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Abstract

Early specification of materials in buildings before their
demolition could foster reuse in the construction industry.
Studies have already shown the usefulness of machine
learning in demolition waste estimation; however,
application to real-world datasets is still limited. This
study tests the feasibility of predicting recoverable
material stock in the local context of the city of Zurich.
The results show promise for the overall approach,
although training models by wusing a small and
heterogeneous dataset poses challenges. Therefore, we
conceptualized an improved demolition data collection,
processing, and dissemination. The resulting framework
could help researchers and authorities in urban material
stock estimation.

Introduction

The building floor area is expected to rapidly expand in
the next couple of decades, even in already densely
urbanized parts of the world like Europe (UN
Environment and International Energy Agency, 2017).
This trend raises questions about the continuous
generation of construction and demolition waste and the
growing demand for raw materials in new buildings.
Indeed, the construction industry is already one of the
most significant carbon emitters and waste producers
globally (Akhtar and Sarmah, 2018; European
Commission, 2016). Using the retiring building stock as a
mine for secondary materials for new construction would
help the industry lower its environmental impact. To do
so would require information about the suitability for
recycling and reusing materials in existent buildings
before their decommission. Such information could help
organize a circular project’s logistics, estimate demolition
and recycling costs, and prioritize interventions of reuse
agents.

Unfortunately, existing buildings are rarely represented,
e.g. in BIM or CAD drawings. Reconstructing an existing
building’s inventory, either manually or with the help of
advanced technological methods like scan-to-BIM, tends
to be time- and resource-intensive. Such reconstruction
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often has severe limitations, for example when elements
are hidden under a building’s outer layer (Honic et al.,
2021). A more scalable approach to characterize urban
material stocks is the bottom-up development of so-called
archetypes, often categorized by e.g. a building’s age and
its primary function (e.g. TABULA WebTool, 2015). The
developed archetypes are sometimes extrapolated to an
urban scale to estimate a city’s material stock and predict
material flow (Heeren and Hellweg, 2018; Ostermeyer et
al., 2018). Their development requires thorough in situ
visits and access to detailed building documentation. The
final estimation relies on the granularity of the developed
typologies.

As an emerging approach, we identified three studies that
explore data-driven modeling for detecting material
presence and estimating bulk waste in buildings. Akanbi
et al. (2020) developed a deep learning algorithm that
predicts the amount of demolition waste in three
categories: reusable, recyclable, and disposable. The
trained model exhibits a strong skill, but it requires
information on a building’s structural material as an input.
This information is not always straightforward to obtain.
Moreover, the model’s output lacks sufficient granularity
for planning material recovery (i.e. for amounts of
specific materials). Cha et al. (2020) presented a
methodology using a random forest machine-learning
algorithm to estimate demolition waste per material type,
usable for small datasets and with mixed (i.e. continuous
and categorical) inputs. Both studies trained models on
labeled datasets, obtained either from the private sector or
during previous research efforts. In contrast, Wu et al.
(2022) propose public datasets (Gothenburg and the
Stockholm City Archives) as a possible source of building
material information to create a dataset to predict
hazardous materials. Nevertheless, their model output is
only binary (i.e. a hazardous material type is detected or
not detected) and does not predict the material stock
composition.

This study builds on the above research to develop a data-
driven material stock estimation, applicable to available
datasets in the local context of Zurich. We merge open-
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Figure 1: The four methodological steps.

access cadastre data with local semi-open demolition
audit records into a new dataset of 409 residential
buildings. We then trained three types of algorithms:
linear regression (LR), random forest regressor (RFR),
and the extreme gradient boosting (XGBoost). The
introduced proof of concept allows for the prediction of
amounts of wood, mineral, metal, glass, and roof tile
materials in the residential building stock. The available
data quality sometimes posed challenges, as was reflected
in the results. Therefore, the paper conceptualizes a
framework for data collection, processing, and
dissemination to help establish a more structured, quality-
assured, and up-to-date material stock dataset at the urban
level.

Methodology

The scope of this study is limited to residential buildings
raised between 1850 and 1973 in Zurich, a time frame
based on data available. We used a residential sample
because, according to Zurich’s Statistics Office (Stadt
Ziirich, 2022), more residential than non-residential
buildings were demolished in the city in recent years.
Furthermore, the ability of machine learning (ML) models
for generalization (i.e. to adapt prediction to new
instances) was assumed more challenging on a non-
residential sample because commercial, educational, or
office buildings usually exhibit a higher variety of spatial
designs.

Four methodological steps helped estimate recoverable
amounts of materials per building (visualized in Fig.1):
(1) data collection, (2) data frame preparation, (3) the
model training process, and (4) evaluation of the models.
The first three steps are discussed below; step 4 is
discussed in the results section.

Data Collection

In supervised machine learning, a labeled dataset is used
to train a model. Features (X) are independent variables
in the dataset, used as input to make a prediction. Labels
(Y) are dependent variables — values that one wants to
predict. In this study, a custom collection of relevant
building attributes serves as features X, and amounts of
specific materials (in metric tons) become labels Y. To
create a machine-readable dataset, consistent records on
both X and Y needed to be identified and merged. Ideally,
features X needed to contain openly accessible
information to ensure that a trained model can be easily
used for an instant estimation of the amount of materials

in a building. Characterization of two data sources used in
this study is provided in Table 1.

The Gebdude- und Wohnungsregister (GWR, or the
Federal Register of Buildings and Dwellings) grants
public access to a set of attributes for all buildings in
Switzerland. The attributes can be queried by the
Eidgenossische Gebdudeidentifikator (EGID, or the
Federal Building Identification Number) which can be
found by a building’s postal address. The features X of a
building were extracted from this database with a custom
Python script and included: footprint area, gross volume,
year of construction, period of construction, number of
stories, and number of apartments.

In parallel, the Umwelt- und Gesundheitsschutz Zurich
(UGZ, or the Office of Environmental and Health
Protection Zurich) provided access to disposal concepts
as a source of information for labels Y. Disposal concepts
(as .pdf or .jpg formats) must be submitted to the UGZ
office before a building is renovated or demolished. The
focus of this process is to specify expected hazardous
materials, but documents also need to include a table with
types, volumes, and/or weights of non-polluted materials
in a building. The estimation is made by an expert
conducting a building audit. This study used all available
records on full demolitions of residential buildings
between 2018 and 2022. The final dataset acquired from
UGZ equaled 206 demolition projects.

Data Preparation

Among the 206 demolition projects acquired from UGZ,
there were multiple cases of more than one building per
project (such as demolition of a whole neighborhood).

Table 1: Characterization of the two used data sources.

Source UGZ GWR
Relevant Weight and/or Footprint area, gross
information  volume for 2 to 40  volume, year and
available material types; period of

images of construction, stories,
buildings; address  and apartments count
Data format  .pdfor .jpg; data .csv; data per
and per demolition building
resolution project
Set size 206 projects > 400,000 buildings
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Additionally, only 124 instances followed a material table
format recommended for disposal concepts, see
Entsorgungskonzept Riick- und Umbau, 2020. Even
among these instances, most customized the format, thus
impeding the use of automated extraction of information.
Such inconsistency in data format required a manual and
time-consuming data parsing process.

The quality of records also strongly varied. The number
of materials declared in different demolition projects
ranged from 2 to 40 different types. The presence of some
materials was not recorded enough times in the whole
sample for it to be useful in the ML training (e.g.,
gypsum). Other materials (e.g. contaminated wood or
road rubble), were of no interest for this study’s focus on
recovering building materials. Some categories were
defined too broadly (e.g. as unsorted mixed waste or
burnable waste). Finally, five labels were chosen for Y:
wood, metal, roof tile, glass and mineral (‘mineral’
defined as a mixture of exclusively mineral waste such as
concrete, brick, sand lime, and natural stone; see BAFU,
2006). Not all 206 projects had information on all five
chosen labels, which resulted in different sizes of training
sets per material.

To arrive at a structured data frame with the labels Y in a
uniform unit, the inconsistent format of records required
making assumptions (listed in Table 2). To complete the
datasets, a roof type (flat, mansard, pitched, or mixed) was
manually assigned to a building based on photos in UGZ
records. The hypothesis was that different roof types
could significantly affect the amount of waste (especially
wood) obtained from a building.

Finally, missing volume attributes were filled by
importing publicly available CityGML LoD 2.3 models
of Zurich (geocat.ch, 2018) into the Rhino environment
and calculating the volume with a custom Grasshopper
script. The final data frame constituted 409 data points
with the characteristics presented in Table 3.

Table 2: Necessary assumptions made to prepare a consistent
data frame.

Inconsistency Assumption

Volume (V [m?)) was
sometimes recorded in
‘compact’ and sometimes
in ‘loose’ categories

V loose =1.3 * V_solid

Some demolition projects
encompassed auxiliary
buildings (i.e. sheds,
garages)

V_ residential =
0.9 * V_total

Amounts recorded as
volume needed to be
converted to mass

The assumed density of a
material = average density
of corresponding materials
(see KBOB, 2016)

Y _individual building =
Y_demolition_project *
the building’s percent
volume contribution

A demolition project
encompassed more than
one residential building
and Y values were
aggregated per project

Model Training

Predicting a continuous value Y from the set of features
X is a regression problem. For this study, we performed a
regression on a heterogeneous and small dataset that was
limited by data availability. These boundaries determined
the choice of the ML models and the overall training
strategy. Two tree ensemble models, namely Random
Forest Regressor (RFR) and XGBoost (XGB), were tested
and compared with a third model - linear regression (LR).
All three models were trained in Google Colab notebook
using Python and Scikit-learn library tools. The choice of
RFR was considered applicable to the problem for two
reasons: it can handle mixed input (categorical and
continuous data) and it is also applicable to a small sample
size (Cha et al.,, 2020). The second ensemble tree
algorithm used in this study (XGB) uses boosting instead
of bagging technique while combining results from N
learners into the final result. The LR served as a baseline
model for the performance evaluation of the other models.

Only 140 of the total 409 buildings had information on all
five investigated materials at once, meaning that one or
more labels per building were missing for most cases.
Reducing the training set to 140 instances was expected
to extremely compromise the models’ performance.
Instead of developing a model which would predict all the
labels at once, separate models for every single label were
developed.

To clean the data frame for ML training, we first
eliminated ‘not a number’ (NaN) values in the dataset’s
labels. Then, we handled outliers per each continuous
feature with the interquartile range (IQR) method. IQR
equals a difference between the third and the first quartile
of a sample (IQR = Q3 — Q1).The values bigger than Q3
+ 1.5 * IQR or smaller than Q1 — 1.5 * IQR were
consequently dropped from the set. The final number of
data points used for training the models is summarized in
Table 4.

Table 3: Characterization of features and labels in the
assembled data frame of 409 buildings.

Features (X)/Labels (Y) Data type Unit/Count

: Roof type categorical 4 categories

X: Gross volume continuous m?

X: Footprint area continuous m?

X: Apartments count continuous -

X: Stories count continuous -

X: Location (district) categorical 12 categories
X: Location (zipcode) categorical 21 categories
X: Year of construction continuous -

X: Period of construction categorical 6 categories
X:

Y:

wood/ metal/ roof tile/ continuous t
glass/ mineral




Table 4: Number of data points used for training supervised
machine models, per material type.

wood metal roof tile glass mineral

286 277 213 283 309

Next, exploratory data analysis was conducted to reveal
important statistical characteristics of a sample and
correlations between features (the results of the pre-
training sample analysis are described in the results
section). The Pandas library and the One-Hot Encoding
method were used to encode categorical features as
machine-readable binary vectors. Additionally, feature
scaling was implemented in the LR model due to its
sensitivity to non-normalized inputs. In all the models,
splitting the dataset into test and train sets posed a
challenge due to the size and heterogeneity of the data.
Even though the data is always shuffled before splitting,
in small datasets the results on a test set can be biased if
the test set has different distribution from a train set. To
address this limitation, the Kolmogorov-Smirnov (K-S)
statistical test was implemented. It allowed us to pick a
split that ensured relative statistical similarity between the
test and train sets for all the models. The holdout test set
always constituted 15% of the sample (regardless of
material type) and was used as the final estimation of
models’ performance, after their training and validation.

In two ensemble tree models, a hyper-parameters search
was performed in a Stratified K-Fold Cross-Validation on
the remaining 85% of the sample. Cross-validation was
used with ten folds for metal, mineral waste, and wood,
and with five folds for the two smaller samples (g/ass and
roof tile). The baseline LR model did not require
hyperparameters tuning and therefore does not have a
separate validation set. A tree ensemble model training
steps can be followed in Fig. 2, on the example of the
wood sample.

[ Data frame with 409 records]

NaN values removed

350 records

Model Evaluation

In the final step, models were evaluated on the holdout
test set by two chosen metrics: R-squared and mean
absolute error (MAE). R-squared metric needs to be
maximized and MAE needs to be minimized (y; = true
value, ¥ = mean true value, yi-hat = predicted value, n =
sample size), as displayed in Eq. (1) and (2).

e
=105
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MAE = Z?=1(Yi - 3/’\1)
n
@

Results
Exploratory Data Analysis

The results showed that most of residential buildings
demolished in Zurich from 2018 to 2022 had an average
life cycle of 70 to 90 years. Most of the sample represents
single-family houses (1 apartment) and multi-family
houses (6—7 apartments). A typical building’s volume is
1500 to 2000 m? and a typical footprint is 170 m?. Before
outlier removal, the distribution of all continuous features
was strongly right-skewed (i.e., most of the sample was in
a low-value area with strong outliers in a high-value area).
It was also observed how imbalanced the classes in
categorical features were. Specific locations in the city
(Kreis 8 or 12 and zip codes 8003, 8008, 8045, and 8051)
were highly underrepresented due to the specific
characteristic of the collected sample available at UGZ.

Prior steps of Data Collection
and Dataframe Preparation

Training result
Validation result

volume, area, apt_num ...}
P } K-S test

Y: wood [t] 15%

Outliers removed k-fold cross validation
286 records
One-Hot Encoding
Trained
X: { parameter tuning Model

TEST SET Test result

/

Figure 2: A machine-learning tree ensemble model training process visualized on the example of the wood sample.
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Figure 3: Comparison of the models’ performance across the five investigated materials using the R-squared metric. Results are
shown for the training, validation, and testing stage.

The strongest linear correlation for all the materials was
the one with the volume feature. Wood and mineral were
also correlated with the footprint area. Mineral amounts
seemed to be bigger, the newer the buildings were. Linear
correlation between other materials and buildings’ year of
construction or a roof type was much weaker or non-
existent.

Material Prediction

The overall results across the material datasets and trained
models are evaluated with R-squared and MAE metrics
(represented in Fig. 3 and Table 5).

Next to the achieved performance on the test sets, the
context of training and validation results helps to assess a
model’s skill. A significant difference between training
and testing results is usually indicative of the model’s
overfitting (high variance error). On the contrary, a small
difference, but poor performance on both sets, is usually
indicative of underfitting (high bias error). Both tree
ensemble models outperform the LR model, but exhibit
overfitting of the data, which is especially pronounced in
the case of the XGBoost model.

Prediction of mineral, wood, metal, and glass quantities
predicted by XGB overall proved the most successful,
with R-square between 0.59 and 0.70. However, the
results from the RFR model follow those of XGBoost
very closely with the better generalization pattern. The
assessment with MAE metric speaks slightly in favor of

Table 5: Mean absolute error (MAE) for predictions from all
models, for a test set only, across all the materials. All values
are expressed in metric tons and can be interpreted per
sample, relative to its standard deviation (std, in grey). The
best result per sample is marked in green.

MAE [t]  wood mineral metal tile glass
std 17.41  265.19 41.57 7.72 2.96
LR 8.81 127.59 1620  4.40 1.69
RFR 727  72.09 1349  3.50 1.05
XGB 6.53 7493 12.23 3.99 1.08
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the RFR model, however the difference in the results from
both tree ensemble algorithms is small.

Since MAE is a metric relative to a sample, it should not
be used for a direct comparison across samples. It is
useful, however, to consider a significance of an error, per
sample, relative to the sample’s standard deviation (see
Table 5). The smallest error achieved for wood was 6.53 t
(standard deviation = 17.41 t), 72.09 t for mineral (std =
265.19 t), 12.23 t for metal (std = 41.57 t), and 1.05 t for
glass (std=2.96 t).

The baseline LR model generalizes well on wood and
metal samples (see Fig.3 left), but it suffers from an
expected high bias error, indicating that the model is not
able to learn sufficiently from the training data.

Prediction of roof tile quantities is considered
unsuccessful for all tested algorithms, with R-squared
value between 0.01 and 0.14 on the test set. Possible
reasons and implications of specific results are discussed
in the next section.

Discussion

Interpretation of results

The methodology delivers promising results for
approximating the amounts of materials in buildings
before demolition. The trained models can be applied to
residential buildings and render a prediction, without the
need for extensive documentation or in situ visits. The
only information needed is a set of general building
attributes, which can be queried from a local building
register (e.g., GWR) or recognized from a building’s
image. The two investigated ensemble tree models (RFR
and XGB) rendered very similar results, although RFR
was more straightforward to train for a satisfactory
learning skill. The XGB is a more complex algorithm than
its counterpart, requiring more time and experience in the
process of tuning hyperparameters. It is possible that in
this study, XGB was too powerful for such a noisy
dataset, which resulted in more pronounced overfitting.
Having said that, the model’s performance could possibly
be further improved. This might be especially worthwhile
when working with a bigger, quality-assured data sample.



The trends and differences between the two ensemble tree
algorithms are in line with the experience of other
researchers and practitioners (Mehta et al., 2019).

The dataset itself is considered the major limiting factor
for the ML models’ predictive skills. Insufficient training
data is bound to compromise models’ learning process.
Indeed, the two smallest label sets (roof tile and glass)
posed the most difficulties while training the models and
rendered the weakest predictions. But even the bigger
label sets could benefit from more and better-quality data.
In addition to the amount of data, some materials had
ambiguity in their input data classification, e.g., roof tile
was sometimes reported within the general mineral waste
category instead of in its own. This could further explain
the poor prediction skill for these materials.

The class imbalance in categorical features (i.e., a
significant variation in the number of instances per class)
was acknowledged as a potential negative factor for ML
performance, but its impact was not confirmed. It is
possible that the negative impact was partially mitigated
by using redundant features (two features describing
location, and two features describing a building’s age). In
this proof of concept, the feature importance analysis and
the impact of imbalanced or redundant features were not
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thoroughly analyzed and should be explored in detail in
further studies.

A Data Architecture for Continuous Learning

Even though data availability was considered sufficient
for the proof of concept, the results showed that further
research and application of predictive models in this
domain would highly benefit from a bigger, quality-
assured dataset. To increase the prediction reliability,
disposal proofs instead of disposal concepts could be used
as data input. The former contains data on the material
amounts reported after a demolition, while the latter only
relies on pre-demolition audits. At the time of writing, the
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roughly 5 percent of the overall building data, which is
highly insufficient for ML model training. Nevertheless,
data from disposal concepts alone could be collected and
processed more automatically to save time and effort. In
addition, a sample’s representativeness over time is
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Therefore, we conceptualize a framework for improving
the process of collecting, storing, and disseminating data
on building materials in the existing buildings in Zurich
(see Fig. 4). We consider it the next necessary step toward
a dynamic ML model for the continuous prediction of
material stock in buildings. A vast collection of quality-
assured, consistent data would lay a foundation for further
exploration of predictive algorithms, thus minimizing
uncertainties stemming from the data quality. The
proposed data architecture can be followed in Fig. 4 and
is described in detail in the next paragraph.

The data pipeline starts as in the current process with the
building owner submitting material information,
supported by an authorized expert. Information about
contaminated and non-contaminated materials would be
recorded directly in the 'Material Form' in an online
customer portal. A standardized form would help to
eliminate the problem of multiple formats, ambiguous
information, and missing documentation. For example, it
would assure that materials are reported in their respective
categories instead of being aggregated. For example, roof
tile would need to be documented separately from the rest
of mineral waste. Furthermore, building component
information, useful for estimating reuse potential, could
be requested (e.g., number of windows, sinks, doors,
radiators). Adding this requirement could specifically
help with estimating buildings component stocks, which
is currently rarely present at the urban scale (Arora et al.,
2019).

If such a form were filled out and submitted, data would
flow to two separate databases. For the first, a .pdf would
be sent to a UGZ employee for verification and
conformity with current UGZ processes. The second
database would store the information in a machine-
readable format connected to related servers through a
REST API client-server architecture. =~ Material
information could thus be merged for completeness with
other building attributes accessed from external
databases, e.g. GeoAdmin API, 2022. A continuous ML
training pipeline would fetch the latest instances of
complete data information to update the material stock
forecasts. Stakeholders could then access and query up-
to-date estimations of material amounts per building using
a City Twin platform (such as LUUCY, 2022) for
accessing other open-access building information.

The proposed framework is based on observed existing
processes in the regulatory agencies and stakeholders’
landscape of the City of Zurich. The automated data
collection with an anonymization function addresses the
problem of data inaccessibility due to privacy issues.
Overall, the proposed process could expand the focus of
the regulatory stakeholder from simply avoiding
hazardous materials to supporting recovery of non-
contaminated materials. Since similar demolition data is
gathered throughout Switzerland (VVEA, 2020), other
cities and authorities on a cantonal level could also benefit
from the framework. Further research would need to
specify the technical details of the framework and validate
its applicability with different stakeholders. We expect
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that the global circularity movement in resource
management would act as a motivating factor to embrace
the proposed approach.

Conclusions

This paper showed the feasibility of applying a data-
driven approach to material stock quantification in
buildings, for available open and semi-open data in the
City of Zurich. The amounts of five chosen material types
can be predicted from the publicly available set of
features. Both ensemble tree algorithms tested in this
study exhibit a reasonable skill and strongly outperform
the baseline LR model. Nevertheless, our findings show
that only specific materials in a building stock could be
predicted due to insufficient data. Even though it is
important to further research and compare ML algorithms
suitable for the investigated task, we therefore find it
imperative to create reliable datasets first. To address this,
we propose a new framework for the collection,
processing, and dissemination of the data on buildings’
materials and components. The framework relies on
information already gathered by a city regulatory body
and could modernize existing workflows by connecting
public and private stakeholders. It would also benefit
future researchers in their exploration of a broader
spectrum of predictive algorithms in the domain.
Although targeted to the context of the city of Zurich,
other cities and municipalities could potentially adopt the
framework to foster the circularity of construction
materials and components at the urban scale.
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