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Abstract

Recent advances in construction automation increased the
need for cooperation between workers and robots, where
workers have to face both success and failure in human-
robot collaborative work, ultimately affecting their trust
in robots. This study simulated a worker-robot bricklaying
collaborative task to examine the impacts of blame targets
(responsibility attributions) on trust and trust transfer in
multi-robots-human interaction. The findings showed that
workers’ responsibility attributions to themselves or
robots significantly affect their trust in the robot. Further,
in a multi-robots-human interaction, observing one
robot’s failure to complete the task will affect the trust in
the other devices, aka., trust transfer. This study calls for
the necessity of educating current and future workers
regarding safe and productive collaboration with robots.

Introduction

Although robots are expected to have tremendous
potential to enhance construction efficiency, they might
also impose some latent uncertainties and complexities on
construction sites known to be dynamic, hazardous, and
uncontrollable. Therefore, it is vital to cultivate trust
between workers and robots to boost harmonious
interaction and team dynamics.

Human trust is a multifaceted concept that varies over
time and can be affected by different factors (Demir et al.
2021). Previous literature has classified the influential
factors into three categories: human, robot, and
environmental (Hancock et al. 2011). The first category
refers to the factors related to human users, such as
gender, age, personality, and self-confidence (e.g., Hu et
al. 2019; Sanchez et al. 2014). For example, in the study
that investigated the effect of gender on trust, Ghazali and
her colleagues reported that males manifested higher trust
in a robotic advisor than females (Ghazali et al. 2018).
Partner factors represent the attribute-based (e.g.,
anthropomorphism) and performance-based (e.g.,
reliability and transparency) characteristics of the agent
with whom the human interacts. For instance, Liu and his
co-workers mentioned providing the current actions of an
autonomous vehicle (i.e., transparency) encouraged
pedestrians to trust the vehicle (Liu et al. 2021). Finally,
environmental factors are associated with the contexts and
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environments of the interactions between humans and
partners, such as task nature and time pressure (e.g.,
Robinette et al. 2017; Sanders et al. 2019). This taxonomy
perfectly reflects the three integral entities (i.e., human,
robot, and environment) that can impact workers’ trust.
This complex development of trust creates uncertainty for
future construction sites when incorporating novel robots.

Specifically, failure in the human-robot interaction (e.g.,
robot’s malfunction), as a performance-based factor, has
been identified to influence human trust level (e.g., Abd
et al. 2017; Kraus et al. 2020; Salem et al. 2015). For
example, Kraus and his colleagues found drivers
decreased their trust in an autonomous vehicle when it
took over tasks without permission (i.e., malfunction)
(Kraus et al. 2020). Although the adverse effect of the
failure on trust could be readily anticipated, a follow-up
question regarding who should be responsible for the
failure also arises. In other words, humans might take
responsibility for the failure or consider the failure a
robot’s fault. These two perspectives could trigger
different fluctuations in human trust levels. This issue is
essential for the context that workers need to be in the loop
to cooperate with robots instead of merely supervising
robots. However, the effect of taking responsibility for
robot failure and its relations with trust are still
understudied.

Further, human’s perception of robots could be not only
based on taking responsibility but also transferred from
other scenarios (i.e., trust transfer). Multi-task trust
transfer, which denotes the trust is increased/decreased by
the robot’s success/failure in another similar task, has
been proposed by prior studies (e.g., Shu et al. 2018; Soh
et al. 2018). For example, in the study that examined the
trust transfer in a multi-functional robot, Stewart found
humans would initially build trust in the robot being able
to pick up a can based on viewing it to grab a plastic bottle
(Stewart 2003). Moreover, the multi-task trust transfer
could be expanded to multi-agent trust transfer (i.e., trust
in an agent can be transferred from the trust in another
agent). This type of transfer should play an important role
in future construction sites because workers will need to
interact with various robots simultaneously or be exposed
to different robots across construction projects.
Nonetheless, previous literature has not yet paid much
attention to the exploration of multi-agent trust transfer.



This study aims to examine how trust is affected by
workers’ responsibility attributions for the failure in
human-robot interaction and how workers transfer trust
across multiple agents on future construction sites.
Specifically, a VR environment was developed to
simulate the future bricklaying task in which workers are
required to perform bricklaying, collaborating with a
cobot and interacting with various Al agents (e.g., drones
delivering materials or messages). These issues are
critical to the construction in which workers are
unfamiliar with the newly-introduced robots and must
interact simultaneously with multiple agents. The
expected contributions of this study lie in validating the
effect of human responsibility attributions on trust and
supporting the multi-agent trust transfer in worker-robot
interaction.

Background

Attributing responsibility for failure in human-robot
interaction

Failures in human-robot interaction refer to unexpected
incidents in the interaction (Honig and Oron-Gilad 2018),
where the behaviors performed by the robots are
inconsistent with the ideal, standard, and correct
functionality (Brooks 2007). This failure can decrease
human trust levels in robots (e.g., Abd et al. 2017; Kraus
et al. 2020; Salem et al. 2015). For example, in the study
investigating the effect of a robot’s competence on trust,
Abd and his colleagues reported that participants lowered
their trust in a bottle-delivery robot when the robot
dropped the bottle (Abd et al. 2017). Likewise, Salem and
his colleagues suggested that participants who interacted
with a faultless robot (i.e., arriving at the destination
efficiently) manifested a higher trust level compared to
the ones who experienced a faulty robot (i.e., taking a
detour to the destination) (Salem et al. 2015).

Previous studies have also proposed taxonomies for
classifying different types of failures. For example,
Carlson and Murphy categorized the failures into physical
failures (i.e., the errors caused by the system’s effector,
sensors, etc.) and human failures (i.e., the errors caused
by human mistakes or slips) (Carlson and Murphy 2005).
Honig and Oron-Gilad’s taxonomy included technical
failures (i.e., errors related to the robot’s software and
hardware) and interaction failures (i.e., errors pertaining
to social norm violation, human errors and environment
or other agents) (Honig and Oron-Gilad 2018). These
classifications implied that humans are vital parts of the
interaction and could not be excluded in case of failure.

Although previous literature indicated the adverse impact
of failure in the human-robot interaction on human trust
in them, the linkage between taking responsibility for
failures and workers' trust in Al-agents in future
construction jobsite is unclear.

When failures occur in the interaction, humans might

perceive themselves to take responsibility for it or
attribute the responsibility to the robot. Previous studies
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have employed the self-serving bias (SSB) to support the
latter statement. SSB refers to the phenomenon that
people tend to take credit for the success of the interaction
but blame their partners for the failure (Miller and Ross
1975). SSB was initially observed in human-human
interaction, and researchers found it could be applied to
the interaction between humans and robots (e.g., Moon
2003; You et al. 2011). For example, You and his
colleagues conducted an experiment in which participants
were asked to follow the motions taught by a robot, and
the researchers provided the evaluation of the
performance (You et al. 2011). The result indicated that
participants tended to question the robot for lower-than-
expected performance feedback. In the context of SSB,
humans are anticipated to attribute the robot to take
responsibility for failure and decrease their trust in the
robot.

However, recent studies have also reported that people
tend to blame themselves for failures more than robots. In
the study that investigated the interaction between two
humans and one robot, Lei and Rau found participants
attributed more credit and less blame to the robot,
triggering the reverse self-serving bias (reverse SSB) (Lei
and Rau 2021). An alternative concept supporting reverse
SSB is human wishful thinking (Ullrich et al. 2021).
Individuals with wishful thinking would believe the robot
is perfect when using it and exhibit overreliance on it. The
reverse SSB would lead humans to take responsibility for
failures and maintain their trust in the robot. Due to the
inconsistency of findings in the literature, considering
human’s taking responsibility as a factor in investigating
the effect of failure on trust is essential.

Trust transfer

Apart from taking responsibility for failure, human trust
in the current situation can also be affected by trust in
another similar situation, called trust transfer. Trust
transfer refers to the transition from a known source of
trust to an unknown target in which humans need to
develop trust (Stewart 2003). Literature has explored the
trust transfer in multi-functional robots and emphasized
that the transfer is based on the similarity of task category
and difficulty (e.g., Shu et al. 2018; Soh et al. 2018; Soh
etal. 2020; Xie et al. 2019). In the study conducted by Shu
and his colleagues (Shu et al. 2018), after seeing the robot
successfully pick and place a cup, participants (1) trusted
that it could pick and place a bottle task while distrusting
it could perform another simple navigation task (i.e.,
guiding subjects to a door) and (2) trusted that it could
pick and place a bottle task while distrusting it can pick
and place an apple. The two findings supported the
transfer was triggered by the similarity of task category
and difficulty, respectively.

Although multi-agent trust transfer is still understudied,
humans will exhibit trust transfer across agents if the
similarity between multiple agents is identified. A recent
study provided insights into trust transfer across different
sources. By conducting a survey, Renner and his



colleagues found that respondents’ trust in an autonomous
car can be transferred from their trust in advanced vehicle
technologies and Al because they are integral components
of an autonomous car (Renner et al. 2022). In the near
future, a worker needs to interact with various Al agents
and other workers simultaneously. Therefore, multi-
worker-multi-robot-teaming is anticipated to be the
dominant working mode on future construction sites. This
calls for taking into account the impact of failure on
distrust transfer.

Point of departure

It is envisioned that future construction workplace will be
comprised of workers, robots, and job sites. Human-robot
interaction entails appropriate trust-building between
workers and robots, which can be impacted by robot
failure or malfunctions. With the growth of human-robot
teaming, it is crucial to understand how workers allocate
responsibilities (blame for failure) in mixed worker-robot
teams, and how these responsibility attributions affect
their trust evaluations in robots (4 and H>):

Hi: There is a significant change in worker-robot trust
assessment after the robot failure.

H>: Attributing responsibility (blaming self or robot
for failure) significantly impacts worker-robot trust
assessment.

Furthermore, with the proliferation of robots in
construction jobsites, workers soon need to work
alongside and interact concurrently with numerous robots
to accomplish complicated construction tasks. Therefore,
a robot's performance failure may impact humans' overall
reliability and trust in Al agents. Thus, it is critical to
explore whether workers’ trust transfers across other
agents in the construction context in case of failure of an
agent (Hsand Hq):

Hs: When there are multiple agents/robots in the
construction environment, the observation of other
robots' failure (drone failure) in completing a task will
affect the trust in the other agents (i.e., trust transfer).

Hy: Given humans taking responsibility for the robot’s
failure, the decreasing trust in other agents
significantly impacts worker-robot trust assessment
(i.e., trust transfer).

Table 1 illustrates the groupings of participants for three
hypotheses.

Methodology

Participants

A total of 35 healthy subjects (22 male and 13 female)
were recruited to participate in this study. All the subjects
are from Civil Engineering and Construction Engineering
and Management majors at Purdue University,
representing the next generation of the workforce.
Participants’ age ranged from 19 to 31 years (M= 23.86,
SD =3.32). About 46% of the subjects had over one year
of work experience in the construction industry. All
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participants had normal or corrected-to-normal vision,
and the final analyses were based on all 35 participants.

All participants received compensation for their
participation.
Table 1: Groupings for testing hypotheses
Group A Group B
H,; Subjects’ trust level Subjects’ trust level after
after the Baseline the Error module (i.e.,
module (i.e., Tp). (A1) Te). (B1)
H> The changes in trust The changes in trust level
level (Te. Tp) of subjects (Te-Ty) of subjects who
who blamed the cobot  took responsibility for the
for the failure. (A2) cobot’s failure. (B2)
H; The changes in trust The changes in trust level
level (Te- Tp) of (T.-Ty) of subjects who
subjects who lowered retained their trust in
their trust in drones and drones and/or Al-
Al-assistant (A3) assistant. (B3)
Hy The changes in trust The changes in trust level

level (Te- Tb) of who
took responsibility for
the cobot’s failure and
who lowered their trust
in drones and Al-
assistant (A4)

(Te-Ty) of who took
responsibility for the
cobot’s failure and who
retained their trust in
drones and/or Al-
assistant. (B4)

Experimental design

To investigate the effect of blame attribution on trust
assessments in human-robot collaboration in the future
construction environment, a within-subject experiment
was designed to simulate a bricklaying task in an
immersive mixed-virtual-reality environment.
Participants were asked to complete a bricklaying task
while interacting with various Al agents, namely a
bricklaying cobot (i.e., called MULE), various drones,
and an AI assistant. Figure 1 shows the research
framework of the VR experiment.

Specifically, MULE is a semi-autonomous cobot that
assists workers with lifting/dropping heavy concrete
blocks while workers still have to apply mortar and
manually move MULE to the correct positions to pick up
and place the blocks. MULE would not drop blocks
correctly if participants misplaced MULE or forgot to
apply mortar.

This study also included three types of drones: (1)
surveillance, (2) delivery, and (3) inspection drones. The
surveillance drone was employed to either monitor the
status of the construction site by patrolling the job site or
facilitate communication between workers by conveying
the message of change orders. The delivery drone aimed
to deliver materials (i.e., deliver a new mortar bucket for
participants and collect the empty one) for workers
standing on an elevated platform. The inspection drone
was utilized to examine the work progress, monitor the
safety behaviors and productivity of workers, and report
to the manager. The drone would hover overhead from
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Figure 1: Research framework.

randomly ordered directions while keeping various
distances from the subjects. Lastly, Al assistant (i.e., an
intelligent screen) is an information delivery platform
informing workers about the dynamic objects (e.g., the
type and direction of drones) approaching them on the
construction site.

To test the hypotheses, this research conducted a within-
subject study by asking all subjects to complete two
modules (i.c., Baseline and Error modules). The baseline
module referred to the scenario that all the agents (i.e.,
MULE, drones, and Al-assistant) exhibited normal
behaviors with ideal performance. However, the error
module embodied four incidents happening to the agents:
(1) MULE cobot malfunction: it did not drop blocks as
expected, (2) Drone malfunction #1: the participant was
struck by a drone, (3) Drone malfunction #2: a drone
struck another worker at the job site, and (4) Al-assistant
malfunction: it provided incorrect information about the
type and direction the approaching drone. Noteworthy,
this study mainly considered MULE’s malfunction as a
failure in human-robot interaction to examine human
responsibility attributions because both humans (i.e.,
misplacing MULE) and MULE (i.e., malfunctioning)
could be the responsible agent for this incident. For the
rest of the incidents (Incidents 2-4), drones and Al-
assistant should undoubtedly take responsibility for the
failures.

Experimental procedure

Initially, all the subjects were asked to sign a consent form
and complete a demographic pre-survey. Then, they were
provided with an introduction to the experiment. The
introduction presented an overview of the bricklaying task
and all types of agents (i.e., MULE, drones, and Al-
assistant). In addition, the training offered an opportunity
for subjects to familiarize themselves with the VR
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environment and practice the bricklaying task.
Participants were equipped with a VR headset, two
controllers, three motion trackers, and neuro-
psychophysiological wearable sensors.

After ensuring participants fully understood the
experiment process, they were asked to complete baseline
and error modules; each taking approximately 7 mins. In
both modules, participants needed to perform the
bricklaying task in collaboration with MULE and interact
with three types of drones while the Al-assistant provided
assistive information. The Error module included the
incidents mentioned above. A widely-used 5-point Likert-
scale trust questionnaire (Muir 1994) was administered to
collect their trust levels in three agents separately after
each module (i.e., Tv = post-trial trust assessment after the
baseline module; Te= post-trial trust assessment after the
error module). After completing the error module,
additional questions were asked to examine whether they
have noticed the incidents and their responsibility
attributions. Finally, the experimenter conducted a brief
interview to obtain feedback on the experimental design
from the participants. All the procedures were approved
by the Purdue Institutional Review Board (IRB).

Apparatus

The selected VR device was the HTC Vive Pro Eye
(manufactured by HTC Corporation, Taoyuan, Taiwan),
which contains the built-in Tobii eye tracker with a refresh
rate of 90 Hz and a field of view of 110°. The calibration
system embedded in the headset was developed to
calibrate eye-tracking data for each participant. The
experiment was run on an Alienware PC with an AMD
Ryzen 9 5950X 16-Core processor and an NVIDIA
GeForce RTX 3090 graphics card. Due to the page limit,
the data from wearable sensors were not considered in the
final analyses of this paper.



Results

Normality checks and Levene’s test were carried out, and
the assumptions were met. A paired t-test was used to
examine H;. H>, H;, and Hy were tested by conducting a
one-tailed two-sample t-test. Table 4 provides a summary
of the results, and Figure 2 shows a graphical overview of
findings based on independent variables (i.e., groupings)
and dependent variables (i.e., trust).

Table 4: Results of hypotheses tests (H1- H4)

Hypot Gro N  Mean STD t- p-
hesis up value  value
H, Al 35 40614 0.439 1.546  0.131
Bl 35 4471 0.514
H» A2 16 -0313 0.616 -1.734 0.046"
B2 19 0.000 0.414
Hs A3 19 -0329 0.507 -2.334 0.013"
B3 16  0.078 0.490
Hy A4 8 -0250 0433 -2531 0.026
B4 11 0.182 0.284
*p <0.05
5.0 £
0.5
_ 45
2 o
| 3 001
= -0.5 -
35
T r -1.0
GroupA GroupB GroupA GroupB
H1 H2
1.0 10
0.5 1 0.5
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GroupA GroupB GroupA GroupB
H3 H4

Figure 2: Graphical box plots representing trust changes in
HI- H4

Hi: Effect of cobot failures on worker-robot trust

According to the subjective report, all participants noticed
the MULE malfunction in the error module. To analyze
the effect of the failure on trust, a within-subject paired t-
test was utilized to compare the difference in trust levels
measured after baseline, Group A; (Means;=4.614;
STD4:=0.439) and after error, Group B; (Means;=4.471,
STDg/=0.514). The result indicated no significant
difference between the two trust levels (t4s vs 5/=1.546;
p=0.131>0.05). Thus, overall, the cobot failure did not
significantly impact workers’ trust in robots.
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Hz: The effect of workers’ responsibility attributions
for failures on trust

Among 35 participants, who all noticed the MULE
malfunction, 16 subjects reported attributing the
responsibility for the failure to the robot (blame target was
robot, Means>=-0.313; STD42=0.616), while 19 subjects
perceived themselves to take responsibility (blame target
was human: Meanz>=0.000; STDg2=0.414). The results of
the t-test revealed a significant effect of responsibility
attribution (blame target) on trust level changes (Atrust=
Te- To; ta2vs 82=-1.734; p=0.046<0.05). This indicates that
blame attribution by a human influence trust, and subjects
who took responsibility for the failure retain their trust in
the robot compared to those who regarded the failure as
the robot’s fault.

Hs/Ha: Trust transfer in human-robot interaction

The trust transfer in this study represented that lowering
trust in other agents would be transferred to reduce the
trust in MULE. Among all participants, 19 subjects
lowered their trust in drones and Al-assistant (Meanus=-
0.329; STD45=0.507) while 16 subjects retained trust in
drones and/or Al-assistantafter incidents (Means;=0.078;
STDg5=0.490). The result showed a significant effect of
lowering trust in other agents on trust change in MULE
(Atrust= Te. Ty; 243 vs 835=-2.334; p=0.013<0.05). Although
the trust transfer could explain the trust change in MULE,
an alternative is human blaming MULE for the failure.

To further investigate whether workers perform multi-
agent trust transfer, Group B2 was categorized into Group
A4 (i.e., subjects who reduced trust in drones and Al-
assistant when taking responsibility for the MULE’s
failure: Meanas=-0.250; STDa4=0.433) and Group B4
(i.e., subjects who retained trust in drones and/or Al-
assistant when taking responsibility for MULE’s failure:
Meangs=0.182; STDg4=0.284). Moreover, a permutation
test was conducted to compensate for the small sample
size of the sub-categories (<15). The results showed that
distrust in other agents had a significant negative impact
on workers’ trust in MULE (tas v B4=2.531
p=0.026<0.05). Hence, the multi-agent trust transfer was
corroborated in this study.

Discussion

Due to the proliferation of robots at construction jobsites
and as the cooperation between workers and robots
increases, individuals have to face both success and
failure in human-robot collaborative work, ultimately
affecting their trust in robots. To explore the relationship
between workers’ responsibility attributions (blame for
failure) and their subsequent trust in the robot, the present
study developed a future bricklaying experiment that
participants had to team up with MULE cobot to execute
bricklaying while interacting with various drones and an
Al-assistant.

The findings indicated that not all participants manifested
a significant reduction in trust in MULE cobot after
discerning the failure (i.e., MULE’s malfunction). This



result was inconsistent with the findings suggested by
previous literature in other disciplines (e.g., Abd et al.
2017; Kraus et al. 2020; Salem et al. 2015; van den Brule
et al. 2014), reporting that all subjects’ trust levels were
highly influenced by the robot’s performance on the task.
In the most relevant literature, the failures in human-robot
interaction could be readily attributed to the robot’s faults
by human users. This phenomenon was also related to the
experimental tasks that researchers designed. That is,
although participants needed to interact with a robot to
perform the designated task, they usually played the role
of a supervisor or a person being provided service (e.g.,
McNeese et al. 2021), not collaborating with the robot as
was done in this paper. The previous studies also
considered technical failures embedded in the robot and
disregarded the failures related to human users included
in the proposed taxonomies (e.g., Carlson and Murphy
2005; Honig and Oron-Gilad 2018). However, the failure
in this research could be attributed to either robot’s
malfunction or the human’s faults. Unlike previous
studies, MULE is a semi-autonomous system incapable of
solely completing the task, and human intervention was
necessary. Therefore, one reason for these inconsistent
results is related to moderating effects of responsibility
attribution in case of robot failure or malfunction.

The findings of this study demonstrated that most of the
participants attributed more responsibility to themselves
(blame themselves) than to the MULE cobot for failure.
These attributions then considerably affect their trust in
robots. The participants who took responsibility for
failure would increase their trust in the cobot, while those
who attributed the blame to MULE cobot would decrease
their trust. This outcome was consistent with the literature
that mentioned that failure adversely affected trust (e.g.,
Abd et al. 2017; Salem et al. 2015).

The findings indicated that workers who have decided to
take responsibility, given that the robot caused the failure,
would still retain trust in a faulty robot. This over-trust is
due to the fact that the implementation of Al agents in the
construction industry is still in its infancy compared to
other industries and to workers who are unfamiliar with
the newly-introduced robots on the jobsites. And often, a
less competent agent is more likely to be blamed for the
failure in human-robot interaction (Lei and Rau 2021). In
addition, transparency (i.e., the comprehension of a
robot’s intention, ability, and limitations) has been
highlighted by literature as a critical factor facilitating
human’s appropriate trust level (e.g., Clare et al. 2015; Du
et al. 2020; Kaniarasu et al. 2013; Kraus et al. 2020). For
example, in the study examining the effect of
transparency on trust, Kraus and his colleagues suggested
informing users of the limitations of an autonomous
vehicle in advance can expedite their trust building (Kraus
et al. 2020). In other words, when incorporating novel
technologies into construction sites, workers might
overestimate the robots’ capabilities and build
inappropriate trust levels. This suggests that more
transparency in educating workers regarding potential
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unexpected behavior, new risks, or robot failures allows
them to attribute the responsibility more logically.

In the foreseeable future, workers will still be in the loop
to collaboratively interact with robots to perform dynamic
and complex construction tasks (e.g., human-centered
robot interaction) (Emaminejad and Akhavian 2022). In
this context, both humans and robots might be responsible
for the failure, and the findings of this study showed that
worker perception and responsibility attributions of
failure affect their trust in robots.

Further, the results also demonstrated that humans would
transfer the decreasing trust in drones and Al-assistant to
lower their trust in MULE cobots, even if they have
decided to take responsibility for MULE’s failure. This
multi-agent transfer could be inferred from the multi-task
transfer. Previous literature also shed light on the
relationship between multi-task trust transfer and the
similarity within different tasks (e.g., Shu et al. 2018; Soh
etal. 2020; Xie et al. 2019). Humans may adjust their trust
in a robot to perform a task based on their trust in another
similar task. Extending to multi-agent trust transfer,
humans would transfer from the trust in one agent to the
trust in another similar agent. In this study, participants
have bridged the connection between MULE cobots,
drones, and Al-assistant because, from a technical
perspective, all of the agents included an element of
automation. For example, MULE can automatically lift
concrete blocks for workers, while Al assistants can
automatically detect the drone’s type and coming
direction. Hence, the similarity of agents’ functionality
facilitated the multi-agent trust transfer.

In the future construction industry, workers must
collaborate with various robots to execute complicated
construction work. This multi-robots-human interaction
necessitates workers’ trust-building in multiple agents
simultaneously. In this context, the performance of one
agent might affect workers’ trust in another agent. the
findings illustrated the interaction between workers and
multiple robots and endorsed the multi-agent trust transfer
in human-robot interaction.

There are some limitations in this study worth noting.
First, while the recruited participants in this experiment
represent the next generation of the construction
workforce, it is worthwhile to also examine the current
experienced workforce who might experience more
complacency and reluctance to embrace technologies.
Second, the measurement of participants’ technology
adoption was not included in this research. The extent to
which workers accept and utilize the technologies might
exert a significant effect on trust. Third, this study only
considered the responsibility attribution of MULE cobot
failure and the short-term impact of this failure on trust.
Future researchers are recommended to explore the long-
term impact of failures or the effect of frequent failures on
trust. Last, while multiple objective data were collected in
the experiment, due to the page limit, it was not used in
this paper. The objective trust data could provide more
insights into the trust dynamics of workers.



Conclusions

Construction environments are changing rapidly, and with
an increasing demand for human-robot collaboration in
the construction industry, it is crucial to understand how
workers allocate responsibilities (blame for failure) in
mixed worker-robot teams. In addition, this might affect
workers' trust in their robot partners, which is crucial for
successful ~ worker-robot teaming and effective
collaboration. The present study investigated the impacts
of blame targets (responsibility attributions) on trust in a
collaborative bricklaying task simulating the multi-
robots-human interaction in future construction jobsites.
Results showed that participants who attributed more
responsibility to themselves (reverse SSB) than to the
robot for the failure retained their trust. However, those
who perceived robots to be accountable for their failure
(SSB) reduced their trust in the robot significantly. In the
future multi-robot multi-human construction work
environment, the negative effect on trust gets exacerbated
by being transferred to other agents, making them less
reliable for workers.

These findings indicate the need for (1) further studying
effective communication strategies for robots (non-
human agents) in case of failures without compromising
the trust relationships with their human partners; and (2)
educating current and future workers regarding safe and
productive collaboration with robots. This study also
provides possible design insights for future construction
robots; and calls for continued work in this area to
enhance the likelihood of robots being accepted as true
teammates, not only as a tool, by current and future
construction stakeholders, and attribute with appropriate
responsibility for given unexpected situations or failure.
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