs (2)

where a and b are the coefficients of these linear 
relationships. The specific values of a and b can be 

obtained by collecting data on unit area costs and time, 
and regressing them against area data. The total 
manufacturing cost and time can be obtained by 
multiplying the cost and time per unit area, module area, 
and number of modules. The calculations are specified in 
Equation (3) and Equation (4):
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The cost and time spent on set-up changes are often 
required in the factory manufacturing environment. Set-
up changes refer to the changes in factory settings to 
enable the manufacturing of other different types of 
modules. For example, for modules made of reinforced 
concrete, custom molds of specific sizes are commonly 
needed to shape the concrete into desired dimensions 
(Khalili & Chua, 2014). For steel frame modules, specific 
jigs need to be set up or adjusted to accommodate 
different module manufacturing (CIC, 2021). The total 
cost and time for set-up changes are simply the sum of the 
cost and time of each change. In this paper, the cost and 
time of each change are considered to be the same for 
simplicity. Their calculations are illustrated in Equation 
(5) and Equation (6):

c cic nc (5)

c cit nt (6)

The proposed model also considers the time constraint in 
modular construction projects. Manufacturers are usually 
required to deliver a specific number of modules within a 
certain time frame, and fines are imposed for late delivery. 
According to Equation (4) and Equation (6), the real-time 
consumed by the manufacturing of modules can be 
calculated using the following formula: 

r m cT t t (7)

The difference between the time consumed and the time 
constraint is , as calculated in Equation (8):

rT T T (8)

If the time difference is greater than 0, it will result in 
a loss or a corresponding fine due to the schedule delay. 
Thus, the objective function can be written as Equation 
(9): 

max ,0m cc c T f (9)

The constraint of the optimization model is derived from 
an assumption that the area of the floor plan remains 
constant before and after modularization. In other words, 
the individual modules add up to an area equal to the area 
of the original floor plan, as shown in Equation (10):
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To summarize, the final model can be written in the 
following standard form:

1

min

. .

, , 0

n

i i
i

i i

s t s m S

n s m

(11)

The adopted solving algorithm 
In this model, there are three main types of decision 
variables, i.e., the number of module types (n), the area of 
modules of type i (si), and the number of modules of type 
i (mi). A unique characteristic of this model is that the 
value of n affects the number of other decision variables 
(si and mi), which in turn generates different models. To 
deal with this dilemma, we control the variable n as 
different discrete values (e.g., 1, 2, …, 10), each discrete 
value corresponding to a separate model. By doing so the 
number of decision variables in each separate model is 
fixed, and each separate model is then optimized 
individually.  
Mathematical programming algorithms try to obtain exact 
analytical solutions, but they are time-consuming and 
ineffective in the face of complex nonlinear problems. 
Typically, construction problems are complex, and their 
modelling is consequently non-linear. In the proposed 
model, both the constraints and objective functions are 
highly nonlinear, thus making it difficult to yield an exact 
analytical solution by traditional programming methods. 
The metaheuristic algorithm, on the other hand, can come 
to a balance between effectiveness and accuracy in 
handling such nonlinear problems (Civera et al., 2021; 
Lee and Hyun, 2018). The genetic algorithm (GA), as one 
of the most powerful metaheuristic algorithms, is adopted 
to solve the proposed optimization model. The detailed 
flowchart of the adopted solving algorithm in this study is 
shown in Figure 2.

We present a hypothetical case study to demonstrate the 
application of the proposed optimization model and 
validate the solving algorithm. The values of each process 
parameter are displayed in Table 2. These values are 
estimated by the authors from interviews and surveys with 
module manufacturers. In this case, it is assumed that the 
cost and time for set-up changes are the same for all 
module types.  
The control parameters of GA include the size of the 
population, the maximum number of genetic generations, 
the probability of performing crossover, and the 
probability of mutation. Their values are shown in Table 
3.  

Figure 2: Flowchart of the adopted solving algorithm

Table 2: Values of process parameters in the case study

Parameters Values Units
a 0.01 104 $/m4

b 0.05 day/m4

cci 0.2 104 $
tci 2 day
T 80 day
f 5000 $
S 120 m2

Table 3: Values of control parameters of GA

Parameters Values
Size of the population 50

Maximum number of genetic generations 10000

Probability of performing crossover 0.5

Probability of mutation 0.5



According to the flowchart in Figure 2, the value range of 
module type n is set to 2 to 10. Each n corresponds to a 
separate optimization model, meaning that a total of 9 
optimization models are required to be solved. Figure 3 
illustrates typical records of optimizing an objective 
function with a GA. In the population, the average 
objective value keeps converging to the best objective 
value. Eventually, they become identical and stabilize. 

Figure 3: Decrease of the objective values with the generation 
number

Table 4: Near-optimal modularization solutions

n
Modularization solutions (si and mi)

si mi

2 9.2, 9.2 6, 7
3 4.3, 7.9, 9.9 8, 2, 7
4 8.8, 9.1, 9.5, 10.2 1, 10, 1, 1
5 4.0, 16.7, 5.2, 4.0, 4.0 6, 4, 1, 5, 1
6 18.8, 4.0, 4.3, 5.2, 5.0, 13.0 2, 1, 2, 8, 3, 1
7 15.9, 18.2, 19.4, 4.0, 4.0, 14.5, 4.0 1, 1, 1, 4, 3, 1, 6
8 5.0, 6.1, 23.4, 9.6, 5.0, 20.0, 4.0, 

4.0
8, 1, 1, 1, 1, 1, 

3, 1
9 4.1, 10.6, 8.6, 5.8, 4.6, 7.7, 4.0, 

28.0, 4.0
1, 1, 2, 4, 2, 1, 

3, 1, 2
10 16.4, 12.4, 2.0, 16.1, 3.3, 2.8, 2.0, 

2.0, 2.0, 2.1
3, 1, 10, 1, 1, 1, 

2, 2, 3, 1

Table 4 shows the near-optimal modularization solutions 
for each n (number of module types). The objective 
function values for each option are shown in Figure 4. It 
follows that the total cost of the modularization solution 
is lowest when n is 3. More specifically, the lowest total 
cost is achieved when there are three module types, each 
with an area of 4.3 m2, 7.9 m2, and 9.9 m2, and when the 
number of modules of the three types is 8, 2, and 7 
respectively. The lowest cost of the modularization 
solution is $ 10.30 × 104. As can be seen from the Figure,
the general trend of the objective function values 
decreases first and then increases as n increases. But 
within this general trend, there are also small fluctuations. 
For example, when n increases from 5 to 6, there is a

decline in the value of the objective function. This may be 
because when n is 5, the objective function value is near-
optimal, but not sufficiently optimal. If a more optimal 
result is desired, the number of iterations or genetic 
generations needs to be extended.
Figure 5 shows the time consumed for solving the 
optimization model. The computing device is “Intel(R) 
Core(TM) i7-10700 CPU @ 2.90GHz”. All the models 
are solved within the range from 3.011s to 3.834s. It can 
be seen that the solving algorithm can yield a near-optimal 
solution that is sufficiently satisfying in a very short time.

Figure 4: Decrease of the objective values with the generation 
number

Figure 5: Decrease of the objective values with the generation 
number

Discussion
Modularization is a very complex issue. On one hand, it 
requires consideration of the details on drawings, such as 
building axes and internal wall divisions. These factors 
come from the requirements of the product. However, in 
practice, considering only these factors is not sufficient to 
generate a good modularized solution. On the other hand, 
it also needs to consider some requirements related to 
business processes (e.g., manufacturing, transportation, 
and installation). Designers usually need to consider many 
factors in these two aspects to make the final decision, 
which is a very difficult process. 



To solve this problem, we start with the requirements of 
the business process, and only consider the manufacturing 
stage (i.e., DfM) for now. After making some simplifying 
assumptions, we transform this problem into solving the 
proposed model. We conducted interviews with two 
modular construction designers. We showed them our 
model, assumptions, and calculation results. The feedback 
we received indicates that the model can preliminarily 
consider the designer's logic of DfM in decision-making. 
But at the same time, it is pointed out that there is still a 
lot of room for improvement for the model in the future.  
Just as this paper is only a preliminary exploration in the 
area of modularization issues, further research is still 
needed to improve it in the following aspects. Firstly, it is 
necessary to include more business process stages such as 
transportation and installation stages to establish a more 
comprehensive model. Secondly, future studies should 
consider the requirements of both business processes and 
product development, that is to say, segmentation and 
modularization should be based on building axis and 
interior wall positions. Thirdly, more specific constraints, 
such as requiring a module to have an area of no less than 
15 square meters, need to be taken into consideration.

Different modular solutions for floor plans have a 
considerable impact on manufacturing operations. But 
few studies have explored the optimal modularization 
solution in consideration of manufacturing operations. 
This paper proposed a newly developed optimization 
model. The model mainly considered manufacturing 
costs, set-up change costs, manufacturing time, and set-up
change time. A modified genetic algorithm (GA) was 
adopted to obtain near-optimal solutions. A case study has 
been conducted to demonstrate the efficiency and 
effectiveness of the solving algorithm. 
Future studies are suggested as follows. Firstly, more 
detailed constraints (e.g., the area of a specific module) 
should be added to the model. Secondly, the 
transportation and installation stages should be integrated 
into the model and considered collectively with the 
manufacturing stage. Thirdly, uncertainty should be 
addressed using techniques, e.g., stochastic 
programming.
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