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Abstract

Machine learning (ML) approaches are necessary to
quickly predict energy performance at early stages.
Although ML predictions are primarily useful for
interpolation and many applications, early design stages
require flexibility due to uncertain parameter values and
vaguely defined building forms. We tested the ability of
two ML approaches, artificial neural network (ANN) and
convolutional neural network (CNN), to extrapolate for
early-stage energy predictions. While ANN uses
numerical parameters to represent building shape, CNN
uses convoluted layers to learn  geometrical
representations. The generalisation of both networks
deteriorates on extrapolated datasets with the CNN having
a better performance than the ANN.

Introduction

A significant part of the global energy supply is required
for building operation. Energy-efficient buildings reduce
global energy consumption and contribute to sustainable
development. Early stages of design give us ample
opportunities to improve energy performance (Parasonis
et al., 2012). However, it is a challenging task since any
performance assessment at early stages require
accommodating uncertain values of characteristics. This
leads to simulating several hundreds of energy models to
assess probabilistic performance (Singh et al., 2020; Van
Gelder et al., 2014). Since high fidelity dynamic
simulations for probabilistic energy predictions are time
consuming at early stages, researchers proposed using
surrogate models to reduce computation time (Roman et
al., 2020; Westermann & Evins, 2019). This development
has led to several performance evaluation tools for early
design stages (Singh et al., 2022).

Surrogate modelling using machine learning (ML) are
preferred due to their ability to capture complex
interactions of building energy models (BEMs)
(Singaravel et al., 2018). A generalisable function is
trained that maps set of values of input variables to predict
values of target variables. Researchers trained and tested
ML networks for energy predictions at early stages using
various approaches. Moreover, the accuracy of ML
predictions is reported on test datasets that have values of
characteristics within the same ranges as training datasets.
The task of predicting values of target variables is referred
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to as interpolation since values of input variables are in
the same range as the training data. When an ML network
makes predictions on values of input variables that are
beyond the ranges of training data, it is referred to as
extrapolation. Prediction accuracy of ML models while
extrapolating, can be enhanced when a model learns
underlying functional relationship of the physical
principle model (Sahoo et al, 2018) instead of
memorising values of target variables. Researchers tested
the ability of several ML algorithms to interpolate and
extrapolate in other domains (Acharige & Johlin, 2022;
McCartney et al., 2020). The work suggests that an ML
algorithm having a good accuracy while interpolating
may not have a good accuracy while extrapolating. Since
the prediction accuracies for interpolation and
extrapolation can be significantly different, it is necessary
to test an ML network used for early stage for both
interpolation and extrapolation. Singaravel et al., 2019
have tested ability of deep learning networks to predict
energy performance of test dataset that has different
number of floors than training dataset. There is no
comprehensive study that tests ML networks for
extrapolation to predict energy use. Different ranges of
parameter values and building forms have not been tested
for extrapolation.

BEMSs use complex physical principles of heat and mass
transfer to estimate energy use during design. While most
characteristics can be represented numerically, shape is a
complex feature. Traditional ML approaches represents
shape using parameters such as relative compactness
(Catalina et al., 2008; Li et al., 2019). Even with different
test shapes than training shapes, it interpolates within
parametric ranges of numeric characteristics. However,
such simplified representations cannot capture the effect
of solar radiation, self-shading, and orientation. Further,
convolutional neural networks (CNN) are used to learn
shape representations of buildings to capture its effects on
energy predictions. The CNN approach is based on the
argument that building shape that have a significant
influence on the energy use are not well represented in
artificial neural networks (ANN) (Mahan Singh & Geyer,
2021). Since building shape is a high-dimensional
characteristic, it requires extrapolating even though
values of numerical characteristics are within the range of
training dataset (Balestriero et al., 2021). However, a true
extrapolation test requires different ranges of values for



numerical characteristics and different shapes than
training dataset.

This, in case of ML for energy predictions, extrapolation
refers to: 1) extending beyond parametric ranges and ii)
including new building shapes. For example, we trained
an ML network on buildings with a floor area between
400-500 sq. m. and try to predict energy use for buildings
with the floor area of 375 sq. m. This example refers to
extrapolating beyond parametric ranges of training
dataset. However, when we train ML network on box-
shaped buildings and predict energy use for a complex
form, it is extrapolating to a new building form that is not
present in training dataset. In case of ANN, even a new
form can have relative compactness in the range of
training dataset.

Since building shapes in a test dataset can be significantly
different from the shapes of the training dataset, we need
to test the ability of ML networks to extrapolate for both
scenarios — beyond parametric ranges and new shapes.
We tested two approaches of training ML networks for
early stage energy predictions in situation of interpolation
and extrapolation. The first approach is a conventional
ANN. It only uses numerical inputs to predict energy use
intensity (EUI). The second approach is CNN that uses
convolutional layers to capture shape information from
the three dimensional building mass model. The next
section describes both the approaches in detail.

ML networks to predict energy use intensity

The first two subsections describe two approaches to train
ML based energy prediction model for the early stages —
ANN and CNN. The third subsection describes the
building geometry and parametric ranges of a training
dataset and six test datasets.

Artificial neural network (ANN)

A simple approach to train an ML network for energy
predictions is to feed all required information — numeric
values of characteristics as input and values of target
variables as output. This paper uses an ANN as shown in
Figure 1.

Fully Connected Layers
Y
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Input to the ANN model

Floor Area, Volume, Relative Compactness,
u-value (floor), u-value (roof), u-value
(wall),

u-value (window), g-value,

Infiltration, Thermal Mass,

Light Heat Gain, Equipment Heat Gain,
Occupancy, WWRs

Figure 1: Configuration of the ANN

Figure 1 shows configuration of the ANN (one input
layer, two hidden layers, and one output layer) to predict
EUIL All inputs to the model are only numeric values of
characteristics, including geometry which is represented
by floor area, volume, and relative compactness. Relative
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compactness is the ratio of surface area over volume. The
model has either one or two hidden layers with rectified
linear unit (ReLU) activation function and L2
regularisation. L2 regularisation and early stopping is
used to prevent overfitting (Ng, 2004; Prechelt, 1998).
Values of input and output variables are scaled between 0
and | before feeding them into the network. We used a
well-defined approach of leave-one-out cross validation
to find a suitable value for hyperparameters (Wong, 2015;
Yadav & Shukla, 2016). Training data is split in to two
mutually exclusive sets of 80-20. 20% samples are used
to calculate the validation loss. The model with the least
validation loss is retained to report the accuracy of the
ANN on test datasets. As mentioned in Table 1, we
experimented with the number of hidden layers, number
of neurons in each layer, regularisation coefficient, and
learning rate. We tested eight random combinations of
hyperparameter values. The best combination of
hyperparameters that has the least validation loss is
highlighted in bold (Table 1).

Table 1:  Hyperparameters of the ANN
Hyperparameter Values
Number of hidden layers 1,2
Neurons (1% layer) 100, 200, 500

Neurons (2" layer) 0 (no 2nd layer), 20, 50
0.0003, 0.0001, 0.00003

0.003, 0.001, 0.0003

Regularisation coefficient

Learning rate

Convolution neural network (CNN)

The ability of CNN to learn relevant information from a
structured array of data make them useful to approximate
effects of building geometry on energy predictions. We
used three dimensional (3D) mass model as an input to the
CNN. This input along with other numerical
characteristics are used to predict EUL

Figure 2 shows the configuration of the CNN. The input
to the ML model consists of two components. The first
component is the 3D mass model. It is similar to 2D
images with an additional dimension representing the 3D
mass along z-axis. We structured the 3D mass model into
an array of 24x100x100, 24 along the Z-axis and 100x100
on the XY-plane. One pixel is equivalent to 0.6 metres and
have a value of either 0 or 1, representing empty space and
the building, respectively. The CNN has a number of
convolutional layers, followed by average pooling layer,
dropout layer, and a flattening layer to process this data.
The second component of the input is an array of
numerical parameters which is similar to the input for
ANN. The output of the convolution network is
concatenated with this input and fed to a fully connected
neural network to predict the EUI There are a number of
hyperparameters in the CNN. See (TensorFlow, 2022) for
detailed definitions of convolutional layers, kernel size,
kernel stride, pooling size, pooling stride, and dropout
layer.



We experimented with the hyperparameters, mentioned in
Table 2. Similar to the approach of finding the best
combination of hyperparameters for the ANN, we tested
eight random combinations. The CNN with the least
validation loss is retained to report the accuracy on test
datasets. The value of hyperparameters with the least
validation loss are highlighted in bold.

Table 2:  Hyperparameters of the CNN
Hyperparameter Values
Convoluted layers 3,5,10

Kernel size 2,3,3),(2,5,5), 3,8, 8)
(la 25 2)9 (27 3’ 3)5 (39 55 5)
(3.5,5),3,8,8), (4,10, 10)

1,2,2),2,3,3),3,5,95)

Kernel stride
Pooling size

Pooling stride

Neurons (1% layer) 100, 200, 500
Neurons (2" layer) 0 (no 2nd layer), 20, 50
Regularisation coefficient le-4, 3e-5, 1e-5
Learning rate 3e-3, 1e-3, 3e-4

Training and test datasets

We tested this approach on a medium-sized office
building in Germany. We defined the ranges of values of
building characteristics based on the typical requirements
of office buildings and relevant German standards. Table
3 describes the characteristics and ranges for their values,
used in this paper for generating training, test, and
extrapolated datasets. Figures 3 to 6 shows shapes from
various datasets.

Input to the CNN model

Training dataset: we sampled building characteristics in
the range of (min, max) values, mentioned in Table 3,
using Sobol sampling scheme. The training dataset
contains 5000 samples. A sample, in the context of this
paper, refers to one set of values of the building
characteristics. The training dataset contains building
shapes such as box, T-shape, U-shape, and L-shape, as
shown in Figure 3. The shape for a sample is randomly
selected from a set of 17 configurations which is resized
and rotated according to the values of relevant
characteristics. While these shapes are simple, they
capture effects of self-shading and orientation. The
relative compactness values for the training dataset range
from 0.31 to 0.64. Relative compactness of a building are
not controlled directly, and they depend on the shape,
floor-to-floor height, and floor area. The values are only
relevant for the ANN while analysing parametric ranges
of characteristics. It does not suggest that two samples
with the same value of relative compactness have similar
complexity of forms.

Test dataset A and test dataset B: we sampled the
parameters in the same range as training samples, using
Latin hypercube sampling scheme to collect 50 training
samples for each A and B test datasets. The samples in
test dataset A have the same shapes as the training dataset.
Test dataset B have a few additional shapes (from a total
of 35 configurations), as shown in Figure 4. The relative
compactness values for test dataset B are in the range of
0.32 to 0.62. Since test dataset B only have additional
shapes than training and test dataset A, the difference in
the prediction accuracy will show how well ML networks
learn geometrical representation while the numerical
characteristics are in the same parametric range.
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Figure 2: Configuration of the CNN



Extrapolated (Ext.) datasets 1A, 1B, 2A, and 2B: we
sampled the parameters from Table 3 between the range
(1. Left, 1. Right) using Latin hypercube sampling scheme
to collect 50 samples for each ext. datasets, 1A and 1B.
Similarly, the range of (2. Left, 2. Right) is used for test
datasets, 2A and 2B. All extrapolated datasets do not
contain any sample with parameters in the range of (min,
max). Same as test dataset B, the extrapolated datasets 1B
and 2B contain additional shapes, as shown in Figure 5
and Figure 6. Shapes for test dataset B are selected from
a set of 70 configurations. The relative compactness
values for ext. dataset 1B are in the range of 0.30 to 0.66
and for test dataset 2B are in the range of 0.32 to 0.65.
Extrapolated datasets 1A and 2A have the same shapes as
training and test dataset A, as shown in Figure 3.

The objective of creating multiple test datasets is to assess
the ability of ML networks to generalize while
extrapolating beyond ranges of numerical characteristics
as well as new building shapes. Comparing prediction
accuracy on test datasets A, 1A, and 2A will show how
the prediction accuracy changes while increasing the

range of values of characteristics. Similarly, comparisons
of prediction accuracy on test datasets A against B, 1A
against 1B, and 2A against 2B shows the changes in
prediction accuracy when we include additional shapes.
Finally, we can compare prediction on test datasets A
against 1B or 2B to analyze the effect of changing both
ranges of values for numerical characteristics and shapes.

Data collection

We created an EnergyPlus model and calibrated it using
actual energy consumption of an office building near
Munich, Germany. We calibrated an energy model using
real energy consumption values and developed a tool that
creates energy model of selected building shapes of
required dimensions and parameters. We used this tool to
generate BEMs and simulated these models to collect data
for ML models. All training and test datasets are available
at Kaggle (Singh, 2023). The ranges for values of building
characteristics are based on previous studies and general
requirements for new buildings in Germany. We
considered a reasonable variation of around +20% in
parameter values for extrapolated datasets.

Table 3:  Building characteristics and ranges for their values in training, test, and extrapolated datasets
Parameters Unit 2.Left 1.Left Min Max [1.Right 2. Right
Floor Area Per Floor m? 400 425 450 550 575 600
Floor Height m 3.0 32 33 3.6 3.7 3.8
No. of Floors - 2 2 2 5 5 5
Orientation ° 0 0 0 90 90 90
u-value (Wall) 0.15 0.17  0.18 0.22 0.23 0.25
u-value (Ground Floor) 0.15 0.17 0.18 0.22 0.23 0.25
u-value (Roof) Wi 0.13 0.14 0.15 0.19 0.20 0.21
u-value (Window) 0.68 0.7 0.72  0.88 0.9 0.92
g-value - 0.36 0.38 0.4 0.6 0.62 0.64
WWR! - 0.1 0.15 0.2 0.8 0.85 0.9
Internal Mass kJ/m?K 20 22.5 25 35 37.5 40
Air Permeability m’/h-m? 5.8 5.85 59 6.1 6.15 6.2
Occupant Load m?/Person 20 21 22 24 25 26
Light Heat Load W/m? 5 5.5 6 8 8.5 9
Heating COP? 2.6 2.7 2.8 32 33 3.4
Cooling COP? - 2.6 2.7 2.8 32 3.3 3.4
Boiler Efficiency 0.9 0.91 0.92 0.95 0.96 0.97

! Window-to-wall ratios (WWRs) vary independently in each direction.

2 Coefficient-of-performance (COP)
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Figure 4. Building shapes of test dataset B

Figure 5: Building shapes of extrapolated samples 1B

Figure 6: Building shapes of extrapolated dataset 2B

Results

The prediction errors of the ANN and the CNN are shown
in Figures 7 and 8, respectively. The figures show the
prediction error as residuals on the y-axis and the
simulation values of EUI on the x-axis. As described
earlier, we tested the prediction accuracy of the ML
networks on six datasets, containing 50 samples each.
Unfilled blue circles show samples from test dataset A
and filled blue circles show samples from test dataset B.
Similarly, red unfilled diamonds show samples from
dataset 1A and green unfilled squares show samples from
dataset 2A. Their filled counterparts show samples from
datasets 1B and 2B, respectively. The prediction errors
(residuals) increase as the samples move away from 0,
above or below, with samples above showing over
predictions and samples below showing under
predictions.

Test dataset A contains the same building shapes as the
training dataset while test dataset B contains a few
additional shapes. Both, test datasets A and B have the
same ranges for values of numerical characteristics as the
training dataset. Hence, the prediction accuracy for test
dataset A shows the model generalisation while
interpolating within the same range of values of numerical
characteristics and shapes. The difference between the
prediction accuracies of test datasets A and B shows the
effect of including new shapes on model generalisation.

The results show that the ANN has generally higher errors
than the CNN for both test dataset A and B. The CNN has
a root-mean-square-error (RMSE) of 0.38 kWh/a.m? for
test dataset A; however, it increases quickly to 1.1
kWh/a.m? for test dataset B. In comparison, the ANN has
more increase in the errors than the CNN.

Comparing the performances of the ANN and the CNN
on extrapolated datasets 1A and 1B show that both the
networks have lesser prediction accuracies while
extrapolating than interpolating. However, the increase in
the errors for the ANN are higher than the CNN. While
the ANN has a mean-absolute-percentage-error (MAPE)
of 3.6%, the CNN has MAPE of only 1.5%. Figure 6
shows that the ANN has both over and under predictions
for the extrapolated dataset 1A. The CNN has most of the
samples from extrapolated dataset 1A in the range of +2
kWh/a.m?. Only 3 samples have an underprediction of
more than 2 kWh/a.m?. The situation is no different for
the ANN for extrapolated dataset 1B as many samples
have an absolute error of more than 2 kWh/a.m? with a
high RMSE of 3.3 kWh/a/m?. The performance of the
CNN on extrapolated dataset 1B is also worse than
extrapolated dataset 1A, as the model has an RMSE of 2.1
kWh/a/m? and around 10 samples have a residual error of
more than 2 kWh/a.m?.

The performance of the ANN on both extrapolated dataset
2A and 2B is much worse than the 1A and 1B. Many
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Figure 7: Residuals for the ANN

samples show under prediction of more than 2 kWh/a.m?,
with some samples having high percentage error of
around 20%. Surprisingly, extrapolated dataset 2B have
overall lower prediction errors (RMSE) than 2A that
suggests including new shapes do not significantly
influence the prediction errors. However, the metric can
be misleading as we can see many filled green squares
below -4 kWh/a.m2 that suggests there are many samples
from dataset 2B that have high prediction errors,
individually.

The performance of the CNN also deteriorates for
extrapolated datasets 2A and 2B, compared to 1A and 1B;
however, this loss of prediction accuracy is smaller than
the ANN. The network has an RMSE of 2.5 kWh/a.m? for
the dataset 2B. The change in the prediction errors from
dataset 2A to 2B follows the same trend as from dataset
1A to 1B. The maximum error in an individual sample is
around 10%. The increase is prediction errors from 1A to
2A and from 1B to 2B is also smaller than the ANN.

Discussion

We presented two ML approaches ANN and CNN to train
a surrogate model for early-stage energy prediction and
test their abilities to interpolate and extrapolate. The
motivation of training these ML networks is to achieve
computational efficiency over dynamic simulations.
Since such ML networks are trained over a limited set of
data, their use is also limited to that dataset. However, at
the early stage design stage, extrapolation of solution is
often carried out for parameter values that are outside the
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Figure 8: Residuals for the CNN

values of training dataset, i.c., extrapolation. We trained
the ML networks on a training dataset and tested their
prediction accuracies on several datasets. Multiple test
datasets are created to distinguish between the prediction
accuracy when the ranges of numerical characteristics are
increased, and new shapes are included. The comparison
of prediction accuracies shows that CNN has a better
prediction accuracy than ANN. A possible reason is that
CNN has more parameters and with convolutional layers,
it can capture the effects of the shape on energy
predictions. However, with simple network configuration,
ANN also has a good prediction accuracy for test samples
within the range of training datasets.

Aside from fewer parameters, the ANN relies on a small
set of numerical inputs to represent building
characteristics for energy predictions. The network
represents building geometry using parameters such as
floor area, height, number of floors, and relative
compactness. Such model has high prediction errors while
extrapolating beyond the parametric ranges and including
new building shapes. In comparison, the CNN learns the
effect of the building geometry from a three-dimensional
model and thus, shows a better prediction accuracy while
extrapolating. It shows that the CNN has an ability to
learn about interactions well and can extrapolate better
than the ANN.

Moreover, we extrapolated numerical parameters by
around +10% for test samples 1A and 1B, and +20% for
test samples 2A and 2B. This increase in the ranges is an
arbitrary and requires further research in to design



practices. It is possible that some building characteristics
require more flexibility than others. Further, a surrogate
model reduces computational time at the cost of accuracy.
Since early-stage energy predictions are performed to
compare and classify design options, a small error is
allowed. An error is considered small if it does not affect
the decision-making. This topic is discussed further in
Singh, 2020.

Conclusions

We explored an important aspect of machine learning
applications, extrapolating. In the application of machine
learning for early stage energy predictions, extrapolation
has been tested for both, beyond parametric ranges of
training data as well as new building shapes. The building
shape is a complicated feature to be represented by a few
numerical parameters; hence, an approach of
convolutional neural network to learn the effects of
building shape on its energy performance is also tested.

We found that a simple artificial neural network which
work extremely well for interpolation loses its prediction
accuracy while extrapolating beyond parametric ranges.
The accuracy reduces further when we extrapolate for a
complex feature like building shape. The convolutional
neural network is more reliable while extrapolating, either
extending parametric ranges or including new shapes.
Hence, a complex machine learning algorithm such as
convolutional neural network performs well for
extrapolation. It will be interesting to understand how
three-dimensional ~ data is  processed  through
convolutional layers and what features does it extract for
energy predictions. The characteristics of samples with
high prediction errors can be studied to understand the
causes and improve the performance of the model while
extrapolating.
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