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Abstract
Early specification of materials in buildings before their 
demolition could foster reuse in the construction industry.
Studies have already shown the usefulness of machine 
learning in demolition waste estimation; however, 
application to real-world datasets is still limited. This 
study tests the feasibility of predicting recoverable 
material stock in the local context of the city of Zurich. 
The results show promise for the overall approach,
although training models by using a small and 
heterogeneous dataset poses challenges. Therefore, we 
conceptualized an improved demolition data collection, 
processing, and dissemination. The resulting framework 
could help researchers and authorities in urban material 
stock estimation.

Introduction
The building floor area is expected to rapidly expand in 
the next couple of decades, even in already densely
urbanized parts of the world like Europe (UN 
Environment and International Energy Agency, 2017).
This trend raises questions about the continuous 
generation of construction and demolition waste and the 
growing demand for raw materials in new buildings. 
Indeed, the construction industry is already one of the 
most significant carbon emitters and waste producers 
globally (Akhtar and Sarmah, 2018; European 
Commission, 2016). Using the retiring building stock as a 
mine for secondary materials for new construction would 
help the industry lower its environmental impact. To do
so would require information about the suitability for 
recycling and reusing materials in existent buildings
before their decommission. Such information could help
organize a circular project’s logistics, estimate demolition 
and recycling costs, and prioritize interventions of reuse 
agents.
Unfortunately, existing buildings are rarely represented,
e.g. in BIM or CAD drawings. Reconstructing an existing
building’s inventory, either manually or with the help of
advanced technological methods like scan-to-BIM, tends 
to be time- and resource-intensive. Such reconstruction

often has severe limitations, for example when elements
are hidden under a building’s outer layer (Honic et al., 
2021). A more scalable approach to characterize urban 
material stocks is the bottom-up development of so-called 
archetypes, often categorized by e.g. a building’s age and 
its primary function (e.g. TABULA WebTool, 2015). The 
developed archetypes are sometimes extrapolated to an 
urban scale to estimate a city’s material stock and predict 
material flow (Heeren and Hellweg, 2018; Ostermeyer et 
al., 2018). Their development requires thorough in situ
visits and access to detailed building documentation. The 
final estimation relies on the granularity of the developed 
typologies.
As an emerging approach, we identified three studies that 
explore data-driven modeling for detecting material 
presence and estimating bulk waste in buildings. Akanbi 
et al. (2020) developed a deep learning algorithm that 
predicts the amount of demolition waste in three 
categories: reusable, recyclable, and disposable. The 
trained model exhibits a strong skill, but it requires 
information on a building’s structural material as an input. 
This information is not always straightforward to obtain. 
Moreover, the model’s output lacks sufficient granularity
for planning material recovery (i.e. for amounts of 
specific materials). Cha et al. (2020) presented a
methodology using a random forest machine-learning 
algorithm to estimate demolition waste per material type,
usable for small datasets and with mixed (i.e. continuous 
and categorical) inputs. Both studies trained models on 
labeled datasets, obtained either from the private sector or 
during previous research efforts. In contrast, Wu et al.
(2022) propose public datasets (Gothenburg and the 
Stockholm City Archives) as a possible source of building 
material information to create a dataset to predict 
hazardous materials. Nevertheless, their model output is 
only binary (i.e. a hazardous material type is detected or 
not detected) and does not predict the material stock 
composition.
This study builds on the above research to develop a data-
driven material stock estimation, applicable to available 
datasets in the local context of Zurich. We merge open-



access cadastre data with local semi-open demolition 
audit records into a new dataset of 409 residential 
buildings. We then trained three types of algorithms:
linear regression (LR), random forest regressor (RFR),
and the extreme gradient boosting (XGBoost). The 
introduced proof of concept allows for the prediction of
amounts of wood, mineral, metal, glass, and roof tile
materials in the residential building stock. The available 
data quality sometimes posed challenges, as was reflected 
in the results. Therefore, the paper conceptualizes a
framework for data collection, processing, and 
dissemination to help establish a more structured, quality-
assured, and up-to-date material stock dataset at the urban 
level.

Methodology
The scope of this study is limited to residential buildings
raised between 1850 and 1973 in Zurich, a time frame 
based on data available. We used a residential sample 
because, according to Zurich’s Statistics Office (Stadt 
Zürich, 2022), more residential than non-residential 
buildings were demolished in the city in recent years.
Furthermore, the ability of machine learning (ML) models 
for generalization (i.e. to adapt prediction to new 
instances) was assumed more challenging on a non-
residential sample because commercial, educational, or 
office buildings usually exhibit a higher variety of spatial 
designs.
Four methodological steps helped estimate recoverable 
amounts of materials per building (visualized in Fig.1):
(1) data collection, (2) data frame preparation, (3) the
model training process, and (4) evaluation of the models.
The first three steps are discussed below; step 4 is 
discussed in the results section.

Data Collection
In supervised machine learning, a labeled dataset is used 
to train a model. Features (X) are independent variables
in the dataset, used as input to make a prediction. Labels
(Y) are dependent variables – values that one wants to
predict. In this study, a custom collection of relevant
building attributes serves as features X, and amounts of 
specific materials (in metric tons) become labels Y. To 
create a machine-readable dataset, consistent records on 
both X and Y needed to be identified and merged. Ideally,
features X needed to contain openly accessible 
information to ensure that a trained model can be easily 
used for an instant estimation of the amount of materials

in a building. Characterization of two data sources used in 
this study is provided in Table 1.
The Gebäude- und Wohnungsregister (GWR, or the 
Federal Register of Buildings and Dwellings) grants 
public access to a set of attributes for all buildings in 
Switzerland. The attributes can be queried by the
Eidgenössische Gebäudeidentifikator (EGID, or the 
Federal Building Identification Number) which can be 
found by a building’s postal address. The features X of a 
building were extracted from this database with a custom 
Python script and included: footprint area, gross volume, 
year of construction, period of construction, number of 
stories, and number of apartments.
In parallel, the Umwelt- und Gesundheitsschutz Zurich
(UGZ, or the Office of Environmental and Health 
Protection Zurich) provided access to disposal concepts
as a source of information for labels Y. Disposal concepts
(as .pdf or .jpg formats) must be submitted to the UGZ
office before a building is renovated or demolished. The 
focus of this process is to specify expected hazardous 
materials, but documents also need to include a table with
types, volumes, and/or weights of non-polluted materials
in a building. The estimation is made by an expert 
conducting a building audit. This study used all available 
records on full demolitions of residential buildings
between 2018 and 2022. The final dataset acquired from 
UGZ equaled 206 demolition projects.

Data Preparation
Among the 206 demolition projects acquired from UGZ,
there were multiple cases of more than one building per 
project (such as demolition of a whole neighborhood).

Table 1: Characterization of the two used data sources.

Source UGZ GWR

Relevant 
information
available

Weight and/or
volume for 2 to 40 
material types;
images of 
buildings; address

Footprint area, gross 
volume, year and 
period of 
construction, stories,
and apartments count

Data format 
and 
resolution

.pdf or .jpg; data
per demolition
project

.csv; data per 
building

Set size 206 projects > 400,000 buildings

Figure 1: The four methodological steps.



Additionally, only 124 instances followed a material table
format recommended for disposal concepts, see 
Entsorgungskonzept Rück- und Umbau, 2020. Even 
among these instances, most customized the format, thus 
impeding the use of automated extraction of information.
Such inconsistency in data format required a manual and 
time-consuming data parsing process.
The quality of records also strongly varied. The number
of materials declared in different demolition projects 
ranged from 2 to 40 different types. The presence of some 
materials was not recorded enough times in the whole 
sample for it to be useful in the ML training (e.g.,
gypsum). Other materials (e.g. contaminated wood or 
road rubble), were of no interest for this study’s focus on
recovering building materials. Some categories were 
defined too broadly (e.g. as unsorted mixed waste or 
burnable waste). Finally, five labels were chosen for Y:
wood, metal, roof tile, glass and mineral (‘mineral’ 
defined as a mixture of exclusively mineral waste such as 
concrete, brick, sand lime, and natural stone; see BAFU, 
2006). Not all 206 projects had information on all five 
chosen labels, which resulted in different sizes of training 
sets per material.
To arrive at a structured data frame with the labels Y in a 
uniform unit, the inconsistent format of records required 
making assumptions (listed in Table 2). To complete the 
datasets, a roof type (flat, mansard, pitched, or mixed) was 
manually assigned to a building based on photos in UGZ 
records. The hypothesis was that different roof types
could significantly affect the amount of waste (especially 
wood) obtained from a building.
Finally, missing volume attributes were filled by 
importing publicly available CityGML LoD 2.3 models 
of Zurich (geocat.ch, 2018) into the Rhino environment 
and calculating the volume with a custom Grasshopper 
script. The final data frame constituted 409 data points
with the characteristics presented in Table 3.

Table 2: Necessary assumptions made to prepare a consistent 
data frame.

Inconsistency Assumption

Volume (V [m3]) was
sometimes recorded in
‘compact’ and sometimes 
in ‘loose’ categories

V_loose = 1.3 V_solid

Some demolition projects 
encompassed auxiliary 
buildings (i.e. sheds, 
garages)

V_ residential =
0.9 V_total

Amounts recorded as 
volume needed to be 
converted to mass

The assumed density of a 
material = average density
of corresponding materials 
(see KBOB, 2016)

A demolition project 
encompassed more than 
one residential building
and Y values were 
aggregated per project

Y_individual_building =
Y_demolition_project * 
the building’s percent 
volume contribution

Model Training
Predicting a continuous value Y from the set of features 
X is a regression problem. For this study, we performed a 
regression on a heterogeneous and small dataset that was
limited by data availability. These boundaries determined 
the choice of the ML models and the overall training 
strategy. Two tree ensemble models, namely Random 
Forest Regressor (RFR) and XGBoost (XGB), were tested 
and compared with a third model - linear regression (LR).
All three models were trained in Google Colab notebook 
using Python and Scikit-learn library tools. The choice of
RFR was considered applicable to the problem for two 
reasons: it can handle mixed input (categorical and 
continuous data) and it is also applicable to a small sample 
size (Cha et al., 2020). The second ensemble tree 
algorithm used in this study (XGB) uses boosting instead 
of bagging technique while combining results from N 
learners into the final result. The LR served as a baseline 
model for the performance evaluation of the other models.
Only 140 of the total 409 buildings had information on all 
five investigated materials at once, meaning that one or 
more labels per building were missing for most cases.
Reducing the training set to 140 instances was expected 
to extremely compromise the models’ performance. 
Instead of developing a model which would predict all the 
labels at once, separate models for every single label were 
developed.
To clean the data frame for ML training, we first
eliminated ‘not a number’ (NaN) values in the dataset’s
labels. Then, we handled outliers per each continuous 
feature with the interquartile range (IQR) method. IQR 
equals a difference between the third and the first quartile 
of a sample (IQR = Q3 – Q1).The values bigger than Q3
+ 1.5 IQR or smaller than Q1 – 1.5 IQR were 
consequently dropped from the set. The final number of 
data points used for training the models is summarized in 
Table 4.

Table 3: Characterization of features and labels in the 
assembled data frame of 409 buildings.

Features (X)/Labels (Y) Data type Unit/Count

X: Gross volume continuous m3

X: Footprint area continuous m2

X: Apartments count continuous -
X: Stories count continuous -
X: Location (district) categorical 12 categories
X: Location (zipcode) categorical 21 categories
X: Year of construction continuous -
X: Period of construction categorical 6 categories
X: Roof type categorical 4 categories
Y: wood/ metal/ roof tile/
glass/ mineral

continuous t



Table 4: Number of data points used for training supervised 
machine models, per material type.

wood metal roof tile glass mineral

286 277 213 283 309

Next, exploratory data analysis was conducted to reveal 
important statistical characteristics of a sample and 
correlations between features (the results of the pre-
training sample analysis are described in the results
section). The Pandas library and the One-Hot Encoding 
method were used to encode categorical features as 
machine-readable binary vectors. Additionally, feature 
scaling was implemented in the LR model due to its 
sensitivity to non-normalized inputs. In all the models, 
splitting the dataset into test and train sets posed a 
challenge due to the size and heterogeneity of the data.
Even though the data is always shuffled before splitting, 
in small datasets the results on a test set can be biased if
the test set has different distribution from a train set. To 
address this limitation, the Kolmogorov-Smirnov (K-S) 
statistical test was implemented. It allowed us to pick a 
split that ensured relative statistical similarity between the
test and train sets for all the models. The holdout test set 
always constituted 15% of the sample (regardless of 
material type) and was used as the final estimation of 
models’ performance, after their training and validation.
In two ensemble tree models, a hyper-parameters search 
was performed in a Stratified K-Fold Cross-Validation on
the remaining 85% of the sample. Cross-validation was 
used with ten folds for metal, mineral waste, and wood,
and with five folds for the two smaller samples (glass and 
roof tile). The baseline LR model did not require 
hyperparameters tuning and therefore does not have a 
separate validation set. A tree ensemble model training 
steps can be followed in Fig. 2, on the example of the 
wood sample.

Model Evaluation

In the final step, models were evaluated on the holdout 
test set by two chosen metrics: R-squared and mean 
absolute error (MAE). R-squared metric needs to be 
maximized and MAE needs to be minimized (yi = true 
value, = mean true value, yi-hat = predicted value, n = 
sample size), as displayed in Eq. (1) and (2).

Results
Exploratory Data Analysis
The results showed that most of residential buildings 
demolished in Zurich from 2018 to 2022 had an average
life cycle of 70 to 90 years. Most of the sample represents
single-family houses (1 apartment) and multi-family 
houses (6–7 apartments). A typical building’s volume is 
1500 to 2000 m3 and a typical footprint is 170 m2. Before 
outlier removal, the distribution of all continuous features 
was strongly right-skewed (i.e., most of the sample was in
a low-value area with strong outliers in a high-value area). 
It was also observed how imbalanced the classes in 
categorical features were. Specific locations in the city 
(Kreis 8 or 12 and zip codes 8003, 8008, 8045, and 8051) 
were highly underrepresented due to the specific 
characteristic of the collected sample available at UGZ. 

Figure 2: A machine-learning tree ensemble model training process visualized on the example of the wood sample.

Figure 2: A machine-learning tree ensemble model training process visualized on the example of the wood sample.



The strongest linear correlation for all the materials was 
the one with the volume feature. Wood and mineral were 
also correlated with the footprint area. Mineral amounts 
seemed to be bigger, the newer the buildings were. Linear 
correlation between other materials and buildings’ year of 
construction or a roof type was much weaker or non-
existent.

Material Prediction
The overall results across the material datasets and trained 
models are evaluated with R-squared and MAE metrics
(represented in Fig. 3 and Table 5).
Next to the achieved performance on the test sets, the 
context of training and validation results helps to assess a 
model’s skill. A significant difference between training 
and testing results is usually indicative of the model’s
overfitting (high variance error). On the contrary, a small 
difference, but poor performance on both sets, is usually 
indicative of underfitting (high bias error). Both tree 
ensemble models outperform the LR model, but exhibit 
overfitting of the data, which is especially pronounced in 
the case of the XGBoost model.
Prediction of mineral, wood, metal, and glass quantities
predicted by XGB overall proved the most successful, 
with R-square between 0.59 and 0.70. However, the 
results from the RFR model follow those of XGBoost 
very closely with the better generalization pattern. The 
assessment with MAE metric speaks slightly in favor of

Table 5: Mean absolute error (MAE) for predictions from all 
models, for a test set only, across all the materials. All values 

are expressed in metric tons and can be interpreted per 
sample, relative to its standard deviation (std, in grey). The 

best result per sample is marked in green.

MAE [t] wood mineral metal tile glass

std 17.41 265.19 41.57 7.72 2.96
LR 8.81 127.59 16.20 4.40 1.69
RFR 7.27 72.09 13.49 3.50 1.05
XGB 6.53 74.93 12.23 3.99 1.08

the RFR model, however the difference in the results from 
both tree ensemble algorithms is small.
Since MAE is a metric relative to a sample, it should not 
be used for a direct comparison across samples. It is 
useful, however, to consider a significance of an error, per 
sample, relative to the sample’s standard deviation (see 
Table 5). The smallest error achieved for wood was 6.53 t
(standard deviation = 17.41 t), 72.09 t for mineral (std = 
265.19 t), 12.23 t for metal (std = 41.57 t), and 1.05 t for 
glass (std=2.96 t).
The baseline LR model generalizes well on wood and 
metal samples (see Fig.3 left), but it suffers from an 
expected high bias error, indicating that the model is not 
able to learn sufficiently from the training data.
Prediction of roof tile quantities is considered 
unsuccessful for all tested algorithms, with R-squared 
value between 0.01 and 0.14 on the test set. Possible 
reasons and implications of specific results are discussed 
in the next section.

Discussion
Interpretation of results
The methodology delivers promising results for 
approximating the amounts of materials in buildings 
before demolition. The trained models can be applied to
residential buildings and render a prediction, without the
need for extensive documentation or in situ visits. The 
only information needed is a set of general building 
attributes, which can be queried from a local building 
register (e.g., GWR) or recognized from a building’s
image. The two investigated ensemble tree models (RFR
and XGB) rendered very similar results, although RFR
was more straightforward to train for a satisfactory 
learning skill. The XGB is a more complex algorithm than 
its counterpart, requiring more time and experience in the 
process of tuning hyperparameters. It is possible that in
this study, XGB was too powerful for such a noisy 
dataset, which resulted in more pronounced overfitting. 
Having said that, the model’s performance could possibly
be further improved. This might be especially worthwhile 
when working with a bigger, quality-assured data sample. 

Figure 3: Comparison of the models’ performance across the five investigated materials using the R-squared metric. Results are 
shown for the training, validation, and testing stage.



The trends and differences between the two ensemble tree 
algorithms are in line with the experience of other 
researchers and practitioners (Mehta et al., 2019).
The dataset itself is considered the major limiting factor 
for the ML models’ predictive skills. Insufficient training 
data is bound to compromise models’ learning process.
Indeed, the two smallest label sets (roof tile and glass)
posed the most difficulties while training the models and 
rendered the weakest predictions. But even the bigger 
label sets could benefit from more and better-quality data. 
In addition to the amount of data, some materials had 
ambiguity in their input data classification, e.g., roof tile
was sometimes reported within the general mineral waste
category instead of in its own. This could further explain 
the poor prediction skill for these materials.
The class imbalance in categorical features (i.e., a
significant variation in the number of instances per class)
was acknowledged as a potential negative factor for ML
performance, but its impact was not confirmed. It is 
possible that the negative impact was partially mitigated 
by using redundant features (two features describing 
location, and two features describing a building’s age). In 
this proof of concept, the feature importance analysis and 
the impact of imbalanced or redundant features were not 

thoroughly analyzed and should be explored in detail in 
further studies.

A Data Architecture for Continuous Learning
Even though data availability was considered sufficient 
for the proof of concept, the results showed that further 
research and application of predictive models in this 
domain would highly benefit from a bigger, quality-
assured dataset. To increase the prediction reliability,
disposal proofs instead of disposal concepts could be used 
as data input. The former contains data on the material
amounts reported after a demolition, while the latter only 
relies on pre-demolition audits. At the time of writing, the 
number of demolition proofs at UGZ constituted only
roughly 5 percent of the overall building data, which is 
highly insufficient for ML model training. Nevertheless, 
data from disposal concepts alone could be collected and 
processed more automatically to save time and effort. In 
addition, a sample’s representativeness over time is 
important if the goal is a continuous real-world 
application in the future. The current methodology only 
renders static models and is limited to making guesses on 
a ‘frozen snapshot’ of time. A continuously updated 
dataset would strongly improve a model’s performance.

Figure 4: Bottom: A proposed concept of a framework. Data on material amounts in buildings is collected in a 
structured manner and then automatically processed and shared. Top Left: A mockup of a ‘Material form’ in a 

proposed online customer portal. Top Right: A mockup of a City Twin interface.



Therefore, we conceptualize a framework for improving
the process of collecting, storing, and disseminating data 
on building materials in the existing buildings in Zurich
(see Fig. 4). We consider it the next necessary step toward
a dynamic ML model for the continuous prediction of 
material stock in buildings. A vast collection of quality-
assured, consistent data would lay a foundation for further 
exploration of predictive algorithms, thus minimizing 
uncertainties stemming from the data quality. The 
proposed data architecture can be followed in Fig. 4 and 
is described in detail in the next paragraph.
The data pipeline starts as in the current process with the 
building owner submitting material information, 
supported by an authorized expert. Information about 
contaminated and non-contaminated materials would be
recorded directly in the 'Material Form' in an online 
customer portal. A standardized form would help to 
eliminate the problem of multiple formats, ambiguous 
information, and missing documentation. For example, it 
would assure that materials are reported in their respective 
categories instead of being aggregated. For example, roof 
tile would need to be documented separately from the rest 
of mineral waste. Furthermore, building component 
information, useful for estimating reuse potential, could 
be requested (e.g., number of windows, sinks, doors, 
radiators). Adding this requirement could specifically 
help with estimating buildings component stocks, which 
is currently rarely present at the urban scale (Arora et al., 
2019).
If such a form were filled out and submitted, data would 
flow to two separate databases. For the first, a .pdf would 
be sent to a UGZ employee for verification and 
conformity with current UGZ processes. The second 
database would store the information in a machine-
readable format connected to related servers through a 
REST API client-server architecture. Material 
information could thus be merged for completeness with 
other building attributes accessed from external 
databases, e.g. GeoAdmin API, 2022. A continuous ML 
training pipeline would fetch the latest instances of 
complete data information to update the material stock
forecasts. Stakeholders could then access and query up-
to-date estimations of material amounts per building using 
a City Twin platform (such as LUUCY, 2022) for
accessing other open-access building information.
The proposed framework is based on observed existing 
processes in the regulatory agencies and stakeholders’ 
landscape of the City of Zurich. The automated data 
collection with an anonymization function addresses the 
problem of data inaccessibility due to privacy issues.
Overall, the proposed process could expand the focus of 
the regulatory stakeholder from simply avoiding
hazardous materials to supporting recovery of non-
contaminated materials. Since similar demolition data is 
gathered throughout Switzerland (VVEA, 2020), other 
cities and authorities on a cantonal level could also benefit 
from the framework. Further research would need to
specify the technical details of the framework and validate
its applicability with different stakeholders. We expect 

that the global circularity movement in resource
management would act as a motivating factor to embrace 
the proposed approach.

Conclusions
This paper showed the feasibility of applying a data-
driven approach to material stock quantification in 
buildings, for available open and semi-open data in the 
City of Zurich. The amounts of five chosen material types 
can be predicted from the publicly available set of 
features. Both ensemble tree algorithms tested in this 
study exhibit a reasonable skill and strongly outperform 
the baseline LR model. Nevertheless, our findings show 
that only specific materials in a building stock could be 
predicted due to insufficient data. Even though it is
important to further research and compare ML algorithms
suitable for the investigated task, we therefore find it 
imperative to create reliable datasets first. To address this, 
we propose a new framework for the collection, 
processing, and dissemination of the data on buildings’
materials and components. The framework relies on 
information already gathered by a city regulatory body
and could modernize existing workflows by connecting 
public and private stakeholders. It would also benefit 
future researchers in their exploration of a broader 
spectrum of predictive algorithms in the domain. 
Although targeted to the context of the city of Zurich, 
other cities and municipalities could potentially adopt the 
framework to foster the circularity of construction 
materials and components at the urban scale.
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