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Abstract 
Building performance can degrade precipitously after 
commissioning without adequate maintenance. HVAC 
system malfunctions can result in excessive energy 
consumption, associated CO2 emissions, poor indoor 
environmental quality, and productivity loss. Fault 
Detection and Diagnosis (FDD) algorithms using sensor 
networks and IoT devices are a topic of significant 
research. This paper presents a comprehensive literature 
review of HVAC FDD applications using machine 
learning methods, including supervised classification, 
unsupervised learning, regression, statistics-based, and 
hybrid approaches. Each is discussed with respect to their 
state of development, relative advantages and limitations. 
Keywords: Fault Detection and Diagnosis; Machine 
Learning; Data-driven; HVAC System; Supervised 
Classification; Unsupervised Learning, Regression and 
Statistical Approaches, Hybrid Methods 

Introduction 
Heating, ventilation, and air conditioning (HVAC) 
systems account for over 40% of the total building energy 
consumption, making them one of the most critical 
mechanical systems (DoE, 2011). When an HVAC 
system malfunctions, it can negatively impact the health 
and productivity of occupants and adversely affect the 
quality of thermal comfort in the building  (Gärtner et al., 
2020). Building HVAC systems can also waste large 
amounts of energy, reducing the energy efficiency of the 
building. It has been estimated that faults with HVAC and 
lighting systems can increase energy consumption by 
approximately 4% to 18% (Chen et al., 2022). Improper 
maintenance, malfunctioning components, installation 
faults, and control errors can significantly degrade HVAC 
systems. Maintaining fault-free operation of HVAC 
systems can be challenging because of their many 
interconnected components and complex interactions 
with occupants and buildings. To ensure proper 
functioning of HVAC systems, automated FDD 
techniques are promising solutions. As building 
management systems improve with the latest sensors used 
within buildings as well as advances in computing 
methods, this process has become more efficient. 

Increasing attention is being paid to FDD for HVAC 
systems due to its importance to building energy 
efficiency. Several previous reviews summarized and 
categorized knowledge-based, model-based, and data-
driven FDD approaches (Katipamula & Brambley, 2005; 
Mirnaghi & Haghighat, 2020). 
Data-driven FDD approaches have become increasingly 
promising as building management systems and 
computational methods advance. While the use of 
machine learning-based FDD in HVAC systems has been 
extensively studied over the last decade, there remains 
lack of comprehensive reviews of such methods. This 
current paper addresses this research gap, providing a 
comprehensive review of machine learning-based data-
driven fault detection and diagnosis for HVAC systems. 
This paper compares methods and recommends the best 
available approaches based on their limitations and 
advantages. In addition, different building types, systems, 
and symptoms make the data-driven FDD techniques 
challenging. In order to address these challenges several 
approaches have been proposed in recent years. The 
purpose of this paper is to provide scholars in this domain 
with a comprehensive review of recent advances in data-
driven FDD for HVAC systems. 
Background 
This paper categorizes FDD methods into three types: 
knowledge-based approaches, data-driven approaches, 
and hybrid knowledge-based and data-driven approaches. 
These approaches as well as current challenges are briefly 
described in this section. 

Knowledge-based approaches 
In knowledge-based approaches, a base model is 
developed using physics or engineering knowledge. This 
process is known as white-box modeling. In this approach 
a continuous comparison is conducted between the 
measured HVAC operation status and the normal 
operating baselines depicted by the model. Using residual 
analysis, it is possible to determine the differences (or 
residuals) between the actual operating state determined 
from measurements and the expected operating state and 
values of characteristics determined from the model, thus 
detecting abnormalities and diagnosing faults at different 



levels. Even though physical models help detect faults 
more accurately, their development is time-consuming 
and tedious, particularly in large HVAC systems. 

Data-driven approaches 
Data-driven (“black box”) approaches rely solely on 
process data to generate behavioral models that relate 
input and output data. Data-driven methods have become 
more widely used for FDD due to advances in 
communication and computing technology, decreasing 
device costs (Zhao et al., 2019), and ease of collecting 
Building Management System data. Further, these 
methods do not require a deep understanding of physics, 
nor significant building knowledge. However, data-driven 
measures are limited by their high dependency on the 
quantity and quality of the process data (Yang et al., 2014) 
and are unreliable outside their training domain.  

Hybrid knowledge-based and data-driven approaches 
Hybrid approaches, also known as gray box modeling, 
take advantage of both data-driven and knowledge-based 
models. A mathematical or rule form is specified using 
prior knowledge, but parameters are determined from 
process data. These models are simpler in form, making 
them easy to use and highly capable of being applied in 
HVAC equipment for online FDD. In contrast to data-
driven models, estimated parameters have physical 
significance, making them more robust. However, since 
small uncertainties in data can lead to relatively large 
changes in physical parameters, minimization of   
measurement error is essential for meaningful and robust 
estimates. 
Current challenges for FDD 
FDD in HVAC systems allows for the early detection and 
diagnosis of faults in order to prevent further damage to 
the system or the loss of service. However, in practice, 
challenges arise due to variable HVAC operation 
responding to occupancy and weather (Chen et al., 2022), 
the diversity of interconnected subsystems (Sun et al., 
2013), and complex fault symptoms (Verbert et al., 2017). 
Further, multiple concurrent faults may occur with related 
or unrelated causes, exhibiting conflicting symptoms.  

Comparison of FDD approaches 
It is critical for industries to detect and isolate faults early 
and accurately as part of predictive maintenance. With the 
advent of sensor networks, huge amounts of data are 
available for the development of AI-based automated 
FDD frameworks, permitting sensor data to be analyzed 
directly using machine learning and statistical techniques. 
The followings sections summarize the findings of the 
past 20 years (with emphasis on the last 5) of research on 
machine learning-based FDD approaches, covering 
supervised classification, unsupervised learning, 
regression-based, and hybrid data-driven methods.  

Supervised classification 
Supervised learning techniques develop a function that 
maps a set of features to a known label or output. In FDD, 
supervised classification is used to distinguish between 
faulty and fault-free operation status by analyzing data 
characteristics; support vector machine (SVM), artificial 
neural network (ANN), and ensemble algorithms are 
frequently used for this purpose. 
SVMs have been demonstrated to be an effective 
machine-learning technique in the field of FDD for 
HVAC systems. A key challenge with SVM is its high 
dependence on the quality and quantity of labeled data, 
which is pushing increased research into hybrid and 
enhanced SVM derivations in recent studies (Mirnaghi 
and Haghighat, 2020). Recent studies have focused on 
either a) combining SVMs with various pre-processing 
methods such as wavelet analysis and feature selection 
schemes or b) enhancing SVM to improve its prediction 
accuracy and computational speed for FDD. For example, 
in order to improve the quality of collected experimental 
variable refrigerant flow (VRF) data, Sun et al. (2016) 
proposed wavelet analysis to increase the prediction 
accuracy of the SVM-based FDD framework. The 
recently developed LS-SVM (least squares support vector 
machine) has been used to improve the convergence 
speed, using linear equations to reduce the complexity of 
the algorithm. To investigate faults in centrifugal chillers, 
Han et al. (2019) developed an LS-SVM model improved 
by cross-validation finding that it outperforms SVM to 
solve FDD problems with small data samples. 

 

Figure 1. Classification fault detection and diagnostic methods 



 

Artificial neural networks (ANNs) have also been widely 
applied for FDD since its ability to establish nonlinear 
decision boundaries makes them ideal for pattern 
recognition. However, because they cannot reveal the 
internal data mining mechanisms, diagnosis and root 
cause analysis become challenging. Newer ANNs using 
deep learning, have gained a significant amount of 
attention in recent FDD studies (Zhou et al., 2020; Lee et 
al., 2019) due to their relatively high accuracy, 
particularly when labeled data are scarce. Zhou et al. 
(2020) utilized a deep neural network (DNN) method in 
VRF system fault diagnosis for single and multiple fault 
diagnosis, demonstrating that DNN outperformed SVM 
and shallow neural networks, especially in multiple fault 
cases. Another study (Lee et al., 2019) applied deep 
learning for real-time AHU fault diagnostics with 95.16% 
accuracy. However, efficiently capturing multiscale 
features is challenging for this algorithm. To address this 
issue, Cheng et al. (2021) proposed a multiscale 
convolutional neural networks (CNN) for the fault 
diagnosis of AHU. By eliminating the requirement for 
complex feature engineering, this method was shown to 
be well-suited to multiscale monitoring signals, 
outperforming previous FDD methods. However, in 
online fault detection processes, supervised ANNs and 
deep learning are not accurate enough to diagnose novel 
faults with low false alarm rates. Furthermore, 
determining a suitable threshold when using ANN or 
DNN methods to avoid both false and missed alarms is 
challenging. This can be addressed by methods such as 
generative adversarial networks (GANs), which are able 
to deal with this issue, but their implementation in large 
HVAC systems is time-consuming. 
Recognizing that the proper combination of multiple 
classifiers can be more effective than a single classifier 
used alone, ensemble learning-based techniques are 
increasingly used for HVAC FDD, outperforming weak 
learners in high-dimensional and complex classification 
and regression problems (Yao et al., 2022). These have 
included the combination SVM + KNN + decision tree + 
logistic regression (Han et al, 2020). Through a 
comparative study, Yao et al. (2022) proposed an optimal 
diagnosis method for chillers, comparing the performance 
of three tree-based ensemble algorithms: random forest, 
extreme gradient boosting (XGBoost), and light gradient 
boosting machines (LightGBM); the former reducing 
training model bias and the latter two reducing its 
variance. They observe that these outperform SVM-based 
methods significantly, however its slower implementation 
speed remains a challenge. 
Supervised learning in real-world applications is limited 
by the high level of effort in creating a labeled dataset, 
complicating both detection and diagnosis. 

Semi-Supervised Learning 
Semi-supervised FDD training offers the benefit of only 
using non-fault class labels and has been widely used for 
Air Handling Unit (AHU) fault detection. Fan et al. 
(2021) demonstrated the effectiveness of a neural 
network-based semi-supervised framework for detecting 

unknown AHU faults. Another AHU FDD study (Yan et 
al., 2018) applied an SVM-based semi-supervised FDD 
for AHU that outperformed four other semi-supervised 
machine-learning algorithms (CART, KNN, extreme 
learning machine, and random forest). More recently, Yan 
et al., (2020) (Yan et al., 2020) (K. Yan et al. 2020) (Yan 
et al., 2020) (Yan et al., 2020) (Yan et al., 2020) employed 
GAN to increase the accuracy of semi-supervised FDD. 
Dey et al. (2018) used a multiclass SVM as a base 
classifier in a semi-supervised framework for FDD, 
demonstrating that this method outperformed various 
KNNs in terms of recall and precision metrics for HVAC 
terminal units.  
Compared with supervised learning, semi-supervised 
learning works better when fewer faulty samples are 
available. Every iteration of semi-supervised learning 
compares an observation with the ‘non-faulty’ class to 
identify faulty samples. However, its computational cost 
exceeds that of supervised learning (Mirnaghi and 
Haghighat, 2020). 

Unsupervised learning 
Unsupervised learning facilitates FDD algorithm 
deployment by avoiding the need to collect and label 
faulty operation data. Principal component analysis 
(PCA) and clustering algorithms are both frequently used 
for HVAC FDD and permit the identification of patterns, 
underlying structures, and system data distributions. 
PCA, a dimensionality reduction algorithm, has 
commonly been used to diagnose sensor faults (Du et al., 
2007). Fault detection is carried out using Hotelling's  
and the Q-statistic while fault diagnosis is accomplished 
using Q-statistics and Q-contribution plots (Singh et al., 
2022, Zhao et al., 2019). Because it reduces data 
complexity and assumes a Gaussian data distribution, 
PCA can easily generate false alarms or miss small 
magnitude faults (Xu et al., 2008). To overcome these 
limitations, PCA is frequently combined with other 
methods to improve its accuracy for HVAC FDD. Due to 
its reliance on data quality, PCA can be insensitive to 
some sensor faults and its ability to isolate sensor faults is 
also limited, leading researchers to explore performance 
improvements such as joint angle analysis (JAA) (Wang 
& Xiao, 2004) and wavelet filters (Li et al., 2016b).  
Data pre-processing also greatly influences PCA 
performance. Wavelet analysis to separate noise 
dynamics from data and approximate sensor 
measurements has been shown to detect small sensor 
errors better than conventional PCA. (Xu et al., 2008).    
Another study (2012)  developed a self-adaptive chiller 
sensor fault detection strategy based on PCA, removing 
errors from the original data set through self-adaptive 
loops to improve fault detection.  
Clustering-based unsupervised learning is also widely 
used for FDD. Because normal and malfunction data are 
statistically different, they belong to different clusters, 
allowing them to be readily distinguished and detecting 
anomalies by identifying patterns of operation uncaptured 
by automated FDD rules. By using such methods, FDD 
rules can be better interpreted and advanced machine 



learning techniques such as active learning and semi-
supervised learning can be applied to automated FDD to 
distinguish between fault-free and fault data (Gunay and 
Shi, 2020). For example, Li et al. (Li et al., 2016a) used 
clustering on both faulty and fault-free training datasets of 
chilled water systems and were able to distinguish 
between fault types and severity levels based on the 
closest measurements to the cluster centroids. Similarly, 
Luo et al. (2019), employed k-means clustering for sensor 
FDD of the chilled water system using centroid scores 
characterized via a threshold established using historical 
data and found this to improve the detection of small and 
varied sensor faults. Clustering methods can also be 
useful for analyzing time relationships and interactions 
between building elements.  Data clustering can be used 
before PCA to facilitate pattern recognition and improve 
PCA performance. For example, Du et al. (2017) used 
subtractive clustering to classify and identify known 
sensor faults before developing PCA models for these 
conditions. Conversely, Yan et al. (2016a) applied PCA 
followed by clustering, which allowed spatially separated 
data groups to be isolated to indicate sensor failures. 
Use of clustering-based methods is limited by its 
sensitivity to noise in the data; the need to pre-determine 
the number of clusters, requiring domain expert input; and 
the potential to produce large volumes of redundant 
results requiring post-mining techniques to extract those 

of value. Further, complex relationships between features 
in the post-mining step would make clustering more 
challenging compared to supervised mining (Mirnaghi 
and Haghighat, 2020). 

Regression and statistical approaches 
Regression-based and statistical techniques are other 
data-driven approaches for HVAC FDD and are 
summarized in Table 1.  
Regression-based techniques detect faults by comparing 
predicted and actual system operation using complex 
mathematical models. These approaches have high 
accuracy, but suffer from the dual limitation of the need 
for a large, high-quality dataset and the challenge of 
creating the precise mathematical models to support them. 
Statistical analysis methods avoid this model dependence 
but also suffer from the need for a large dataset.  

Hybrid data-driven approaches 
Recently, studies have increasingly used hybrid 
approaches combining two or more of supervised 
classification, unsupervised learning, regression, and 
statistics-based approaches (Yan et al., 2016b). The most 
common hybrid method in FDD is regression-based 
approaches combined with either supervised 
classification, for example (Mulumba et al., 2015, Sun et 
al., 2019, Yan et al., 2014) or unsupervised learning, for 
example (Van Every et al., 2017). 

  

Table 1. Summary of Regression and Statistical Approaches 

Approach Advantages Limitations Studies applying to HVAC 
FDD  

Multiple Linear 
Regression (MLR) 

Simple Cannot capture non-linear 
behavior 

Chillers (Xiao et al., 2011) 

Kringing (KRG) Can approximate both high-order 
functions and low-dimensional 

problems; outperforms both MLR & 
RBF 

Sensitive to spatial correlation 
structure 

Chillers (Swider et al., 2001) 

Radial Basis 
Functions (RBF) 

Fastest for solving non-linear and 
high-dimensional problems 

Slow convergence for linear and 
low-dimensional problems 

Chillers (Swider et al., 2001) 

Process control 
chart (PCC) 

Can identify sharp and sudden 
changes in variable values 

Compromised when data is 
correlated 

Chillers (Yao et al., 2022) 

Exponentially-
weighted moving 
average  (EWMA) 

Permit more recent data to be 
prioritized in analysis 

Sensitivity to noise and short-term 
fluctuations, Poor accuracy 

Chillers (Zhao et al., 2013) 

Cumulative sum 
(CUSUM)  

Widely used; useful for monitoring 
impact of small changes over time; 

sensitive to incipient faults 

Parameter choice critical, Poor 
accuracy 

Air-Conditioning (Li et al., 
2012) 

Residual-based 
EWMA & CUSUM 

Serial correlations are eliminated, 
improving FDD performance and 

reliability 

Cannot isolate multiple faults 
with intense interactions; poor 

accuracy 

Variable-air-volume (Wang 
and Chen, 2016) 

Variable-air-volume (Wang 
et al., 2011) 

 
MLR+EWMA Outperformed KRG-EWMA & 

RBF-EWMA 
Limited model adaptability, may 

struggle with complex or non-
linear faults 

Chillers (Tran et al., 2016b) 

Least-Squares 
Support Vector 
Regression + 

EWMA  

Model parameters optimized with 
differential evolution and 

outperformed RBF-EWMA 

Requires sufficient training data, 
Sensitivity to hyperparameter 

selection 

Chillers (Chen et al., 2016a) 



 

In such methods, regression is used to build a baseline 
model for predicting system operation and either 
supervised or unsupervised techniques are employed for 
fault detection and isolation. Supervised classification and 
unsupervised learning can also be combined, for example 
(Fan et al., 2019; Li et al, 2017).   
Presently, hybrid approaches are considered as a preferred 
methodology for online FDD processes. It is anticipated 
that these methodologies will predominate in future real-
world applications because they allow complementary 
methods mitigate each other's limitations. 

Discussion 
Data-driven machine learning techniques have been 
extensively applied to detecting and diagnosing faults in 
building HVAC systems. Data-driven approaches offer an 
advantage over white-box modeling with their ability to 
perform calculations and generate FDD models 
automatically, thus being applicable to a variety of 
building types and systems without the creation of an 
explicit model. However, such approaches are often 
difficult to interpret and understand for facility managers 
and engineers due to the intrinsic nature of black-box 
models. This can be mitigated through the use of decision 
trees, regression models, and control charts, which are 
easier to interpret in comparison with other approaches. 
For HVAC FDD to be practical, it is essential to choose 
the proper machine-learning technique. Table 2 

summarizes the highest-performing FDD approaches 
from the literature, along with their key advantages and 
limitations.   
While recent studies show a variety of approaches 
providing high accuracy, the type of available data will 
limit method choice. A supervised classification method 
or a hybrid method incorporating supervised learning 
always needs sufficient labeled data of faulty or normal 
operation of the system to be trained. Due to the time and 
effort required to gather sufficient amounts of labeled data 
in real buildings, the use of supervised classification-
based FDD methods has generally been limited to 
simulation data (e.g. from TRNSYS and Modelica) as 
well as experimental data, like ASHRAE RP 1043 
(ASHRAE, 2006) and RP 1312 (Wen and Li, 2012) 
projects. Moreover, due to the lack of sufficient labeled 
data and the complexity of interacting faults, diagnosing 
the source of faults is quite challenging in supervised-
based FDD. In contrast, FDD methods based on 
unsupervised learning, regression, and statistical methods 
rely solely on fault-free data, making them useful for real-
world building applications. 
Two anticipated future directions for FDD research within 
HVAC are improving data quality to and methodological 
development. A major barrier to developing effective 
FDD schemes is the difficulty of collecting data from the 
faulty operation of the system in practice; this is of critical 
concern as it affects the effectiveness of all FDD methods.  

 
Table 2. Summary of comparison between data-driven FDD methods 

System Technique Performance Key Advantages Key Limitations Reference 

AHUs CNN F1-score: 
0.989 

Good at handling spatial data, 
robust feature extraction 

Requires large data, 
computationally expensive 

Cheng et al., 
2021 

 DNN Accuracy: 
95.16% 

High accuracy, feature 
extraction capabilities 

Requires large data, 
computationally expensive 

Lee et al., 
2019 

 Semi-
supervised 

ANN 

Recall: 
92.74% 

Utilizes both labeled and 
unlabeled data, improved 

generalization 

Sensitive to training data Fan et al., 
2021 

 Semi-
supervised 

SVM 

Accuracy: 
92.53% 

Utilizes both labeled and 
unlabeled data, improved 

generalization 

Challenging parameter 
selection 

Yan et al., 
2018 

AHU 
sensors 

Clustering Accuracy: Up 
to 100% 

No labeled data required, 
scalable 

Assumes specific cluster 
shapes, sensitive to noise 

Yan et al., 
2016 

Chillers Tree-based 
ensemble 

Accuracy: 
88.71% 

Robust, reduced overfitting, 
improved accuracy 

Robust, reduced overfitting, 
improved accuracy 

Yao et al., 
2022 

 Regression R-square: 
0.98 

Simplicity, easy interpretation Assumes linear relationships, 
limited generalization 

Tran et al., 
2016 

Chiller 
sensors 

PCA Accuracy: 
77.7% -100% 

Dimensionality reduction, 
data compression 

Linear assumptions, limited 
fault isolation 

Hu et al., 
2012 

Variable 
Air Volume 

Statistic-
based 

Detection 
rate: 5 of 8 
fault types 

No training required, easy to 
implement 

Assumes normal distribution, 
limited fault isolation 

Li et al., 
2012 

Variable 
Refrigerant 

Flow 

SVM Accuracy: Up 
to 98.73% 

Robust to noise, strong 
generalization 

Challenging parameter 
selection 

Sun et al., 
2016 



 

While pre-processing (e.g. outlier removal) is helpful, 
HVAC operation mode(s) identification, steady-state 
detection, and/or feature selection, as well as dataset 
enrichment through simulation also offer value. Creating 
simulated datasets using validated empirical models, for 
example (Li and O’Neill, 2018; Shohet et al., 2020) is a 
low-cost approach to generating fault data for model 
training.  
Methodologically, future development could include 
improving the reliability of current data-driven 
approaches, specifically for unknown system faults or 
system operation status. In such cases, machine-learning 
algorithms, specifically supervised classification, are 
faced with the challenge of extrapolation, making false 
alarms more likely. Fault data is labeled according to 
domain knowledge and known faults. The accuracy and 
generality of labeled data determine the reliability of 
supervised learning-based FDD. Therefore, training 
labeled data may be insufficient to support novel faults. 
Furthermore, data-driven methods typically analyze 
historical data obtained from older systems. This data set 
may not contain novel faults, so false alarms may occur 
when a novel fault is found in the system. On the other 
hand, there is a vast amount of data that must be processed 
with from unsupervised learning methods, as they often 
produce many redundant results. In order to automatically 
extract interesting results and mine correlations from 
these massive sets of results, post-mining methods such 
as active methods are required. Additionally, the complex 
relationships among multiple features would make 
clustering more challenging in the post-mining step, as 
opposed to supervised methods. As a result, the use of a 
hybrid approach that combines both supervised and 
unsupervised approaches seem to show more promise as 
a method for FDD processes in HVAC systems. 
Moreover, the adaptability of the FDD framework can be 
further improved for dynamic operation of the building 
and outdoor environment. In order to accomplish this, 
recursive algorithms that make use of streamlined data 
can be employed to update a model's parameters. Finally, 
there is an opportunity to improve current data-driven 
methods through the development of FDD models that are 
capable of detecting and diagnosing multiple faults that 
occur simultaneously. The problem can be addressed by 
adopting hybrid methods that combine data-driven 
methods with knowledge-based approaches. Knowledge-
based approaches are more reliable and perform better in 
extrapolation, so hybrid approaches combining data-
driven methods and knowledge-based models can be 
adopted to resolve the problem. 

Conclusion 
This paper has presented a comprehensive review of over 
50 recent papers regarding data-driven methods for 
detecting and diagnosing faults. The key findings are as-
follows:  
First, detection or diagnosis methods should be selected 
based on the type of fault to be identified. Faults can 

present themselves in different ways at different times, so 
diagnosing them can be more challenging than detecting 
them. Multiple faults occurring concurrently make it more 
difficult to diagnose faults.  
Second, detection and diagnosis are both influenced by 
the measurement of data. A lack of sufficient data means 
that the detection process will rely more on detailed 
physical models. It may, however, be necessary to provide 
more physical information about a system, including its 
characteristics and design details to construct a physical 
model. On the other hand, the diagnosis and detection of 
faults in unitary HVAC systems can be accomplished 
using a wide range of data-driven methods. In the future, 
hybrid FDD methods will have enormous potential in 
real-world applications as an improvement over FDD. 
Third, data-driven approaches have been found to be more 
promising than model-based and knowledge-based 
approaches for FDD in large-scale and complex HVAC 
systems where creating physical models or developing 
mathematical functions is challenging.  
Fourth, existing data-driven methods are classified into 
four categories: supervised classification, unsupervised 
learning, regression and statistical approaches, and hybrid 
data-driven strategies. Essentially, all methods rely on a 
common set of sensors in FDD for data collection and 
these approaches typically utilize similar training data 
sizes.  
Finally, it is necessary to have fault data for FDD 
development- based supervised learning methods, but it is 
not necessary for methods such as unsupervised learning, 
regression and statistical analysis. However, the 
capabilities of these methods can still be improved by 
sufficient fault data. In real buildings, supervised 
learning-based methods cannot be applied due to the lack 
of fault data. It is important to note that when these 
methods are used solely, they are only applicable to data 
obtained from simulations and experiments. However, it 
is possible to use and validate other FDD algorithms 
including unsupervised learning, regression and statistical 
approaches with simulation, experiments, and real 
building data. After data collection, data pre-processing is 
typically performed to ensure the performance of FDD.  
The current data-driven FDD methods have some 
limitations. There is still an insufficient number of data-
driven FDD methods to cope with complex fault 
situations, such as multiple faults occurring 
simultaneously. Furthermore, the lack of fault data 
remains a critical obstacle to improving algorithm 
performance and making FDD practical in real-world 
settings, especially for supervised learning algorithms. 
Data-driven approaches also require a greater degree of 
interpretability of models to be credible for facility 
managers and engineers. To further improve the 
performance of data-driven methods for FDD of HVAC 
systems employing fault modeling methods, improving 
the capability of handling simultaneous faults, and 
developing adaptability models for different buildings and 



environments are among the issues that may need to be 
addressed in the future. 
Finally, challenges in FDD were discussed as well as 
future research directions to further improve it in practice. 
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