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Abstract

Building performance can degrade precipitously after
commissioning without adequate maintenance. HVAC
system malfunctions can result in excessive energy
consumption, associated CO, emissions, poor indoor
environmental quality, and productivity loss. Fault
Detection and Diagnosis (FDD) algorithms using sensor
networks and IoT devices are a topic of significant
research. This paper presents a comprehensive literature
review of HVAC FDD applications using machine
learning methods, including supervised classification,
unsupervised learning, regression, statistics-based, and
hybrid approaches. Each is discussed with respect to their
state of development, relative advantages and limitations.
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Introduction

Heating, ventilation, and air conditioning (HVAC)
systems account for over 40% of the total building energy
consumption, making them one of the most critical
mechanical systems (DoE, 2011). When an HVAC
system malfunctions, it can negatively impact the health
and productivity of occupants and adversely affect the
quality of thermal comfort in the building (Gértner et al.,
2020). Building HVAC systems can also waste large
amounts of energy, reducing the energy efficiency of the
building. It has been estimated that faults with HVAC and
lighting systems can increase energy consumption by
approximately 4% to 18% (Chen et al., 2022). Improper
maintenance, malfunctioning components, installation
faults, and control errors can significantly degrade HVAC
systems. Maintaining fault-free operation of HVAC
systems can be challenging because of their many
interconnected components and complex interactions
with occupants and buildings. To ensure proper
functioning of HVAC systems, automated FDD
techniques are promising solutions. As building
management systems improve with the latest sensors used
within buildings as well as advances in computing
methods, this process has become more efficient.
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Increasing attention is being paid to FDD for HVAC
systems due to its importance to building energy
efficiency. Several previous reviews summarized and
categorized knowledge-based, model-based, and data-
driven FDD approaches (Katipamula & Brambley, 2005;
Mirnaghi & Haghighat, 2020).

Data-driven FDD approaches have become increasingly
promising as building management systems and
computational methods advance. While the use of
machine learning-based FDD in HVAC systems has been
extensively studied over the last decade, there remains
lack of comprehensive reviews of such methods. This
current paper addresses this research gap, providing a
comprehensive review of machine learning-based data-
driven fault detection and diagnosis for HVAC systems.
This paper compares methods and recommends the best
available approaches based on their limitations and
advantages. In addition, different building types, systems,
and symptoms make the data-driven FDD techniques
challenging. In order to address these challenges several
approaches have been proposed in recent years. The
purpose of this paper is to provide scholars in this domain
with a comprehensive review of recent advances in data-
driven FDD for HVAC systems.

Background

This paper categorizes FDD methods into three types:
knowledge-based approaches, data-driven approaches,
and hybrid knowledge-based and data-driven approaches.
These approaches as well as current challenges are briefly
described in this section.

Knowledge-based approaches

In knowledge-based approaches, a base model is
developed using physics or engineering knowledge. This
process is known as white-box modeling. In this approach
a continuous comparison is conducted between the
measured HVAC operation status and the normal
operating baselines depicted by the model. Using residual
analysis, it is possible to determine the differences (or
residuals) between the actual operating state determined
from measurements and the expected operating state and
values of characteristics determined from the model, thus
detecting abnormalities and diagnosing faults at different



levels. Even though physical models help detect faults
more accurately, their development is time-consuming
and tedious, particularly in large HVAC systems.

Data-driven approaches

Data-driven (“black box™) approaches rely solely on
process data to generate behavioral models that relate
input and output data. Data-driven methods have become
more widely used for FDD due to advances in
communication and computing technology, decreasing
device costs (Zhao et al., 2019), and ease of collecting
Building Management System data. Further, these
methods do not require a deep understanding of physics,
nor significant building knowledge. However, data-driven
measures are limited by their high dependency on the
quantity and quality of the process data (Yang et al., 2014)
and are unreliable outside their training domain.

Hybrid knowledge-based and data-driven approaches

Hybrid approaches, also known as gray box modeling,
take advantage of both data-driven and knowledge-based
models. A mathematical or rule form is specified using
prior knowledge, but parameters are determined from
process data. These models are simpler in form, making
them easy to use and highly capable of being applied in
HVAC equipment for online FDD. In contrast to data-
driven models, estimated parameters have physical
significance, making them more robust. However, since
small uncertainties in data can lead to relatively large
changes in physical parameters, minimization of
measurement error is essential for meaningful and robust
estimates.

Current challenges for FDD

FDD in HVAC systems allows for the early detection and
diagnosis of faults in order to prevent further damage to
the system or the loss of service. However, in practice,
challenges arise due to variable HVAC operation
responding to occupancy and weather (Chen et al., 2022),
the diversity of interconnected subsystems (Sun et al.,
2013), and complex fault symptoms (Verbert et al., 2017).
Further, multiple concurrent faults may occur with related
or unrelated causes, exhibiting conflicting symptoms.

Comparison of FDD approaches

It is critical for industries to detect and isolate faults early
and accurately as part of predictive maintenance. With the
advent of sensor networks, huge amounts of data are
available for the development of Al-based automated
FDD frameworks, permitting sensor data to be analyzed
directly using machine learning and statistical techniques.
The followings sections summarize the findings of the
past 20 years (with emphasis on the last 5) of research on
machine learning-based FDD approaches, covering
supervised  classification, unsupervised learning,
regression-based, and hybrid data-driven methods.

Supervised classification

Supervised learning techniques develop a function that
maps a set of features to a known label or output. In FDD,
supervised classification is used to distinguish between
faulty and fault-free operation status by analyzing data
characteristics; support vector machine (SVM), artificial
neural network (ANN), and ensemble algorithms are
frequently used for this purpose.

SVMs have been demonstrated to be an effective
machine-learning technique in the field of FDD for
HVAC systems. A key challenge with SVM is its high
dependence on the quality and quantity of labeled data,
which is pushing increased research into hybrid and
enhanced SVM derivations in recent studies (Mirnaghi
and Haghighat, 2020). Recent studies have focused on
either a) combining SVMs with various pre-processing
methods such as wavelet analysis and feature selection
schemes or b) enhancing SVM to improve its prediction
accuracy and computational speed for FDD. For example,
in order to improve the quality of collected experimental
variable refrigerant flow (VRF) data, Sun et al. (2016)
proposed wavelet analysis to increase the prediction
accuracy of the SVM-based FDD framework. The
recently developed LS-SVM (least squares support vector
machine) has been used to improve the convergence
speed, using linear equations to reduce the complexity of
the algorithm. To investigate faults in centrifugal chillers,
Han et al. (2019) developed an LS-SVM model improved
by cross-validation finding that it outperforms SVM to
solve FDD problems with small data samples.
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Figure 1. Classification fault detection and diagnostic methods



Artificial neural networks (ANNs) have also been widely
applied for FDD since its ability to establish nonlinear
decision boundaries makes them ideal for pattern
recognition. However, because they cannot reveal the
internal data mining mechanisms, diagnosis and root
cause analysis become challenging. Newer ANNs using
deep learning, have gained a significant amount of
attention in recent FDD studies (Zhou et al., 2020; Lee et
al., 2019) due to their relatively high accuracy,
particularly when labeled data are scarce. Zhou et al.
(2020) utilized a deep neural network (DNN) method in
VREF system fault diagnosis for single and multiple fault
diagnosis, demonstrating that DNN outperformed SVM
and shallow neural networks, especially in multiple fault
cases. Another study (Lee et al., 2019) applied deep
learning for real-time AHU fault diagnostics with 95.16%
accuracy. However, efficiently capturing multiscale
features is challenging for this algorithm. To address this
issue, Cheng et al. (2021) proposed a multiscale
convolutional neural networks (CNN) for the fault
diagnosis of AHU. By eliminating the requirement for
complex feature engineering, this method was shown to
be well-suited to multiscale monitoring signals,
outperforming previous FDD methods. However, in
online fault detection processes, supervised ANNs and
deep learning are not accurate enough to diagnose novel
faults with low false alarm rates. Furthermore,
determining a suitable threshold when using ANN or
DNN methods to avoid both false and missed alarms is
challenging. This can be addressed by methods such as
generative adversarial networks (GANs), which are able
to deal with this issue, but their implementation in large
HVAC systems is time-consuming.

Recognizing that the proper combination of multiple
classifiers can be more effective than a single classifier
used alone, ensemble learning-based techniques are
increasingly used for HVAC FDD, outperforming weak
learners in high-dimensional and complex classification
and regression problems (Yao et al., 2022). These have
included the combination SVM + KNN + decision tree +
logistic regression (Han et al, 2020). Through a
comparative study, Yao et al. (2022) proposed an optimal
diagnosis method for chillers, comparing the performance
of three tree-based ensemble algorithms: random forest,
extreme gradient boosting (XGBoost), and light gradient
boosting machines (LightGBM); the former reducing
training model bias and the latter two reducing its
variance. They observe that these outperform SVM-based
methods significantly, however its slower implementation
speed remains a challenge.

Supervised learning in real-world applications is limited
by the high level of effort in creating a labeled dataset,
complicating both detection and diagnosis.

Semi-Supervised Learning

Semi-supervised FDD training offers the benefit of only
using non-fault class labels and has been widely used for
Air Handling Unit (AHU) fault detection. Fan et al.
(2021) demonstrated the effectiveness of a neural
network-based semi-supervised framework for detecting
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unknown AHU faults. Another AHU FDD study (Yan et
al., 2018) applied an SVM-based semi-supervised FDD
for AHU that outperformed four other semi-supervised
machine-learning algorithms (CART, KNN, extreme
learning machine, and random forest). More recently, Yan
et al., (2020) (Yan et al., 2020) (K. Yan et al. 2020) (Yan
etal., 2020) (Yan et al., 2020) (Yan et al., 2020) employed
GAN to increase the accuracy of semi-supervised FDD.
Dey et al. (2018) used a multiclass SVM as a base
classifier in a semi-supervised framework for FDD,
demonstrating that this method outperformed various
KNNs in terms of recall and precision metrics for HVAC
terminal units.

Compared with supervised learning, semi-supervised
learning works better when fewer faulty samples are
available. Every iteration of semi-supervised learning
compares an observation with the ‘non-faulty’ class to
identify faulty samples. However, its computational cost
exceeds that of supervised learning (Mirnaghi and
Haghighat, 2020).

Unsupervised learning

Unsupervised learning facilitates FDD  algorithm
deployment by avoiding the need to collect and label
faulty operation data. Principal component analysis
(PCA) and clustering algorithms are both frequently used
for HVAC FDD and permit the identification of patterns,
underlying structures, and system data distributions.

PCA, a dimensionality reduction algorithm, has
commonly been used to diagnose sensor faults (Du et al.,
2007). Fault detection is carried out using Hotelling's T2
and the Q-statistic while fault diagnosis is accomplished
using Q-statistics and Q-contribution plots (Singh et al.,
2022, Zhao et al.,, 2019). Because it reduces data
complexity and assumes a Gaussian data distribution,
PCA can easily generate false alarms or miss small
magnitude faults (Xu et al., 2008). To overcome these
limitations, PCA 1is frequently combined with other
methods to improve its accuracy for HVAC FDD. Due to
its reliance on data quality, PCA can be insensitive to
some sensor faults and its ability to isolate sensor faults is
also limited, leading researchers to explore performance
improvements such as joint angle analysis (JAA) (Wang
& Xiao, 2004) and wavelet filters (Li et al., 2016b).

Data pre-processing also greatly influences PCA
performance. Wavelet analysis to separate noise
dynamics from data and approximate sensor

measurements has been shown to detect small sensor
errors better than conventional PCA. (Xu et al., 2008).
Another study (2012) developed a self-adaptive chiller
sensor fault detection strategy based on PCA, removing
errors from the original data set through self-adaptive
loops to improve fault detection.

Clustering-based unsupervised learning is also widely
used for FDD. Because normal and malfunction data are
statistically different, they belong to different clusters,
allowing them to be readily distinguished and detecting
anomalies by identifying patterns of operation uncaptured
by automated FDD rules. By using such methods, FDD
rules can be better interpreted and advanced machine



learning techniques such as active learning and semi-
supervised learning can be applied to automated FDD to
distinguish between fault-free and fault data (Gunay and
Shi, 2020). For example, Li et al. (Li et al., 2016a) used
clustering on both faulty and fault-free training datasets of
chilled water systems and were able to distinguish
between fault types and severity levels based on the
closest measurements to the cluster centroids. Similarly,
Luo et al. (2019), employed k-means clustering for sensor
FDD of the chilled water system using centroid scores
characterized via a threshold established using historical
data and found this to improve the detection of small and
varied sensor faults. Clustering methods can also be
useful for analyzing time relationships and interactions
between building elements. Data clustering can be used
before PCA to facilitate pattern recognition and improve
PCA performance. For example, Du et al. (2017) used
subtractive clustering to classify and identify known
sensor faults before developing PCA models for these
conditions. Conversely, Yan et al. (2016a) applied PCA
followed by clustering, which allowed spatially separated
data groups to be isolated to indicate sensor failures.

Use of clustering-based methods is limited by its
sensitivity to noise in the data; the need to pre-determine
the number of clusters, requiring domain expert input; and
the potential to produce large volumes of redundant
results requiring post-mining techniques to extract those

of value. Further, complex relationships between features
in the post-mining step would make clustering more
challenging compared to supervised mining (Mirnaghi
and Haghighat, 2020).

Regression and statistical approaches

Regression-based and statistical techniques are other
data-driven approaches for HVAC FDD and are
summarized in Table 1.

Regression-based techniques detect faults by comparing
predicted and actual system operation using complex
mathematical models. These approaches have high
accuracy, but suffer from the dual limitation of the need
for a large, high-quality dataset and the challenge of
creating the precise mathematical models to support them.
Statistical analysis methods avoid this model dependence
but also suffer from the need for a large dataset.

Hybrid data-driven approaches

Recently, studies have increasingly wused hybrid
approaches combining two or more of supervised
classification, unsupervised learning, regression, and
statistics-based approaches (Yan et al., 2016b). The most
common hybrid method in FDD is regression-based
approaches  combined  with  either  supervised
classification, for example (Mulumba et al., 2015, Sun et
al., 2019, Yan et al., 2014) or unsupervised learning, for
example (Van Every et al., 2017).

Table 1. Summary of Regression and Statistical Approaches

Approach Advantages Limitations Studies applying to HVAC
FDD
Multiple Linear Simple Cannot capture non-linear Chillers (Xiao et al., 2011)

Regression (MLR)

Kringing (KRG) Can approximate both high-order
functions and low-dimensional
problems; outperforms both MLR &

RBF

behavior

Sensitive to spatial correlation
structure

Chillers (Swider et al., 2001)

Radial Basis Fastest for solving non-linear and
Functions (RBF) high-dimensional problems
Process control Can identify sharp and sudden
chart (PCC) changes in variable values

Exponentially-
weighted moving
average (EWMA)

Cumulative sum
(CUSUM)

Residual-based
EWMA & CUSUM

MLR+EWMA

Least-Squares
Support Vector
Regression +
EWMA

Permit more recent data to be
prioritized in analysis

Widely used; useful for monitoring
impact of small changes over time;
sensitive to incipient faults

Serial correlations are eliminated,
improving FDD performance and
reliability

Outperformed KRG-EWMA &
RBF-EWMA

Model parameters optimized with
differential evolution and
outperformed RBF-EWMA

Slow convergence for linear and
low-dimensional problems

Compromised when data is
correlated

Sensitivity to noise and short-term
fluctuations, Poor accuracy

Parameter choice critical, Poor
accuracy

Cannot isolate multiple faults
with intense interactions; poor
accuracy

Limited model adaptability, may
struggle with complex or non-
linear faults

Requires sufficient training data,

Sensitivity to hyperparameter
selection

Chillers (Swider et al., 2001)
Chillers (Yao et al., 2022)
Chillers (Zhao et al., 2013)
Air-Conditioning (Li et al.,

2012)

Variable-air-volume (Wang

and Chen, 2016)

Variable-air-volume (Wang
etal., 2011)

Chillers (Tran et al., 2016b)

Chillers (Chen et al., 2016a)

128



In such methods, regression is used to build a baseline
model for predicting system operation and either
supervised or unsupervised techniques are employed for
fault detection and isolation. Supervised classification and
unsupervised learning can also be combined, for example
(Fan et al., 2019; Li et al, 2017).

Presently, hybrid approaches are considered as a preferred
methodology for online FDD processes. It is anticipated
that these methodologies will predominate in future real-
world applications because they allow complementary
methods mitigate each other's limitations.

Discussion

Data-driven machine learning techniques have been
extensively applied to detecting and diagnosing faults in
building HVAC systems. Data-driven approaches offer an
advantage over white-box modeling with their ability to
perform calculations and generate FDD models
automatically, thus being applicable to a variety of
building types and systems without the creation of an
explicit model. However, such approaches are often
difficult to interpret and understand for facility managers
and engineers due to the intrinsic nature of black-box
models. This can be mitigated through the use of decision
trees, regression models, and control charts, which are
easier to interpret in comparison with other approaches.

For HVAC FDD to be practical, it is essential to choose

summarizes the highest-performing FDD approaches
from the literature, along with their key advantages and
limitations.

While recent studies show a variety of approaches
providing high accuracy, the type of available data will
limit method choice. A supervised classification method
or a hybrid method incorporating supervised learning
always needs sufficient labeled data of faulty or normal
operation of the system to be trained. Due to the time and
effort required to gather sufficient amounts of labeled data
in real buildings, the use of supervised classification-
based FDD methods has generally been limited to
simulation data (e.g. from TRNSYS and Modelica) as
well as experimental data, like ASHRAE RP 1043
(ASHRAE, 2006) and RP 1312 (Wen and Li, 2012)
projects. Moreover, due to the lack of sufficient labeled
data and the complexity of interacting faults, diagnosing
the source of faults is quite challenging in supervised-
based FDD. In contrast, FDD methods based on
unsupervised learning, regression, and statistical methods
rely solely on fault-free data, making them useful for real-
world building applications.

Two anticipated future directions for FDD research within
HVAC are improving data quality to and methodological
development. A major barrier to developing effective
FDD schemes is the difficulty of collecting data from the
faulty operation of the system in practice; this is of critical

the proper

machine-learning

technique.

Table 2

Table 2. Summary of comparison between data-driven FDD methods

concern as it affects the effectiveness of all FDD methods.

System Technique  Performance Key Advantages Key Limitations Reference
AHUs CNN F1-score: Good at handling spatial data, Requires large data, Cheng et al.,
0.989 robust feature extraction computationally expensive 2021
DNN Accuracy: High accuracy, feature Requires large data, Leeetal.,
95.16% extraction capabilities computationally expensive 2019
Semi- Recall: Utilizes both labeled and Sensitive to training data Fan et al.,
supervised 92.74% unlabeled data, improved 2021
ANN generalization
Semi- Accuracy: Utilizes both labeled and Challenging parameter Yan et al.,
supervised 92.53% unlabeled data, improved selection 2018
SVM generalization
AHU Clustering Accuracy: Up No labeled data required, Assumes specific cluster Yan et al.,
sensors to 100% scalable shapes, sensitive to noise 2016
Chillers Tree-based Accuracy: Robust, reduced overfitting, Robust, reduced overfitting, Yao et al.,
ensemble 88.71% improved accuracy improved accuracy 2022
Regression R-square: Simplicity, easy interpretation Assumes linear relationships, Tran et al.,
0.98 limited generalization 2016
Chiller PCA Accuracy: Dimensionality reduction, Linear assumptions, limited Hu et al.,
sensors 77.7% -100% data compression fault isolation 2012
Variable Statistic- Detection No training required, easy to Assumes normal distribution, Lietal.,
Air Volume based rate: 5 of 8 implement limited fault isolation 2012
fault types
Variable SVM Accuracy: Up Robust to noise, strong Challenging parameter Sun et al.,
Refrigerant t0 98.73% generalization selection 2016
Flow
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While pre-processing (e.g. outlier removal) is helpful,
HVAC operation mode(s) identification, steady-state
detection, and/or feature selection, as well as dataset
enrichment through simulation also offer value. Creating
simulated datasets using validated empirical models, for
example (Li and O’Neill, 2018; Shohet et al., 2020) is a
low-cost approach to generating fault data for model
training.

Methodologically, future development could include
improving the reliability of current data-driven
approaches, specifically for unknown system faults or
system operation status. In such cases, machine-learning
algorithms, specifically supervised classification, are
faced with the challenge of extrapolation, making false
alarms more likely. Fault data is labeled according to
domain knowledge and known faults. The accuracy and
generality of labeled data determine the reliability of
supervised learning-based FDD. Therefore, training
labeled data may be insufficient to support novel faults.
Furthermore, data-driven methods typically analyze
historical data obtained from older systems. This data set
may not contain novel faults, so false alarms may occur
when a novel fault is found in the system. On the other
hand, there is a vast amount of data that must be processed
with from unsupervised learning methods, as they often
produce many redundant results. In order to automatically
extract interesting results and mine correlations from
these massive sets of results, post-mining methods such
as active methods are required. Additionally, the complex
relationships among multiple features would make
clustering more challenging in the post-mining step, as
opposed to supervised methods. As a result, the use of a
hybrid approach that combines both supervised and
unsupervised approaches seem to show more promise as
a method for FDD processes in HVAC systems.

Moreover, the adaptability of the FDD framework can be
further improved for dynamic operation of the building
and outdoor environment. In order to accomplish this,
recursive algorithms that make use of streamlined data
can be employed to update a model's parameters. Finally,
there is an opportunity to improve current data-driven
methods through the development of FDD models that are
capable of detecting and diagnosing multiple faults that
occur simultaneously. The problem can be addressed by
adopting hybrid methods that combine data-driven
methods with knowledge-based approaches. Knowledge-
based approaches are more reliable and perform better in
extrapolation, so hybrid approaches combining data-
driven methods and knowledge-based models can be
adopted to resolve the problem.

Conclusion

This paper has presented a comprehensive review of over
50 recent papers regarding data-driven methods for
detecting and diagnosing faults. The key findings are as-
follows:

First, detection or diagnosis methods should be selected
based on the type of fault to be identified. Faults can
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present themselves in different ways at different times, so
diagnosing them can be more challenging than detecting
them. Multiple faults occurring concurrently make it more
difficult to diagnose faults.

Second, detection and diagnosis are both influenced by
the measurement of data. A lack of sufficient data means
that the detection process will rely more on detailed
physical models. It may, however, be necessary to provide
more physical information about a system, including its
characteristics and design details to construct a physical
model. On the other hand, the diagnosis and detection of
faults in unitary HVAC systems can be accomplished
using a wide range of data-driven methods. In the future,
hybrid FDD methods will have enormous potential in
real-world applications as an improvement over FDD.

Third, data-driven approaches have been found to be more
promising than model-based and knowledge-based
approaches for FDD in large-scale and complex HVAC
systems where creating physical models or developing
mathematical functions is challenging.

Fourth, existing data-driven methods are classified into
four categories: supervised classification, unsupervised
learning, regression and statistical approaches, and hybrid
data-driven strategies. Essentially, all methods rely on a
common set of sensors in FDD for data collection and
these approaches typically utilize similar training data
sizes.

Finally, it is necessary to have fault data for FDD
development- based supervised learning methods, but it is
not necessary for methods such as unsupervised learning,
regression and statistical analysis. However, the
capabilities of these methods can still be improved by
sufficient fault data. In real buildings, supervised
learning-based methods cannot be applied due to the lack
of fault data. It is important to note that when these
methods are used solely, they are only applicable to data
obtained from simulations and experiments. However, it
is possible to use and validate other FDD algorithms
including unsupervised learning, regression and statistical
approaches with simulation, experiments, and real
building data. After data collection, data pre-processing is
typically performed to ensure the performance of FDD.

The current data-driven FDD methods have some
limitations. There is still an insufficient number of data-
driven FDD methods to cope with complex fault
situations, such as multiple faults occurring
simultaneously. Furthermore, the lack of fault data
remains a critical obstacle to improving algorithm
performance and making FDD practical in real-world
settings, especially for supervised learning algorithms.
Data-driven approaches also require a greater degree of
interpretability of models to be credible for facility
managers and engineers. To further improve the
performance of data-driven methods for FDD of HVAC
systems employing fault modeling methods, improving
the capability of handling simultaneous faults, and
developing adaptability models for different buildings and



environments are among the issues that may need to be
addressed in the future.

Finally, challenges in FDD were discussed as well as
future research directions to further improve it in practice.
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