2023 European Conference on Computing in Construction
40th International CIB W78 Conference
Heraklion, Crete, Greece
July 10-12, 2023

International Council
for Research and Innovation
in Building and Construction

&

ciklJ18 i:

A REFERENCE FRAMEWORK ENABLING TEMPORAL SCALABILITY OF
OBJECT-BASED SYNCHRONIZATION IN BIM LEVEL 3 SYSTEMS

Sebastian Esser!, Simon Vilgertshoferl, and André Borrmann

1

I'Technical University of Munich, Munich, Germany

Abstract

Model-based collaboration has been identified as one of
the key concepts in Building Information Modeling (BIM)
to enhance productivity in construction projects. To-
day’s best practice and international standards demand
”BIM level 2 which is based on transferring entire (do-
main) models through file-based exchanges. However,
this coarse granularity causes severe limitations regard-
ing concurrency, conflict resolution, and traceability. To
overcome these limitations, an increasing number of re-
searchers are investigating incremental model updates. In
this paper, we critically assess current applications of BIM
level 2 collaboration and summarize strategies for BIM
level 3 with regard to interdisciplinary application sce-
narios, ownership management in federated environments,
and their integration into existing collaboration workflows.
Furthermore, we present a reference architecture that re-
flects the aspects of user interaction, application logic, and
incremental update exchange that are deemed necessary
for future BIM Level 3 collaboration systems.

Introduction

To date, model-based information exchange is used in nu-
merous projects carried out in the AEC industry. The in-
teraction between various stakeholders in a construction
project using BIM models with geometric and semantic
information is denoted as BIM level 2 and reflects an ad-
vanced maturity stage according to the definitions given in
PAS 1192-2 published by the British Standards Institution
(2013). Prior to this stage, BIM levels 0 and 1 addressed
project management with less digitization. The main com-
munication means were still 2D plans and documents but
the first 3D models have been produced and shared as ad-
ditional resources.

Today’s broadly adopted best practice is denoted as BIM
level 2 where collaboration among various project teams
and stakeholders is realized through Common Data Envi-
ronments implementing the concept of model federation.
A CDE platform enables interdisciplinary collaboration
and offers procedures for structuring, merging, distribut-
ing, managing, and archiving digital information as part
of a holistic project management approach. Today, infor-
mation to be shared over a CDE appears mostly in the form
of BIM models, which contain geometric and semantic
information representing the design and engineering in a
computer-readable manner.

From a technical point of view, CDE systems follow the

101

specifications provided by a series of standards including
ISO 19650 CEN (2018) and implement model federation
by means of file-based data exchange. At its heart, the
principle of model federation relies on discipline-specific
partial models (such as architectural, structural, or HVAC
models) that are created and maintained independently, but
coordinated in well-defined intervals to achieve a coherent
overall design solution. The main motivation for following
the federated model approach lies in the legal demand that
the responsibility for a discipline model must remain with
the respective author. In implementing this approach, the
current best practice relies on transferring complete do-
main models stored in files each time a model version is
shared. Since BIM models can easily reach the extent of
several Gigabytes, this process creates substantial network
traffic and consumes a significant amount of storage space.
More severely, model changes are not tracked by the sys-
tem, and thus have to be identified manually in the coor-
dination session. This poses substantial limitations to the
collaboration procedure.

Looking ahead to the upcoming BIM level 3, collabora-
tion systems are expected to obtain a more complete inte-
gration of design information authored by each discipline
and to implement tighter connections between the feder-
ated BIM models. Specifically, the next maturity level
should provide a more agile and flexible means to react
to model changes and alterations during the design pro-
cess. To fulfill these requirements and to overcome the
aforementioned limitations, the authors propose to trans-
fer only model changes instead of entire BIM models. As
discussed in detail in the following sections, this approach
will reduce network traffic and storage space and allow the
effects of changes to be evaluated much more efficiently by
the collaborating stakeholders.

Motivation and Research Gap

The paper at hand introduces a technical approach that
overcomes the current limitations of BIM level 2 CDEs
with regard to their version management of BIM mod-
els. To this end, it is necessary to identify given peculiari-
ties and historically grown constraints that are characteris-
tics of the AEC industry. Furthermore, current limitations
in BIM level 2 implementations are analyzed and com-
pared to other technical systems that are already broadly
used in other industry branches. Finally, a distributed sys-
tem architecture is introduced that acknowledges industry-
specific limitations and provides a novel method for bet-

BIM Level 0 |BIM Level 1 | BIM Level 2
Model-based
collaboration

CAD
Federated
2D +3D discipline
CAD
models

BIM Level 3

iBIM
Interdisciplinary,
multidimensional collaboration

Level 3A Level 3B Level 3C Level 3D
Paperless
Contracting
and

Telemetry

Requirement
documentation
and

IoT and
interdisciplinary
workflows

Ontology
Framework
IFC / MVD
enhancements

Figure 1: BIM Maturity Levels specified in PAS 1192 and combined with the expected technical enhancements specified in the strategy
paper of Digital Great Britain (inspired by British Standards Institution (2013); Digital Built Britain (2015))

ter version control in iterative, interdisciplinary design
projects.

Background and related work

The following paragraphs summarize relevant publica-
tions in the context of BIM maturity levels from a technical
and management point of view. Furthermore, an overview
of existing approaches for version and revision control of
BIM models is provided.

Model-based collaboration and BIM-maturity levels

Prior to the BIM maturity model in PAS 1192-2 published
in February 2013, Succar (2010) described multiple BIM
stages that can be understood as a predecessor version of
the levels defined in PAS 1192-2. He distinguishes in to-
tal five BIM capability stages, where the first four are in
essence similar to the maturity levels of PAS 1192-2. For
BIM stage 3, Succar expected interdisciplinary nD mod-
els that allow complex analyses at early stages and a syn-
chronous interchange of information among project part-
ners. Accordingly, the strict borders between specific de-
sign phases should become less important as detailed in-
formation can be produced on a better-informed basis al-
ready in earlier project phases. As the ultimate and subse-
quent stage, Succar expected the “Integrated Project Deliv-
ery” phase which is characterized by interdependent dis-
cipline models and real-time collaboration in interdisci-
plinary settings.

Even though Succar’s expectations for BIM stages 1 and 2
have been met by evolving technology in the past decade,
there are still major deficiencies when applying BIM
level 2 in practice. Awwad et al. (2022) have analyzed the
application of BIM levels 1 and 2 in small and medium-
sized enterprises (SMEs) in the UK using literature re-
views and expert interviews. They concluded that the true
potential of BIM-related techniques has not been fully ex-
ploited by SMEs in the UK construction sector yet. At-
trill and Mickovski (2020) and Alankarage et al. (2022)
report various concerns and shortcomings that hinder the

102

adoption of BIM Level 3 from practitioners’ perspectives
and let them stick in incomplete applications of BIM level
2. Their outcomes are based on interviews and reveal that
concepts commonly understood as BIM level 2 are still not
fully adopted in all parts of the AEC industry. In partic-
ular, both have identified that BIM practitioners and BIM
managers still lack sufficient skills to perform BIM princi-
ples to the full extent. Furthermore, they highlight missing
consistency control between BIM models and 2D drawings
that have been derived from these BIM models. If changes
are applied to a model, the plans are often not regener-
ated as well. Related observations have been reported by
Kurul et al. (2016). According to their literature research
and case studies, the adoption of model-based collabora-
tion has not been established in the UK construction mar-
ket even though public administrations and large contrac-
tors have extended their demands. Nevertheless, it appears
relevant to consider the existing proposals of BIM level 3
approaches to resolve the highlighted limitations of level 2
platforms.

Digital Built Britain (2015) has published a strategic plan
that refines the rather coarse definitions of BIM level 3
given in PAS 1192-2. According to this document, BIM
level 3 should leverage how data is generated and ana-
lyzed during a built asset’s design, construction, and op-
eration phases. To accomplish this vision, a delivery pro-
gram defines four sub-levels of BIM Level 3. BIM lev-
els 3A and 3B aim to address the shortcomings of BIM
level 2, especially including model federation and inte-
gration and overall data management in cloud-based sys-
tems. Later, levels 3C and 3D should mainly address
economic and enterprise-related topics like tendering and
contracting and therefore aim to introduce enhanced tech-
niques. Figure 1 illustrates the maturity levels according
to PAS 1192 from a technical point of view and extends
level 3 by the visions specified in the strategic plan.

Besides the challenges caused by the production and inter-
pretation of exchanged data, it is also relevant to consider
how additional data captured by various acquisition meth-

ods can be integrated. Bucher and Hall (2020) have pro-
posed a terminology to distinguish different dimensions
of interoperability in the context of CDEs. According to
their observations, current CDE systems can be seen at
a one-dimensional interoperability level because systems
enable data exchange by means of BIM models but typi-
cally have limited options to connect additional informa-
tion to them. Two-dimensional interoperability is char-
acterized by the advent of exchange interfaces between
CDE systems whereas three-dimensional interoperability
extends this idea by connecting enterprise-related plat-
forms to various CDE systems. Whereas the latter case
is not been further documented or investigated so far, the
former vision of unified interfaces between CDE platforms
has been tackled in DIN SPEC 91391-2 (DIN Deutsches
Institut fiir Normung e. V, 2019) and related publications
(Senthilvel et al., 2020). Hence, further developments are
expected throughout the next years.

Version control and dependency modeling in CDEs

Despite the advances in technology for sharing and man-
aging BIM data, the design of buildings and infrastructure
facilities remains a highly iterative task due to the fact that
it is a multi-objective problem that often does not have one
optimal solution. Instead, design requires the balancing of
a multitude of objectives and fulfilling various constraints.
In consequence, tasks that involve multiple disciplines in
a project are subject to several iterations, which results in
numerous versions of the federated discipline models.

To observe consistency aspects across multiple discipline
models coordinated in a CDE, Preidel et al. (2017) have
presented an integration framework that enables a seam-
less connection between multiple authoring systems and
a CDE platform. However, despite the technical interac-
tion between various applications, their approach does not
provide comprehensive techniques for the case that multi-
ple versions of a model are created and populated over the
project platform.

So far, the version and revision control of BIM models has
been subject to only a few investigations in academia and
practice. Nour and Beucke (2010) are the first to discuss
object versioning as a basis for design change manage-
ment within a BIM context. Schapke et al. (2018) have
proposed naming conventions or recommended assigning
metadata for the unique identification of each model ver-
sion. However, these approaches do not enable users to
access the changes made but demands manual identifi-
cation and checking for possible inconsistencies caused
by foreign model updates. Simeone et al. (2018) have
summarized current CDE systems as mainly document-
oriented. According to their explanations, level 2 CDEs
focus merely on sparse meta-information for each data set
and offer limited capabilities to link data sets for com-
prehensive management and analysis tasks. To overcome
these limitations, they have proposed the application of
graph-based databases, which enable high flexibility in in-
stantiating relationships.

103

The application of version control for BIM models and dig-
ital twins was recently addressed in a number of publica-
tions (Esser et al., 2022b; Jones et al., 2021). Shafiq et al.
(2018) suggest managing iterative changes in BIM models
as a database problem, exacerbated by the long transac-
tion times needed to support collaborative design progres-
sion. Other research groups propose to implement update
mechanisms between different BIM software tools using
dedicated exchange languages (Poinet et al., 2021). These
approaches are promising techniques for future BIM col-
laboration systems but they only solve a small fragment
needed to define a solid base for future BIM level 3 col-
laboration. Hence, the next paragraphs aim to connect the
outlined proposals with the propagated goal of integrated
BIM”.

The BIM Level 3 Reference Framework

To achieve the goal of improved support for collaboration
on the basis of federated models, it is essential to discuss (i)
how relationships and links between heterogeneous design
information can be maintained and (ii) how the iterative
nature of engineering and design is considered. Methods
to establish links between specific information provided
by diverse domain models have been addressed by several
researchers lately (Beck et al., 2021; Curry et al., 2013).
The presented framework discussed in the paper at hand,
however, focuses on the version control problem and ap-
proaches the topic of dependency modeling.

Principles, premises and assumptions

The proposed BIM collaboration method is based on a
number of principles, premises, and assumptions that are
discussed in the following and depicted in Figure 2.
Given lacking support for the incremental exchange of
modified BIM models, the authors envision BIM level 3
systems to combine established means of version manage-
ment systems with established principles of model-based
collaboration. Therefore, the paradigm of federated disci-
pline models is preserved to maintain the clear handling
of authorships and responsibilities. Collaboration in one
monolithic model that is jointly edited by multiple ac-
tors has been evaluated positively for closed collaboration
within a single design team but is seen as critical in inter-
disciplinary cross-company settings (Preidel et al., 2017).
Instead, we assume a central BIM collaboration hub for
managing all project-wide data. This server provides sim-
ilar services as existing CDE systems, including persistent
data storage and access rights management, but does not
rely on file-based technology anymore.

While it is assumed that each discipline continues to pro-
duce BIM models in an authoring tool that best suits the
specific design task, models should be curated in open,
vendor-neutral data representations. Existing data models
like the Industry Foundation Classes (IFC) for BIM mod-
els or CityGML as an important exchange standard for city
models have been continuously extended towards the sup-
port of new use cases and data exchange scenarios (Jaud

Design
Applications

AN

0

BIM models

contain

Graph-based
diff-patch-merge

Py

managed in

A
L0

Distributed
Version Control

facilitate

facilitate

push/pull

Figure 2: General overview about the premises and assumptions made for the reference model

et al., 2020; Kutzner and Kolbe, 2018). Therefore, it can
be expected that the market, especially public authorities,
will further enforce the demand to support these data mod-
els. Hence we assume open, standardized data models to
form the basis for any data exchange across the distributed
system.

As extensively discussed in Esser et al. (2022b), there is
a clear need for improved change tracking in BIM level 3
to better support the coordination across the various disci-
plines and stakeholders and cope with the iterative nature
of design processes. To this end, we propose to make the
progression to incremental updates, also denoted as delta
transmissions. The advantage of communicating changes
instead of complete models lies not only in reduced net-
work traffic, but also in transparent messaging and, most
importantly, the possibility to install triggers for automat-
ing reactions to others’ modifications on the receiving side.
This may range from performing a collision check, over the
generation of an entry in a to-do list up to the automated
update of the receiving user’s own BIM model.

There are multiple approaches to realize the principle of
incremental updates, including text-based diff-and-patch
as commonly applied in concurrent software development.
However, due to the non-linear graph-like structure of BIM
data, we argue that representing a model as a graph and
transmitting the corresponding changes as graph updates
(transformations) is a much more versatile approach with
high descriptive power (Esser et al., 2022b). The usage
of graphs as fundamental representation results in graph
databases being the optimal technology for persistent stor-
age, providing fine-grained object-level access to BIM
model information at the central repository. Respecting

104

the principle of model federation, however, each domain
model is represented by a separate graph.

The implementation of the aforementioned principles
forms the basis of a powerful version control approach
that provides the flexibility of asynchronous collaboration
while enabling overall consistency preservation. In anal-
ogy to code versioning systems such as Subversion or Git,
the point of time of providing updates to the other stake-
holders is freely chosen by the model author, as well as
the time for integrating changes of others. We will discuss
below, however, that by using fully automated updates and
integration, our collaboration approach can be stretched to
eventually become synchronous collaboration.

It is anticipated that implementing comprehensive version
control methods will enable project partners to share and
consume updated information more proactively. At the
same time, project participants will greatly benefit from
the communication of model updates as they gain direct
insights into the changes made to foreign models and im-
mediately evaluate the impact on their design tasks.

Version control: Workflow and commands

Only a few additions to existing concepts are required to
introduce version control into the established principles of
model-based collaboration. Figure 3 provides an overview
of the proposed workflow and the corresponding com-
mands. The overall system architecture follows the princi-
ples of distributed version control (Ruparelia, 2010) where
the server repositories are mirrored to each machine, thus
creating a local version of the repository. Each user tracks
changes in the local repository which is subsequently syn-
chronized with the remote servers (which is located on a

hub).

[

add

Local
repository
Q commit

Figure 3: Technical interaction between multiple users and the
collaboration hub implementing distributed version control

notify

get

Local
repository

push fetch

pull

Every user requires a set of basic commands to participate
in the incremental version control system. The commands
are closely aligned with the notions and semantics used
in the version control system Git (Chacon, 2009; Blischak
etal., 2016) and are illustrated in Figure 4. All commands
are part of a command-line application called conman that
has been prototypically implemented to demonstrate the
overall system.

Add Commit Get
[=ofe o= e~
Fetch Push Pull
2> D
\ o _—

A 4

Figure 4: Set of commands exposed to an end-user performing
version control over BIM data in the local repository

The add command adds a model to the local repository.
In the graph storage of the repository, multiple versions of
a model can exist, reflecting different design variants or,
more likely, evolved versions of a model. By performing
the commit command, the latest committed version of a
model is compared to the most recent version and a subse-
quent patch is generated. The update patch is then stored
in the patch storage and can be synchronized with the hub.
In case a model has been added to the graph storage in
only one version, the entire graph reflecting this version is
committed, which reflects the initial upload of a model.
Given the repository storage being a graph storage, the get
command enables the user to translate a graph from the
graph storage back into a file-based (i.e., serialized) rep-
resentation. The parallel use of files and graphs on the
client’s machine enables the support of exchange interfaces
in existing (legacy) software applications. From a long-
term perspective, however, it is anticipated that software
tools will directly connect to the graph storage to either
add a new version or retrieve version-controlled models
from the graph storage.

Figure 5 illustrates an exemplary situation. The user has
various discipline models stored as files. By performing

ez]

105

the add command, a model is inserted into the graph stor-
age. For further identification of each model, a stable uni-
versally unique identifier (UUID) is attached to each node,
forming one version of a model (indicated as ts in the fig-
ure). Furthermore, the timestamp at the model created is
attached to the nodes of the respective graph as a unixtime
value. Combining these two labels enables the system to
identify which graphs reflect a particular model and its as-
sociated versions without requiring naming conventions to
be applied. Furthermore, the user can specify a commit
message, which gets attached to each patch authored dur-
ing the commit execution.

To keep track of versions already committed, an additional
attribute COMMITTED is used as a flag indicating that a
version in question has already been committed in a previ-
ous commit. In the example illustrated, three versions of
the discipline model with MODEL_ID 1 have been added
to the graph storage. In an earlier commit, a patch was
created that reflects the changes between timestamp 0 and
timestamp 1. Hence, the commit flag has been set to true
for timestamp 1. Executing the commit command in the il-
lustrated situation results in a patch that upgrades model 1
from timestamp 1 to 2 and exchanges the model indicated
by id 2 in its initial state.

Three additional commands are exposed to the end-user
to exchange commits with other project stakeholders. By
performing the push command, the committed changes
(i.e., the patches) are synchronized with the central col-
laboration hub. On the collaboration hub, an event log
of received commits and their corresponding initiators is
produced. The ferch command enables a user to over-
see commits of foreign users that have been synchronized
with the central repository but not yet applied to the local
repository. Finally, the pull function downloads the pend-
ing commits from the server and applies them to the data
stored locally in the repository.

Implementation of the repository storage and diff-
patch mechanism

Unlike Git, the proposed version control system does not
make use of text files but relies on graph representations.
The key motivation for applying graphs as a basis for the
discussed version control problem is the intrinsic nature
of BIM data. Most data models, including the widely es-
tablished IFC data model, represent BIM information in a
network of interconnected objects. For example, any built
element in a BIM model has multiple relationships to other
built or spatial elements and geometric representations.
Accordingly, graph databases are the optimal solution for
hosting and managing BIM instance models and provid-
ing the technical basis for the local and central reposito-
ries (Jeon and Lee, 2022; Angles, 2012). In consequence,
diffs are determined on the basis of graph comparison, and
patches are represented by graph transformations. This has
the positive side effect that the representation is immune to
changes in the serialization order. Details are provided in
(Esser et al., 2022b).

Working Directory

ConMan Repository service

Graph storage

=

Patch storage

Graph
MODEL_ID: id1
TS: tsO
COMMITTED: true
Graph
MODEL_ID: id1
Architectural.ifc Ceer
D TS: ts1 Patch
COMMITTED: true
MODEL_ID: id1
; : “archi e I INIT_TS: ts1 [ﬁ
Archltectural_VZ.lfc D _‘ conman add “Architectural_v2.ifc UPDT_TS: ts2
Architectural v3.ifc D —(conman add “Architectural_v3.ifc” Patch
- MODEL_ID: id2
INIT_TS: NONE />
Graph UPDT_TS: ts7
CityModel.citygml D MODEL_ID: id1
TS: ts2
COMMITTED: false
CityModel.citygml D Graph
MODEL_ID: id2
TS: ts7
COMMITTED: false

TerrainModel.landxml D

Figure 5: The add and commit process: To create a patch, the models must be added into the graph storage running the add command.
Then, the commit command detects the most recent version and the last committed version and produces the corresponding patches

Eventual consistency and synchronization scalability

The outlined system enables stakeholders to achieve even-
tual consistency after performing the corresponding com-
mands. Therefore, it adopts the BASE (basically available,
soft state, eventually consistent) transaction model, which
is generally known from NoSQL database systems. Each
discipline continues to work independently and thus cre-
ates versions of BIM models that are not immediately syn-
chronized with all other actors. Instead, the end-user must
actively perform the commit and push command to release
the updated information to all other domains. In conse-
quence, there is the risk of concurrent changes applied by
other team members to a model, which leads to two further
considerations.

On a project coordination level, however, the eventual syn-
chronization of locally stored patches with the collabora-
tion server can still lead to situations where design tasks
are performed on outdated information provided by for-
eign disciplines. This deficiency is complex to overcome
in a general manner as it requires sensitive consideration of
the individual management policies in each project. The
phenomenon is inherent to long transactions (Aish, 2000;
Weise et al., 2004) and is well-known also in the field of
concurrent code development. Here, best-practice policies
and workflows are applied in an informal, i.e. not techni-
cally enforced manner, such as “commit early and often”
or “short branches, quick merge” to avoid the divergences
growing too large. A similar approach should be taken in
collaborative BIM projects.

As a dedicated enhancement over existing CDE platforms,
however, the collaboration server provides an additional

106

notification interface implementing a publish-subscribe
pattern as it has been discussed in Esser et al. (2022a).
In addition to a manual pull operation applying pending
patches to the local repository, each end-user can subscribe
to events (i.e., recently pushed patches) of a specific do-
main or change event and receives notifications accord-
ingly. The notification interface enables stakeholders to
precisely control, if and how often local copies of other
discipline models should be updated. This has particular
relevance when they are used as references for their own
model. The time interval of pulling pending patches into
the local repository can be chosen as either rather long
(e.g., pulling daily or weekly) or fairly short (e.g., every
minute or hour).

Furthermore, two types of integration modes are envi-
sioned to handle updates. For incoming patches of low
relevance for the user, a silent pull can be triggered when
a notification has been received. This means that the user
does not need to explicitly invoke the pull command but
automatically stays up-to-date at any time. If also the push
on the sender’s side is performed automatically after any
model modification, the asynchronous mode of collabora-
tion is turned into the synchronous one, completely avoid-
ing any inconsistencies. The stakeholders in a project can
flexibly decide on the synchronization mode that best fits
their needs and workflows; a concept that we denote ”syn-
chronization scalability”.

On the contrary, updates to foreign discipline models that
could affect the receiver’s engineering domain should be
indicated by a clear warning and applied only after the de-
sign impact has been evaluated.

By providing the two modes of notification handling and
synchronization, the envisioned BIM level 3 system pro-
vides a sufficient foundation to (i) improve the overall in-
formation flow by means of update patches and (ii) respect
the established paradigm of federated, disparate discipline
models.

Conclusions

We have presented a reference model for BIM Level 3 sys-
tems enabling fine-granular version control and temporal
flexibility. The proposed approach is agnostic to naming
conventions, storage locations, and different serialization
approaches at the client’s machine. Instead, a graph stor-
age technology has been applied, which handles differ-
ent versions of a BIM model and is capable of both hi-
erarchical data and connected object networks. If models
are modified, the user explicitly commits the changes and
pushes them to the server as a set of update patches.
Every party involved in the design project can specify
if updates made in foreign discipline models should be
picked manually by performing the pull command or
silently integrated by continuously applying any new up-
date patch. Furthermore, the user can set up notifications
informing about updates emitted by other project stake-
holders. The overall architecture overcomes existing is-
sues in BIM level 2 platforms and paves the way toward
incremental information exchange. As the concept of dis-
parate (federated) discipline models remains intact, it is
anticipated that the presented means for version control
can be implemented into existing model-based workflows
with little effort.

The authors identify the need for future research in ex-
tended reasoning about the actual content exchanged in
each patch. By not only applying the patches to foreign
models used for reference purposes but by proactively in-
terpreting the impact of incoming changes, possible incon-
sistencies between designs from different disciplines can
be detected much more efficiently and resolved accord-

ingly.
Acknowledgments

This research has been partially funded by the German
Research Foundation (Deutsche Forschungsgemeinschaft,
DFGQG) - 271444440.

References

Aish, R. (2000). Collaborative design using long transac-
tions and “change merge”. In Proceedings of the 18th
eCAADe Conference, pages 107 — 111.

Alankarage, S., Chileshe, N., Samaraweera, A.,
Rameezdeen, R., and Edwards, D. J. (2022). Organisa-
tional BIM maturity models and their applications: a
systematic literature review. Architectural Engineering
and Design Management, pages 1-19.

Angles, R. (2012). A comparison of current graph

107

database models. In 28th International Conference on
Data Engineering Workshops, pages 171-177. IEEE.

Attrill, R. and Mickovski, S. B. (2020). Issues to be ad-
dressed with current BIM adoption prior to the imple-
mentation of BIM level 3. In Proceedings of the 36th
Annual ARCOM Conference, pages 336-345.

Awwad, K. A., Shibani, A., and Ghostin, M. (2022).
Exploring the critical success factors influencing BIM
level 2 implementation in the UK construction industry:
the case of SMEs. International Journal of Construction
Management, 22:1894-1901.

Beck, S. F., Abualdenien, J., Hijazi, I. H., Borrmann, A.,
and Kolbe, T. H. (2021). Analyzing contextual link-
ing of heterogeneous information models from the do-
mains bim and uim. ISPRS International Journal of
Geo-Information, 10:807.

Blischak, J. D., Davenport, E. R., and Wilson, G. (2016). A
quick introduction to version control with git and github.
PLoS Computational Biology, 12:1-18.

British Standards Institution (2013). Pas 1192-2:2013:
specification for information management for the cap-
ital/delivery phase of construction projects using build-
ing information modelling.

Bucher, D. and Hall, D. (2020). Common data environ-
ment within the aec ecosystem: moving collaborative
platforms beyond the open versus closed dichotomy.
In EG-ICE 2020 Proceedings: Workshop on Intelli-
gent Computing in Engineering, pages 491-500. Uni-
versititsverlag der TU Berlin.

CEN (2018). DIN EN ISO 19650-1:2018 Organiza-
tion and digitization of information about buildings and
civil engineering works, including building informa-
tion modelling (BIM) — Information management us-
ing building information modelling — Part 1: Concepts
and principles.

Chacon, S. (2009). Pro Git. Apress.

Curry, E., O’Donnell, J., Corry, E., Hasan, S., Keane,
M., and O’Riain, S. (2013). Linking building data in
the cloud: Integrating cross-domain building data us-
ing linked data. Advanced Engineering Informatics,
27:206-219.

Digital Built Britain (2015). Level 3 Building Information
Modelling - Strategic Plan.

DIN Deutsches Institut fiir Normung e. V (2019).
DIN SPEC 91391-2: Gemeinsame Datenumgebun-
gen (CDE) fiir BIM-Projekte - Funktionen und offener
Datenaustausch zwischen Plattformen unterschiedlicher
Hersteller - Teil 2: Offener Datenaustausch mit Gemein-
samen Datenumgebungen.

Esser, S., Abualdenien, J., Vilgertshofer, S., and Borr-
mann, A. (2022a). Requirements for event-driven archi-
tectures in open BIM collaboration. In Proceedings of
the 29th EG-ICE International Workshop on Intelligent
Computing in Engineering, pages 45-53.

Esser, S., Vilgertshofer, S., and Borrmann, A. (2022b).
Graph-based version control for asynchronous BIM
collaboration. ~ Advanced Engineering Informatics,
53:101664.

Jaud, S., Esser, S., Muhi¢, S., and Borrmann, A. (2020).
Development of IFC schema for infrastructure. In Pro-
ceedings of 6th International Conference siBIM: Struc-
tured data is the new gold.

Jeon, K. and Lee, G. (2022). The status quo of graph
databases in construction research. In The 9th Inter-
national Conference on Construction Engineering and
Project Management.

Jones, D., Nassehi, A., Snider, C., Gopsill, J., Rosso, P.,
Real, R., Goudswaard, M., and Hicks, B. (2021). To-
wards integrated version control of virtual and physical
artefacts in new product development: inspirations from
software engineering and the digital twin paradigm.
Procedia CIRP, 100:283-288.

Kurul, E., Oti, A. H., and Cheung, F. K. T. (2016). Level 3
BIM for Standardised Design Delivery, Refinement and
Optimisation: Is it a real option in the UK? In CIB
World Building Congress.

Kutzner, T. and Kolbe, T. H. (2018). CityGML 3.0: Sneak
preview. In Kersten, T. P., Giilch, E., Schiewe, J., Kolbe,
T. H., and Stilla, U., editors, PFGK18 - Photogramme-
trie - Fernerkundung - Geoinformatik - Kartographie,
37. Jahrestagung in Miinchen 2018, pages 835-839.

Nour, M. and Beucke, K. E. (2010). Object versioning as a
basis for design change management within a BIM con-
text. In Tizani, W., editor, Proceedings of the Interna-
tional Conference on Computing in Civil and Building
Engineering. Nottingham University Press.

Poinet, P., Stefanescu, D., and Papadonikolaki, E. (2021).
Collaborative Workflows and Version Control Through
Open-Source and Distributed Common Data Environ-
ment, volume 98. Springer International Publishing.

Preidel, C., Borrmann, A., Oberender, C., and Tretheway,
M. (2017). Seamless integration of common data en-
vironment access into BIM authoring applications: The
BIM integration framework. In eWork and eBusiness
in Architecture, Engineering and Construction, pages
119-128. CRC Press.

Ruparelia, N. B. (2010). The history of version con-
trol. ACM SIGSOFT Software Engineering Notes,
35(1):5-9.

108

Schapke, S.-E., Beetz, J., Kénig, M., Koch, C., and Borr-
mann, A. (2018). Collaborative data management. In
Building Information Modeling - Technology Founda-
tions and Industry Practice, pages 251-277. Springer In-
ternational Publishing.

Senthilvel, M., Oraskari, J., and Beetz, J. (2020). Com-
mon data environments for the information container
for linked document delivery. In Proceedings of the
8th Linked Data in Architecture and Construction Work-
shop - LDAC, pages 132-145.

Shafiq, M. T., Matthews, J., Lockley, S. R., and Love, P.
E. D. (2018). Model server enabled management of
collaborative changes in building information models.
Frontiers of Engineering Management, 5:298-306.

Simeone, D., Cursi, S., and Coraglia, U. M. (2018).
Reasoning in Common Data Environments Re-thinking
CDE:s to enhance collaboration in BIM processes. In
eCAADe 2020 - Architecture and Fabrication in the
Cognitive Age, pages 499-506.

Succar, B. (2010). Building Information Modelling Ma-
turity Matrix. In Handbook of research on building in-
formation modeling and construction informatics: Con-
cepts and technologies, pages 65-103. IGI Global.

Weise, M., Katranuschkov, P., and Scherer, R. (2004).
Managing long transactions in model server based col-
laboration. In Proc. of the 5Sth European Conf. on Prod-
uct and Process Modelling in the Building and Con-
struction Industry - ECPPM, page 311. Taylor & Fran-
cis.

