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Abstract
Machine learning (ML) approaches are necessary to 
quickly predict energy performance at early stages. 
Although ML predictions are primarily useful for 
interpolation and many applications, early design stages 
require flexibility due to uncertain parameter values and 
vaguely defined building forms. We tested the ability of 
two ML approaches, artificial neural network (ANN) and 
convolutional neural network (CNN), to extrapolate for 
early-stage energy predictions. While ANN uses 
numerical parameters to represent building shape, CNN
uses convoluted layers to learn geometrical 
representations. The generalisation of both networks
deteriorates on extrapolated datasets with the CNN having
a better performance than the ANN.

Introduction
A significant part of the global energy supply is required 
for building operation. Energy-efficient buildings reduce 
global energy consumption and contribute to sustainable 
development. Early stages of design give us ample 
opportunities to improve energy performance (Parasonis 
et al., 2012). However, it is a challenging task since any 
performance assessment at early stages require
accommodating uncertain values of characteristics. This 
leads to simulating several hundreds of energy models to 
assess probabilistic performance (Singh et al., 2020; Van 
Gelder et al., 2014). Since high fidelity dynamic 
simulations for probabilistic energy predictions are time 
consuming at early stages, researchers proposed using 
surrogate models to reduce computation time (Roman et 
al., 2020; Westermann & Evins, 2019). This development 
has led to several performance evaluation tools for early 
design stages (Singh et al., 2022).
Surrogate modelling using machine learning (ML) are 
preferred due to their ability to capture complex 
interactions of building energy models (BEMs)
(Singaravel et al., 2018). A generalisable function is 
trained that maps set of values of input variables to predict
values of target variables. Researchers trained and tested
ML networks for energy predictions at early stages using 
various approaches. Moreover, the accuracy of ML 
predictions is reported on test datasets that have values of 
characteristics within the same ranges as training datasets.
The task of predicting values of target variables is referred 

to as interpolation since values of input variables are in 
the same range as the training data. When an ML network
makes predictions on values of input variables that are 
beyond the ranges of training data, it is referred to as 
extrapolation. Prediction accuracy of ML models while 
extrapolating, can be enhanced when a model learns
underlying functional relationship of the physical
principle model (Sahoo et al., 2018) instead of 
memorising values of target variables. Researchers tested 
the ability of several ML algorithms to interpolate and 
extrapolate in other domains (Acharige & Johlin, 2022; 
McCartney et al., 2020). The work suggests that an ML 
algorithm having a good accuracy while interpolating 
may not have a good accuracy while extrapolating. Since
the prediction accuracies for interpolation and 
extrapolation can be significantly different, it is necessary 
to test an ML network used for early stage for both 
interpolation and extrapolation. Singaravel et al., 2019
have tested ability of deep learning networks to predict 
energy performance of test dataset that has different 
number of floors than training dataset. There is no 
comprehensive study that tests ML networks for 
extrapolation to predict energy use. Different ranges of 
parameter values and building forms have not been tested 
for extrapolation.
BEMs use complex physical principles of heat and mass 
transfer to estimate energy use during design. While most 
characteristics can be represented numerically, shape is a 
complex feature. Traditional ML approaches represents 
shape using parameters such as relative compactness 
(Catalina et al., 2008; Li et al., 2019). Even with different 
test shapes than training shapes, it interpolates within
parametric ranges of numeric characteristics. However, 
such simplified representations cannot capture the effect 
of solar radiation, self-shading, and orientation. Further, 
convolutional neural networks (CNN) are used to learn 
shape representations of buildings to capture its effects on 
energy predictions. The CNN approach is based on the 
argument that building shape that have a significant 
influence on the energy use are not well represented in
artificial neural networks (ANN) (Mahan Singh & Geyer, 
2021). Since building shape is a high-dimensional 
characteristic, it requires extrapolating even though 
values of numerical characteristics are within the range of 
training dataset (Balestriero et al., 2021). However, a true 
extrapolation test requires different ranges of values for 



numerical characteristics and different shapes than 
training dataset.
This, in case of ML for energy predictions, extrapolation 
refers to: i) extending beyond parametric ranges and ii) 
including new building shapes. For example, we trained 
an ML network on buildings with a floor area between
400-500 sq. m. and try to predict energy use for buildings 
with the floor area of 375 sq. m. This example refers to 
extrapolating beyond parametric ranges of training 
dataset. However, when we train ML network on box-
shaped buildings and predict energy use for a complex 
form, it is extrapolating to a new building form that is not 
present in training dataset. In case of ANN, even a new 
form can have relative compactness in the range of
training dataset.
Since building shapes in a test dataset can be significantly
different from the shapes of the training dataset, we need 
to test the ability of ML networks to extrapolate for both 
scenarios – beyond parametric ranges and new shapes.
We tested two approaches of training ML networks for 
early stage energy predictions in situation of interpolation 
and extrapolation. The first approach is a conventional 
ANN. It only uses numerical inputs to predict energy use 
intensity (EUI). The second approach is CNN that uses 
convolutional layers to capture shape information from 
the three dimensional building mass model. The next
section describes both the approaches in detail.

ML networks to predict energy use intensity
The first two subsections describe two approaches to train 
ML based energy prediction model for the early stages –
ANN and CNN. The third subsection describes the 
building geometry and parametric ranges of a training 
dataset and six test datasets.

Artificial neural network (ANN)
A simple approach to train an ML network for energy 
predictions is to feed all required information – numeric 
values of characteristics as input and values of target 
variables as output. This paper uses an ANN as shown in
Figure 1.

Figure 1: Configuration of the ANN 

Figure 1 shows configuration of the ANN (one input 
layer, two hidden layers, and one output layer) to predict 
EUI. All inputs to the model are only numeric values of
characteristics, including geometry which is represented 
by floor area, volume, and relative compactness. Relative 

compactness is the ratio of surface area over volume. The 
model has either one or two hidden layers with rectified 
linear unit (ReLU) activation function and L2 
regularisation. L2 regularisation and early stopping is 
used to prevent overfitting (Ng, 2004; Prechelt, 1998).
Values of input and output variables are scaled between 0 
and 1 before feeding them into the network. We used a 
well-defined approach of leave-one-out cross validation
to find a suitable value for hyperparameters (Wong, 2015; 
Yadav & Shukla, 2016). Training data is split in to two 
mutually exclusive sets of 80-20. 20% samples are used 
to calculate the validation loss. The model with the least 
validation loss is retained to report the accuracy of the 
ANN on test datasets. As mentioned in Table 1, we 
experimented with the number of hidden layers, number 
of neurons in each layer, regularisation coefficient, and 
learning rate. We tested eight random combinations of 
hyperparameter values. The best combination of 
hyperparameters that has the least validation loss is
highlighted in bold (Table 1).

Table 1: Hyperparameters of the ANN 

Hyperparameter Values

Number of hidden layers 1, 2

Neurons (1st layer) 100, 200, 500

Neurons (2nd layer) 0 (no 2nd layer), 20, 50

Regularisation coefficient 0.0003, 0.0001, 0.00003

Learning rate 0.003, 0.001, 0.0003

Convolution neural network (CNN)
The ability of CNN to learn relevant information from a 
structured array of data make them useful to approximate 
effects of building geometry on energy predictions. We 
used three dimensional (3D) mass model as an input to the 
CNN. This input along with other numerical 
characteristics are used to predict EUI.
Figure 2 shows the configuration of the CNN. The input 
to the ML model consists of two components. The first
component is the 3D mass model. It is similar to 2D 
images with an additional dimension representing the 3D
mass along z-axis. We structured the 3D mass model into 
an array of 24×100×100, 24 along the Z-axis and 100×100 
on the XY-plane. One pixel is equivalent to 0.6 metres and 
have a value of either 0 or 1, representing empty space and  
the building, respectively. The CNN has a number of 
convolutional layers, followed by average pooling layer, 
dropout layer, and a flattening layer to process this data. 
The second component of the input is an array of 
numerical parameters which is similar to the input for 
ANN. The output of the convolution network is 
concatenated with this input and fed to a fully connected 
neural network to predict the EUI. There are a number of 
hyperparameters in the CNN. See (TensorFlow, 2022) for 
detailed definitions of convolutional layers, kernel size, 
kernel stride, pooling size, pooling stride, and dropout 
layer.



We experimented with the hyperparameters, mentioned in 
Table 2. Similar to the approach of finding the best 
combination of hyperparameters for the ANN, we tested 
eight random combinations. The CNN with the least 
validation loss is retained to report the accuracy on test 
datasets. The value of hyperparameters with the least 
validation loss are highlighted in bold.

Table 2: Hyperparameters of the CNN 

Hyperparameter Values

Convoluted layers 3, 5, 10

Kernel size (2, 3, 3), (2, 5, 5), (3, 8, 8)

Kernel stride (1, 2, 2), (2, 3, 3), (3, 5, 5)

Pooling size (3, 5, 5), (3, 8, 8), (4, 10, 10)

Pooling stride (1, 2, 2), (2, 3, 3), (3, 5, 5)

Neurons (1st layer) 100, 200, 500

Neurons (2nd layer) 0 (no 2nd layer), 20, 50

Regularisation coefficient 1e-4, 3e-5, 1e-5

Learning rate 3e-3, 1e-3, 3e-4

Training and test datasets
We tested this approach on a medium-sized office 
building in Germany. We defined the ranges of values of 
building characteristics based on the typical requirements 
of office buildings and relevant German standards. Table 
3 describes the characteristics and ranges for their values, 
used in this paper for generating training, test, and 
extrapolated datasets. Figures 3 to 6 shows shapes from 
various datasets.

Training dataset: we sampled building characteristics in 
the range of (min, max) values, mentioned in Table 3, 
using Sobol sampling scheme. The training dataset 
contains 5000 samples. A sample, in the context of this 
paper, refers to one set of values of the building 
characteristics. The training dataset contains building 
shapes such as box, T-shape, U-shape, and L-shape, as 
shown in Figure 3. The shape for a sample is randomly 
selected from a set of 17 configurations which is resized 
and rotated according to the values of relevant 
characteristics. While these shapes are simple, they 
capture effects of self-shading and orientation. The 
relative compactness values for the training dataset range
from 0.31 to 0.64. Relative compactness of a building are 
not controlled directly, and they depend on the shape, 
floor-to-floor height, and floor area. The values are only 
relevant for the ANN while analysing parametric ranges 
of characteristics. It does not suggest that two samples 
with the same value of relative compactness have similar 
complexity of forms.
Test dataset A and test dataset B: we sampled the 
parameters in the same range as training samples, using 
Latin hypercube sampling scheme to collect 50 training 
samples for each A and B test datasets. The samples in 
test dataset A have the same shapes as the training dataset.
Test dataset B have a few additional shapes (from a total 
of 35 configurations), as shown in Figure 4. The relative 
compactness values for test dataset B are in the range of 
0.32 to 0.62. Since test dataset B only have additional 
shapes than training and test dataset A, the difference in 
the prediction accuracy will show how well ML networks 
learn geometrical representation while the numerical 
characteristics are in the same parametric range.

Figure 2: Configuration of the CNN 



Extrapolated (Ext.) datasets 1A, 1B, 2A, and 2B: we 
sampled the parameters from Table 3 between the range 
(1. Left, 1. Right) using Latin hypercube sampling scheme 
to collect 50 samples for each ext. datasets, 1A and 1B. 
Similarly, the range of (2. Left, 2. Right) is used for test 
datasets, 2A and 2B. All extrapolated datasets do not 
contain any sample with parameters in the range of (min, 
max). Same as test dataset B, the extrapolated datasets 1B 
and 2B contain additional shapes, as shown in Figure 5 
and Figure 6. Shapes for test dataset B are selected from 
a set of 70 configurations. The relative compactness
values for ext. dataset 1B are in the range of 0.30 to 0.66 
and for test dataset 2B are in the range of 0.32 to 0.65.
Extrapolated datasets 1A and 2A have the same shapes as 
training and test dataset A, as shown in Figure 3.
The objective of creating multiple test datasets is to assess
the ability of ML networks to generalize while 
extrapolating beyond ranges of numerical characteristics 
as well as new building shapes. Comparing prediction 
accuracy on test datasets A, 1A, and 2A will show how 
the prediction accuracy changes while increasing the 

range of values of characteristics. Similarly, comparisons 
of prediction accuracy on test datasets A against B, 1A 
against 1B, and 2A against 2B shows the changes in 
prediction accuracy when we include additional shapes. 
Finally, we can compare prediction on test datasets A
against 1B or 2B to analyze the effect of changing both 
ranges of values for numerical characteristics and shapes.

Data collection
We created an EnergyPlus model and calibrated it using 
actual energy consumption of an office building near 
Munich, Germany. We calibrated an energy model using 
real energy consumption values and developed a tool that 
creates energy model of selected building shapes of 
required dimensions and parameters. We used this tool to 
generate BEMs and simulated these models to collect data 
for ML models. All training and test datasets are available 
at Kaggle (Singh, 2023). The ranges for values of building 
characteristics are based on previous studies and general 
requirements for new buildings in Germany. We 
considered a reasonable variation of around ±20% in
parameter values for extrapolated datasets.

Table 3: Building characteristics and ranges for their values in training, test, and extrapolated datasets

Parameters Unit 2. Left 1. Left Min Max 1. Right 2. Right
Floor Area Per Floor m2 400 425 450 550 575 600

Floor Height m 3.0 3.2 3.3 3.6 3.7 3.8

No. of Floors - 2 2 2 5 5 5

Orientation ° 0 0 0 90 90 90

u-value (Wall)

W/m2K

0.15 0.17 0.18 0.22 0.23 0.25

u-value (Ground Floor) 0.15 0.17 0.18 0.22 0.23 0.25

u-value (Roof) 0.13 0.14 0.15 0.19 0.20 0.21

u-value (Window) 0.68 0.7 0.72 0.88 0.9 0.92

g-value - 0.36 0.38 0.4 0.6 0.62 0.64

WWR1 - 0.1 0.15 0.2 0.8 0.85 0.9

Internal Mass kJ/m2K 20 22.5 25 35 37.5 40

Air Permeability m3/h·m2 5.8 5.85 5.9 6.1 6.15 6.2

Occupant Load m2/Person 20 21 22 24 25 26

Light Heat Load W/m2 5 5.5 6 8 8.5 9

Heating COP2

-

2.6 2.7 2.8 3.2 3.3 3.4

Cooling COP2 2.6 2.7 2.8 3.2 3.3 3.4

Boiler Efficiency 0.9 0.91 0.92 0.95 0.96 0.97
1 Window-to-wall ratios (WWRs) vary independently in each direction.
2 Coefficient-of-performance (COP)



Figure 3: Building shapes of training dataset, test dataset A, and extrapolated dataset 1A and 2A

Figure 4: Building shapes of test dataset B

Figure 5: Building shapes of extrapolated samples 1B

Figure 6: Building shapes of extrapolated dataset 2B

Results
The prediction errors of the ANN and the CNN are shown
in Figures 7 and 8, respectively. The figures show the 
prediction error as residuals on the y-axis and the 
simulation values of EUI on the x-axis. As described 
earlier, we tested the prediction accuracy of the ML 
networks on six datasets, containing 50 samples each.
Unfilled blue circles show samples from test dataset A
and filled blue circles show samples from test dataset B. 
Similarly, red unfilled diamonds show samples from 
dataset 1A and green unfilled squares show samples from 
dataset 2A. Their filled counterparts show samples from 
datasets 1B and 2B, respectively. The prediction errors
(residuals) increase as the samples move away from 0, 
above or below, with samples above showing over 
predictions and samples below showing under 
predictions.
Test dataset A contains the same building shapes as the 
training dataset while test dataset B contains a few 
additional shapes. Both, test datasets A and B have the 
same ranges for values of numerical characteristics as the 
training dataset. Hence, the prediction accuracy for test 
dataset A shows the model generalisation while 
interpolating within the same range of values of numerical 
characteristics and shapes. The difference between the 
prediction accuracies of test datasets A and B shows the 
effect of including new shapes on model generalisation.

The results show that the ANN has generally higher errors 
than the CNN for both test dataset A and B. The CNN has 
a root-mean-square-error (RMSE) of 0.38 kWh/a.m2 for 
test dataset A; however, it increases quickly to 1.1 
kWh/a.m2 for test dataset B. In comparison, the ANN has 
more increase in the errors than the CNN.
Comparing the performances of the ANN and the CNN 
on extrapolated datasets 1A and 1B show that both the 
networks have lesser prediction accuracies while 
extrapolating than interpolating. However, the increase in 
the errors for the ANN are higher than the CNN. While 
the ANN has a mean-absolute-percentage-error (MAPE) 
of 3.6%, the CNN has MAPE of only 1.5%. Figure 6
shows that the ANN has both over and under predictions 
for the extrapolated dataset 1A. The CNN has most of the 
samples from extrapolated dataset 1A in the range of ±2 
kWh/a.m2. Only 3 samples have an underprediction of 
more than 2 kWh/a.m2. The situation is no different for 
the ANN for extrapolated dataset 1B as many samples 
have an absolute error of more than 2 kWh/a.m2 with a 
high RMSE of 3.3 kWh/a/m2. The performance of the 
CNN on extrapolated dataset 1B is also worse than 
extrapolated dataset 1A, as the model has an RMSE of 2.1 
kWh/a/m2 and around 10 samples have a residual error of 
more than 2 kWh/a.m2.
The performance of the ANN on both extrapolated dataset
2A and 2B is much worse than the 1A and 1B. Many 



Figure 7: Residuals for the ANN 

samples show under prediction of more than 2 kWh/a.m2,
with some samples having high percentage error of 
around 20%. Surprisingly, extrapolated dataset 2B have 
overall lower prediction errors (RMSE) than 2A that 
suggests including new shapes do not significantly 
influence the prediction errors. However, the metric can 
be misleading as we can see many filled green squares 
below -4 kWh/a.m2 that suggests there are many samples 
from dataset 2B that have high prediction errors, 
individually.
The performance of the CNN also deteriorates for 
extrapolated datasets 2A and 2B, compared to 1A and 1B; 
however, this loss of prediction accuracy is smaller than
the ANN. The network has an RMSE of 2.5 kWh/a.m2 for 
the dataset 2B. The change in the prediction errors from 
dataset 2A to 2B follows the same trend as from dataset
1A to 1B. The maximum error in an individual sample is 
around 10%. The increase is prediction errors from 1A to 
2A and from 1B to 2B is also smaller than the ANN.

Discussion
We presented two ML approaches ANN and CNN to train 
a surrogate model for early-stage energy prediction and 
test their abilities to interpolate and extrapolate. The 
motivation of training these ML networks is to achieve 
computational efficiency over dynamic simulations. 
Since such ML networks are trained over a limited set of 
data, their use is also limited to that dataset. However, at 
the early stage design stage, extrapolation of solution is
often carried out for parameter values that are outside the

Figure 8: Residuals for the CNN 

values of training dataset, i.e., extrapolation. We trained 
the ML networks on a training dataset and tested their 
prediction accuracies on several datasets. Multiple test 
datasets are created to distinguish between the prediction 
accuracy when the ranges of numerical characteristics are 
increased, and new shapes are included. The comparison 
of prediction accuracies shows that CNN has a better 
prediction accuracy than ANN. A possible reason is that 
CNN has more parameters and with convolutional layers, 
it can capture the effects of the shape on energy 
predictions. However, with simple network configuration, 
ANN also has a good prediction accuracy for test samples 
within the range of training datasets.
Aside from fewer parameters, the ANN relies on a small 
set of numerical inputs to represent building
characteristics for energy predictions. The network
represents building geometry using parameters such as 
floor area, height, number of floors, and relative 
compactness. Such model has high prediction errors while 
extrapolating beyond the parametric ranges and including 
new building shapes. In comparison, the CNN learns the 
effect of the building geometry from a three-dimensional 
model and thus, shows a better prediction accuracy while 
extrapolating. It shows that the CNN has an ability to 
learn about interactions well and can extrapolate better 
than the ANN.
Moreover, we extrapolated numerical parameters by 
around ±10% for test samples 1A and 1B, and ±20% for 
test samples 2A and 2B. This increase in the ranges is an 
arbitrary and requires further research in to design 



practices. It is possible that some building characteristics 
require more flexibility than others. Further, a surrogate 
model reduces computational time at the cost of accuracy. 
Since early-stage energy predictions are performed to 
compare and classify design options, a small error is 
allowed. An error is considered small if it does not affect 
the decision-making. This topic is discussed further in 
Singh, 2020.

Conclusions
We explored an important aspect of machine learning 
applications, extrapolating. In the application of machine 
learning for early stage energy predictions, extrapolation 
has been tested for both, beyond parametric ranges of
training data as well as new building shapes. The building 
shape is a complicated feature to be represented by a few 
numerical parameters; hence, an approach of 
convolutional neural network to learn the effects of 
building shape on its energy performance is also tested.
We found that a simple artificial neural network which 
work extremely well for interpolation loses its prediction 
accuracy while extrapolating beyond parametric ranges.
The accuracy reduces further when we extrapolate for a 
complex feature like building shape. The convolutional 
neural network is more reliable while extrapolating, either 
extending parametric ranges or including new shapes. 
Hence, a complex machine learning algorithm such as 
convolutional neural network performs well for 
extrapolation. It will be interesting to understand how 
three-dimensional data is processed through
convolutional layers and what features does it extract for 
energy predictions. The characteristics of samples with 
high prediction errors can be studied to understand the 
causes and improve the performance of the model while
extrapolating.
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