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Abstract

The construction industry has pursued automated com-
pliance checking for decades, but legal requirements
conveyed in natural language are not intended for ma-
chine processing. There have been numerous attempts
to translate these requirements into computable represen-
tations, progressing from manual to fully-automated ap-
proaches. However, it is unclear if fully-automated trans-
lation will become reliable and interpretable enough for
legal matters. We propose a LegalRuleML Editor with
Transformer-based Autocompletion to facilitate a semi-
automated workflow with minimal manual effort. A deep
learning model generates initial translations and contex-
tualised autocompletion options. This strategy offers ex-
perts a superior translation process, including continuous
improvements approximating full automation.

Introduction

Computer-readable building codes lie at the root of auto-
mated compliance checking (ACC), but most codes and
standards are exclusively conveyed in natural language.
The translation of codes into a computer-readable for-
mat faces several challenges: 1) Cross-domain expertise
is required (i.e. law, construction, knowledge engineer-
ing) (Amor and Dimyadi, 2021). 2) Convoluted sentences,
domain-specific terminology and complex legalese cause
difficulties for automated translation (Fuchs and Amor,
2021). 3) Since codes and standards change frequently,
the computer-readable representation becomes obsolete if
not updated in parallel (Zhang et al., 2023). 4) There
are many different representations and no agreement on
what representation is most suitable or what requirements
a specific representation has to meet (buildingSMART,
2017). 5) The need for exceptionally accurate transla-
tions (Salama and El-Gohary, 2016) raises the requirement
to correctly extract all relevant information and specify
logical connections, negations, and deontic effects. So,
manual tasks such as reviewing automatically translated
clauses and specifying test cases remain.
Many of these issues could be addressed by simplifying
the translation of clauses into a semantic representation
and moving this task closer to the rule-authoring process.
Therefore, we examine the following research questions:
RQI: How can we enable rule authors to specify and
maintain a logical representation of regulations
efficiently?
RQ2: What functionality is necessary and most helpful
for a seamless tool-supported workflow?
We first examine existing tools and translation require-
ments in the literature to address those research questions.
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Consistent translation can be supported by utilising do-
main knowledge bases such as dictionaries and ontolo-
gies. Niemeijer et al. (2014) proposed a database which
is used to automatically translate design constraints via
term matching. KBimCode aims for a consistent and user-
friendly translation process by searching for entities and
predicates in the clause to translate and the KBimCode
Database (Song et al., 2018). LIME (Palmirani et al.,
2023) and RAWE (Palmirani et al., 2013) are visual editors
to annotate legal documents in Akoma Ntoso and gener-
ate a logical representation in LegalRuleML (LRML), re-
spectively. Dimyadi et al. (2020) used Excel proformas to
extract information from sixteen Acceptable Solutions of
the New Zealand Building Codes and a LRML converter
to produce LRML files and ensure the validity of gener-
ated rules. RASE (Requirements, Application, Selection,
Exception) is a natural language markup technique to sup-
port the translation process (Hjelseth and Nisbet, 2011).
The accompanying tool ’Requirel’ offers a user interface
to annotate these high-level constructs and concept types
(i.e. object, property, predicate, value, and unit).

Rule-based fully-automated approaches perform well in
narrow domains but need further rule development to scale
to new regulation types (Zhang and El-Gohary, 2019). I-
SNACC (Wu et al., 2023) integrates a rule-based transla-
tion approach (Zhang and El-Gohary, 2016) into an ACC
framework. It includes a user interface for developer-users
to fix generated logic rules.

Machine-Learning (ML) based approaches have been used
to extract information at different levels of granularity. For
example, Zhang and El-Gohary (2019) segmented clauses
into Requirement Units, Zhou et al. (2022) performed se-
mantic role labelling, and Li et al. (2020) extracted Entity-
Relationship triplets. In contrast, Fuchs et al. (2022) pro-
posed a deep learning-based full translation of clauses into
LRML using transformer models. Transformer refers to
the underlying neural network architecture proposed by
Vaswani et al. (2017).

GitHub Copilot (Chen et al., 2021) shows the potential
of human-machine interaction for complex tasks such as
writing computer code. To reduce the manual effort of
semi-automated building regulation translation, this pa-
per proposes a direction similar to Copilot: A LRML
Editor powered by a transformer-based model for trans-
lation and autocompletion based on Fuchs et al. (2022).
The LRML Editor allows quick translation of regulation
clauses into LRML by supplying full translations and
context-dependent autocompletion. In addition, we inte-
grated a semantic search mechanism to retrieve terms from
dictionaries and query translations of related regulatory



clauses following Niemeijer et al. (2014) and KBimCode,
but with a transformer model to calculate semantic simi-
larity. Compared to previous attempts, a full translation
in combination with autocompletion provides greater sup-
port and promises further improvements over time. Newly
translated regulations and fixed autocompletion sugges-
tions can be used to retrain the transformer model to
improve future translations and autocompletion sugges-
tions. Rule authors could use this editor to create and re-
view a computable representation of building regulations
semi-automatically, and domain experts and data scientists
could use it as a data collection platform to produce new
training data more efficiently.

Tool-supported building code translation

In this section, we will first collect the requirements for
tool-supported translation of building regulations by in-
vestigating previous literature on manual, tool-supported
and automatic translation. We then evaluate the main re-
quirements with the developed LRML editor.

Requirements

To collect the requirements, we investigate requirements
for rule representations, typical translation workflows and
re-occurring problems during translation. We will refer
to existing tool support and how those aspects were ad-
dressed. While we cover the major functional require-
ments, we do not claim the completeness of this list. The
collections helped us make informed decisions on the most
important requirements for a proof-of-concept. Further re-
quirements will be identified in the Evaluation section.

Document context

Ilal and Giinaydin (2017) described the need to have trans-
lated clauses connected to their origin. Representations for
legal documents such as ISO-STS and Akoma Ntoso can
address such needs. For example, LIME and RAWE are
interconnected visual editors for Akoma Ntoso and Legal-
RuleML. These representations are designed to work well
together and were also used by Dimyadi et al. (2020). An-
notating legal documents (e.g. PDF or HTML) was ad-
dressed by Lau and Law (2004), and governments have
started to publish digitalised versions of legal documents.

Clause context

Zhang et al. (2023) suggest considering the overall set
of regulations rather than individual clauses. Fuchs and
Amor (2021) identified that the context of clauses within
the regulatory documents is mostly neglected during the
translation. KBimCode partly addresses this issue by
searching for similar clauses and classifying clauses by
topic. Also, LRML allows one to group statements and
indicate defeasibility constraints between them.

Consistency

Yurchyshyna et al. (2010) showed the need for consistent
translations. While the KBimCode’s clause search can
help with a more consistent translation, using dictionar-
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ies or ontologies in combination with the semantic repre-
sentation is considered essential (Zhang et al., 2023). This
principle was followed in various ways: RAWE allows one
to link terms to an ontology. Dimyadi et al. (2020) intro-
duced the Legal Knowledge Management (LKM) Dictio-
nary. Niemeijer et al. (2014) stores objects and entities
added by the user in a database. Kbimcode’s translation in-
terface lets one insert new translations with all constituents
into their database.

Granularity

Fuchs et al. (2023) showed it is not straightforward to
decide the required granularity of the extracted informa-
tion. Dimyadi et al. (2020) addressed this by aligning the
translation process to the buildingSMART Data Dictio-
nary (bSDD). Shi and Roman (2017) mapped clauses to
ontologies and IFC to support experts in translating them
to SWRL and XSLT, respectively. Zhang et al. (2023) sug-
gested the need to keep the dictionary independent from
rule engines and building information models (BIM) since
regulatory concepts might not be available in BIM.

User friendliness

Ilal and Giinaydin (2017) and Zhang et al. (2023) identi-
fied the need for the representations to be human readable,
flexible and easy to use. RAWE addressed this with a vi-
sual interface, RASE with an annotation tool, and KBim-
Code with extracting objects and predicates and retrieving
related clauses and concepts.

Conciseness

Zhang et al. (2023) suggest conciseness and low repetition
levels as another important factor. We consider it an im-
portant factor that the user-facing representation is easy to
comprehend. But the final representation can have addi-
tional meta-data required for reasoning or versioning. For
example, Dimyadi et al. (2020) converted user-readable
Excel proformas into LRML.

Validity

Requirements for credibility (Zhang et al., 2023) and qual-
ity (Salama and El-Gohary, 2016) were addressed by
Dimyadi et al. (2020) with a review process and sanity
checks in the LRML Converter (i.e. is the syntax cor-
rect and are terms in the LKM dictionaries). Especially
in NLP-related studies, the ground truth is often estab-
lished by multiple experts in parallel, aiming for high inter-
annotator agreement (Zhou and El-Gohary, 2017). Fi-
nally, Wu et al. (2023) checks the logic rules for grammar,
format, and validity during generation and review.

Maintainability

Building codes and standards tend to be amended fre-
quently, causing the need to modify the translations
(Zhang et al., 2023). While some representations like
LRML support versioning, most described approaches do
not have a simple way to update clauses and must un-
dergo a similar process to the initial translation. ML-



based approaches seem to have better prospects by keep-
ing the manual effort to a minimum (e.g. I-SNACC (Wu
et al., 2023)). Nevertheless, the better solution might be
to have the translation process within the legislative body
(Dimyadi and Amor, 2013).

Soundness

A specific focus should be on logical relationships
(andlor/not) (Zhang et al., 2023) and deontic effects
(Zhang and El-Gohary, 2016). These aspects decide the
validity of the translation and are frequently incorrect in
ML.-based methods, which struggle with negations and un-
derrepresented classes. So, semi-automated or rule-based
strategies might have advantages in this aspect.

Handling uncertainty

Ambiguity, contradiction and vagueness in legal clauses
must be resolved during the translation process (Eastman
et al., 2009; Soliman-Junior et al., 2020). Barraclough
et al. (2021) addressed these issues by documenting all
expert interpretations made during the translation process.
Moreover, some user input is expected to remain necessary
within the rule engine (Dimyadi et al., 2016).

Translation strategy

There are many strategies to translate regulations. For
example, Bhuiyan et al. (2019) used a bottom-up strat-
egy (i.e. define atoms, determine norms, generate if-then
structure, encode rules). Such a strategy is supported by
tools like KBimCode (Song et al., 2018), where concepts
and predicates can be automatically extracted and mapped
to KBimCode objects, properties and predicates. Also,
the automated information extraction and relation extrac-
tion approaches (Zhang and El-Gohary, 2016; Zhou et al.,
2022; Li et al., 2020) can be helpful for this strategy.

In comparison, a top-down strategy was used by
Nazarenko et al. (2016), who first extracted coarse-grained
information, and then split it into medium- and fine-
grained entities. Similar strategies are followed by RASE
and the requirement unit extraction by Zhang and El-
Gohary (2019).

Editor Design

Based on our previous experiences and data availability,
we selected LRML as the representation for building regu-
lations. For this proof-of-concept, we focus on the require-
ments that allow a seamless and efficient translation work-
flow while demonstrating the benefits of integrating the ed-
itor with transformer-based translation. Table 1 gives a de-
tailed description of the proposed and future functionality
in relation to the previously described requirements.

The main components are two text editor views, one for
the legal clause to be translated and one for the LRML
representation of the clause. The LRML representation
was shortened, automatically formatted, and syntax high-
lighted. The user can retrieve an initial translation from
the deep learning model and get further autocompletion
suggestions during the translation process. A file viewer
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gives access to translated clauses. Additionally, dictio-
nary terms and translations related to the current clause
or search terms are displayed in two separate views.

Editor Implementation

This section will give an overview of the user interface
and provide implementation details on the relevant ele-
ments. The editor was developed as a React Web App to
utilise existing code editor libraries and simplify collabo-
rative work. A Python backend allows us to persist data
and access the deep learning models. Figure 1 shows the
full user interface:

e Views 1, 2, and 3 utilise the code editor library de-
scribed in the section: LRML Editor View.

e View 1 is the LRML Editor used to enter new LRML
rules. This view supports the user with syntax high-
lighting, formatting, warnings if terms are not in the
LKM dictionary and autocompletion.

* View 2 allows viewing and editing legal clauses that
should be translated.

e View 3 shows search results for related translations.

¢ View 4 shows search results from the LKM dictionar-
ies and classification systems.

* View 5 allows one to navigate between existing trans-
lations of clauses and add new translations.

LRML Editor View

A feature-rich code editor library can provide a suitable
starting point to ease the creation of LRML rules. The fol-
lowing are the criteria by which we selected a library: Ex-
tensibility, community support, and support for new lan-
guages, autocompletion, formatting and syntax highlight-
ing. After an initial screening, three libraries were closely
inspected: ACE, Monaco, and CodeMirror. All three edi-
tors fulfil these requirements. ACE is the code editor pow-
ering the AWS Cloud9 Online IDE, Monaco is directly
generated from the Visual Studio Code source code, and
CodeMirror is used by a wide range of online editors, in-
cluding the Chrome DevTools, Github and JSFiddle.

We selected CodeMirror! for this work since it is well-
documented, designed with extensibility in mind, and per-
fectly suited to run multiple views with different configu-
rations. The integrated Lezer Parser System lets one easily
define the grammar of a new language, and the syntax tree
can be used for formatting and autocompletion.

The Lint extension for static code analysis loads the LKM
dictionaries and shows a warning if functions, objects or
properties are not in the dictionaries. New terms can
be added to the dictionary to resolve the warning. Such
terms would need to be reviewed by other authors in a
separate workflow. In addition, the editor supports undo,
bracket matching and closing, code folding, and a range of
keymaps, allowing quick navigation within the editor.
Figure 2 shows an example LRML rule in the LRML Ed-
itor View, including the shortened LRML representation,
auto-formatting, and syntax highlighting. The keywords

thttps://codemirror.net/



Table 1: Requirements addressed by features

Requirements

LRML Editor Features

Future Possibilities

Document
context

Clause
context

Consistency

Granularity

User
friendli-
ness

Conciseness

Validity

Maintain-
ability

Soundness

Handling
uncertainty

Bottom-up
strategy

Top-down
strategy

LRML supports integration with Akoma Ntoso. The edi-
tor’s shortened representation can be converted to LRML
files, including the necessary meta-data.

File viewer and search mechanism to inspect related clauses.

Representation grounded in dictionaries. Search function
for similar clauses. Dictionary- and transformer-based au-
tocompletion to encourage using consistent vocabulary and
translation styles. Linter to encourage dictionary use.

Alignment with classifications (i.e. IFC, Uniclass, Omni-
Class) helps extract information in correct granularity with-
out relying on a specific format.

Syntax highlighting, formatting and short format for read-
ability. Initial translation as a skeleton. Related translations
as guide. Autocompletion as inspiration and support.

Shortened format to reduce repetition and writing effort. A

reversible transformation was applied to Fuchs et al. (2022):

expr(fun(greaterThan),atom(rel(width),var(wall)),data(1m))
-> greaterThan(wall.width, 1 m).

Lint rules: Check if terms are in the dictionaries.

LRML’s versioning support. Possible integration with rule
authoring. Efficiency enhancement (e.g. autocompletion).

Semi-automated rather than fully automated. Logical and
deontic keywords are highlighted.

Integration with rule authoring could avoid or reduce ambi-
guities, contradictions and vagueness.

Autocompletion model to suggest specific terms likely ex-
tracted from the current clause.

Autocompletion model to suggest expressions depending on
the completion context (e.g. if, then, and).

Load clauses and definitions from legal
documents.

Reference LRML rules and reuse expres-
sions.

Include entities defined within the legal
document.

Define reusable expressions.

Syntax checks. Support review process.

Extensive versioning and improved text
editing for clauses and legal documents.

Further sanity checks. Support review
process.

Commenting and decision tracking.
Support user input.

Entities and predicates extracted from
the clause as autocompletion source.

Intermediate translation steps to direct
the model and simplify the supervision.

> NZNZBC-GaAS1#40
> NZNZBCG14AS1#26
> NZNZBCCVM2405
> NZNZBCCAS2f1.1
> NZNZBCGI2AS1#3.12
> NZNZBCEIASI#1.10
> NZNZBC-B2AS1#2.10
> NZNZBCBIAS1H0.17
> NZNZBCDIASI2S
> NZNZBCE2AS1Z38
> NZNZBC-G12AS2#3.12
> NZNZRC-G1AS1#2T
> NZNZBC-G13AS2#27
> NZNZBCG15AS1F2T
v NZNZBC-BIAS3#0.17
11101
11201

17201
17301
17604
17701
177,02
17801
17901
17,1004
17.1002
171301
17.1404
1715011
1715012
1715013
17.160.1.1
17.16012
17.16013
17.160.1.4
18101
18201
18202
18203
18301
18401
18501
1850121
1850101
1850101
18601
19101

and(
is(chinney.material, brick),
is(brick.type, singleskin),
has(chinney, walll
)
)

then(
obligation(greaterThan€qual(wall. thickness, 155 mm))
)

1.2.1 Chinney wall thicknesses shall be no less than: a) Brick — single skin (see Figure 2) 155 mm.

2

/N2 NZBCB1AS3#0.17  1.2.1.0.1..2
// 1:2.1 Chinney wall thicknesses shall be no less than: a) Brick — double skin (see Figure 3) 245 mn.

i

(.
is(chianey.naterial, brick),
is(brick.type, doubleskin),
has (chinney, wall)

then(
obligation(greaterTran€qual(wall, thickness, 245 mm))
)

/N2 NZBC-BIAS3#0.17  1.1.3.0.1.2.3
7/ 1:1.3 Size; The width (measured along the building line) and depth (measured perpendicular to the building Line) shall not exceed: For a brick
chimney stack — single skin (see Figure 2) 500 mm wide x 500 mm deep.
it
and(
has(chimey, stack),
define(stack.width, x0),
i5(x0.measurenent, alongBuildingLine),
define(stack.depth, x1),

is(x1.measurenent, perpendicularBuildingLine),
is(stack.material, singleskinBrick)
)
),
then(
and(

500 am))

buvo itc ifc_props uniclass

chimney chimneyNotdefined | wallThickness masonryChimneyStackSystems
perimeterWall chimney wallCoveringThickness masonryWallingUnits
chimneyBreast wallParapet "
thickness retainingWall nominalThickness fluesAndChimneys

idings & t et

chimneyBack solidWall nominalToppingThickness | metalFluesAndChimneys
cavityWall wallStandard baseThickness towerChimneyAndMastSystems
buildingHeight clementedWall thickness1 thinLayerMortars

fireplace

verticalTravelWidth | curtainWall flangeThickness masonryOpeningsUnits
wallAssembly | curtainWallNotdefined | lining Thickness chimneys

i ibil i floorCe Ur

arapet

constructionMaterial | wallShear I

coveringCladding ventilatingPipeSize clayBrickCappingUnits

waveWall
gambrelRoof

brickSlipC}
Ce \dCopingU

4

Figure 1: LRML Editor Interface: 1) LRML Editor View, 2) Clause Editor View, 3) Translation search results, 4) Dictionary search

results, 5) Translation navigator
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if, then, and, and obligation are underlined, emphasising
their importance. The material brick has a warning be-
cause it is missing in the LKM dictionary.

if(
and(
is(chimney.material, brick),
is(brick.type, singleSkin),
has(chimney, wall)
)
)
then(
obligation(greaterThanEqual (wall.thickness, 155 mm))

)
Figure 2: LRML Editor View with syntax highlighting,
formatting, linting, and bracket matching

Autocompletion

The main functionality that promises efficient translation
is autocompletion, which was also utilised to provide com-
plete translations. While the LKM dictionary and logi-
cal and deontic keywords were added as autocompletion
sources out-of-the-box, a major contribution of this paper
is to provide deep learning-based building clause-specific
autocompletion options (see Figure 3).

// 1.2.1 Chimney wall thicknesses shall be no less than:
// a) Brick — single skin (see Figure 2) 155 mm.

if(
and (
is(chimney.material, brick),

(3

x is(brick, singleSkin)

s(singleSkin, skin) ckness,

is
S|

is(cladding.system, singleSkin)
18 155 mm))
ex

Figure 3: Autocompletion example

Fuchs et al. (2022) trained a T5-Model to generate the
LRML representation for a given input clause. We
train TS5 similarly with the legal clause as input (e.g.,
translate English to LegalRuleML: GI13AS1 3.4.2 The
floor waste shall have a minimum diameter of 40 mm.)
and the LRML rule as the label: if{exist(floorWaste)),
then(obligation(greaterThanEqual(floorWaste.diameter,
40 mm))).

While the same model could be used to provide autocom-
pletion options by algorithmically extracting entities and
expressions, this approach is not optimal in three regards:
1) The model needs to generate longer outputs than re-
quired, 2) the editor context, i.e. what parts were already
translated, is disregarded, and 3) an algorithmic selection
of the options introduces a new error source.

To avoid these issues, we generated training samples that
require a completion starting from a certain point in the
syntax tree. Therefore, we randomly selected 2 nodes for
each training sample. Selected nodes act as pivot points.
The LRML statement up to each node was appended to
the clause. The training objective is to generate the LRML
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statement for the selected node, including all its children.
The statement length depends on the depth of the syn-
tax tree. E.g., Input: translate English to LegalRuleML:
G13AS1 [...] 40 mm.<sep>if(, Label: exist(floorWaste).
While this procedure addressed all three issues, the editor
context is not yet fully integrated. In practice, autocom-
pletion is mostly triggered by the user typing the begin-
ning of a word. To accommodate this behaviour, the train-
ing data generation was adopted to include a sub-string of
the pivot node’s text, with shorter sub-strings being more
likely selected than longer ones. E.g., Input: translate [...]
40 mm.<sep>ifiexist(fl, Label: floorWaste.

With the described training procedure, a full translation
can only be achieved by separately generating the if- and
then-statements. To avoid loading a separate model into
memory for full translations, we added the full transla-
tion data set to the generated completion data set. Accord-
ingly, autocompletion without any context will trigger a
full translation, which might only need minor corrections
and is usable as a skeleton for the expert’s translation.
Figure 3 shows an example of the resulting autocomple-
tion options. is and exist are suggestions from the LKM
relation dictionary. The remaining suggestions are gener-
ated by the deep learning model using beam search. It can
be noted that the selected suggestion is correct according
to the ground truth (see Figure 2). This is no surprise in
this example since it was part of the model’s training data.
This brings one problem with it: The workflow of fixing
existing translations. If a clause was included in the train-
ing data, the model would be heavily biased towards the
existing translation. As part of the evaluation, we will in-
vestigate autocompletion suggestions for clauses not seen
during training or testing.

Search mechanism

Similar to previously described approaches, we offer a
mechanism for searching the dictionaries and related trans-
lations. In particular, we use two strategies depending on
the search case. First, we calculate n-gram overlaps be-
tween the search query and the search index. Tokenization,
stopword removal and lemmatization were used as prepro-
cessing. This strategy works well for searching dictionary
terms for an entire clause. For short search queries and
to search related translations, we used the SentenceTran-
former library to create high-dimensional sentence embed-
dings (Reimers and Gurevych, 2019). The similarity be-
tween the search terms and all options is then calculated
using cosine similarity. Up to 20 suggestions per search
index over a specified threshold are presented to the user.

Evaluation
LRML Editor translation workflow

As part of the evaluation, we show an exemplary trans-
lation workflow for Clause 3.1.1.1 of the Acceptable So-
lution HI/AS1 for the New Zealand Building Code H1
Energy Efficiency (Ministry of Business, Innovation and
Employment, 2022). This Building Code was not part of



the translated documents by Dimyadi et al. (2020) used as
training data. Figure 4 shows the example clause plus tar-
get translation displayed in the LRML Editor View.

// Hot water systems for sanitary fixtures and sanitary appliances
// having a storage water heater capacity of up to 700 litres
// shall comply with NZS 4305.

and (
for (hotWaterSystem, _o_r(sanitaryﬂixture, sanitaryAppliance)),
include (hotWaterSystem, storageWaterHeater),
lessThanEqual (storageWaterHeater.capacity, 700 1)
)
) e
then(
obligation(complyWith(hotWaterSystem, nzs_4305))

)
igure 4: Example Clause H1/AS1 3.1.1.1 with the target
LRML representation

if(

The initial translation can be generated using the trans-
former model (see Figure 5). The model returns the top
five beam search results. We select the first option that in-
cludes the disjunction.

x if(and(for(hotwatersystem,
x if(and(for(hotWaterSystem,
x if (and(for(hotWaterSystem,

and(sanitaryFixture, sanitaryAppliance)), has(sanitaryAppl..
and(sanitaryFixture, sanitaryAppliance)), has(sanitaryAppl.
and (sanitaryFixture, sanitaryAppliance)), has(sanitaryApp:
or (sanitaryFixture, sanitaryAppliance)), has(sanitaryAppl:
or(sanitaryFixture, sanitaryAppliance)), has(sanitaryAppl

x_if (and(for (hotWaterSystem,
x if (and(for (hotWaterSystem,

Figure 5: Retrieve full translations

Most parts of the selected translation shown in Figure
6, such as the preconditions and the obligation, are al-
ready correct. Only the relation between the storageWa-
terHeater and the hotWaterSystem was not identified, and
greaterThanEqual has to be changed to lessThanEqual.
While lessThanEqual was correct in one of the autocom-
pletion options, the hotWaterSystem-relation was continu-
ously wrong.

if(
and(
for (hotWaterSystem, or(sanitaryFixture, sanitaryAppliance)),
has(sanitaryAppliance, storageWaterHeater),
greaterThanEqual (storageWaterHeater.capacity, 700 1)
)
)
then(
obligation(complyWith(hotWaterSystem, nzs_4305))
)

Figure 6: Initial translation

We lead the transformer model in the right direction by
typing inc before triggering the autocompletion. The first
autocompletion option in Figure 7 is correct.

if(
and(
for (hotWaterSystem, or(sanitaryFixture, sanitaryAppliance)),
ind
include
[include (hotiiatersysten, storagenaterieater)
) | x include(sanitaryAppliance, storageWaterHeater)
Do x include(sanitaryAppliances, storageWaterHeater)
then * includes(sanitaryAppliance, storageWaterHeater)
__;; x including(sanitaryAppliance, storageWaterHeater)
) intersect

Figure 7: Intentional autocompletion by typing "inc”

For the second error, we use the dictionary-based autocom-
pletion to insert lessThanEqual (see Figure 8).
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if(
and(
for (hotWaterSystem, or(sanitaryFixture, sanitaryAppliance)),
include(hotWaterSystem, storageWaterHeater),
ﬂ(storagewaterﬂeater.capacity, 700 1)

) lessThan
D lessThanEqual
then loop

ob * lessThanEqual (storageWaterHeater.capacity, 700 1)
) x lessThanEqual(storageWaterHeater.capacity, 7001)

Figure 8: Dictionary completion

Since hotWaterSystem had a warning for not being in the
LKM dictionaries, we searched for this term in the classifi-
cation systems. Uniclass contains waterHeaters and heat-
ingSystems while OmniClass includes hotWaterHeaters
(see Figure 9). This indicates a suitable granularity, but
more information, e.g. definitions for those classes, would
help to decide whether to add hotWaterSystem or another
term to the database. An information alignment step could
be integrated with the dictionary management at this stage.
Suggesting suitable mappings beyond the current search
mechanism, e.g. by integrating Zhang and El-Gohary
(2023), could support this task.

Uniclass OmniClass
hotAndColdWaterSupplySystems hotWaterHeaters
coldWaterSupplySystems domesticHotWater
mediumTemperatureHotWaterHeatingSystems residentialHotWaterDispensers
chilledWaterSystems hotWaterTankHeaters
hotAndColdWaterSupply commercialHotWaterDispensers
waterHeaters hotWaterTankSteamHeaters
directHotWaterStorageSupplySystems chilledWaterFacility
instantaneousHotWaterSupplySystems domesticColdWater

hvacSteamHotWaterConverters
instantaneousHotWaterHeaters
waterSourceSplitSystemHeatPumps
fluidHeatExchangers
waterSourcePackagedHeatPumps
heatExchangers

heatPipes

Figure 9: Search for hotWaterSystem

waterSourceHeatPumpSystems
waterCoolingSystems
hotAndColdWaterSupplyDesignStrategy
lowTemperatureHotWaterHeatingSystems
hotAndColdWaterSupplyPerformanceRequirements
indirectHotWaterStorageSupplySystems
heatingSystems

Translator feedback

We collected user feedback from three researchers who
used the LRML Editor to translate several clauses. The
researchers had varying knowledge of the LRML syntax
and the translation guidelines. Three main issues became
evident, which should be resolved before conducting larger
user studies.

1. Input validation beyond the dictionaries needs to be
provided. In particular, the data entity (i.e. second
function argument) does allow a variety of different
datatypes and notations (e.g. value and unit, doc-
ument reference, string value, and equations). The
translator needs to receive stronger guidance and im-
mediate feedback upon input.

2. The display of related translations was useful for
users without knowledge of the LRML syntax. In
contrast, for expert users, it can lead to an information
overload. It is too time-consuming to comprehend a
full translation. We plan to show translation snippets
as an alternative setting.

3. Visualising the connection between clause phrases
and LRML expressions was requested as a feature.



This would also be of use for translation snippets and
cover a neglected requirement: Isomorphism (Palmi-
rani et al., 2013). LRML allows for isomorphism by
storing corresponding natural language phrases. Fur-
thermore, this information could be used for training
and evaluation purposes.

Discussion

The LRML editor’s most important feature is the
transformer-based model. In particular, the interplay be-
tween full translation and autocompletion promises effi-
ciency. The generated initial translation can be used as
a skeleton for the expert’s translation. If changes are re-
quired, autocompletion can help with syntax and reduce
manual efforts. Furthermore, the autocompletion options
could inspire the translator on what relations should be in-
cluded or how to continue the translation. Such inspira-
tional effects could be increased significantly by utilising
sampling strategies rather than beam search when retriev-
ing additional options to increase diversity.

As shown in Figure 5, the current autocompletion options
have high similarity, with only three distinctions. These
distinctions indicate the aspects where the model was most
unsure: 1) Use of disjunctions and conjunctions and/or,
2) Comparators greaterThanEqual/lessThanEqual, and 3)
References nzs_4305/nzs_4603. Identifying the correct
logical connections and relations is a critical and chal-
lenging task requiring further investigation to prevent the
model from choosing the majority class. nzs_4603 is refer-
enced in one of the training samples. In contrast, nzs_4305
was never seen before. This indicates the difficulty of de-
ciding when to rely on learnt knowledge and when to copy
entities from the current clause.

While the LRML Editor subjectively improved the trans-
lation workflow significantly over the proforma-based
method, there is likely some researcher bias involved in
this judgement. For more objectivity, we plan to conduct
a user study with more objective measures. The user study
will include three parts: 1) Translation interface base-
lines, 2) Translation and autocompletion improvements
over time, and 3) Non-developer user feedback.
Especially the second part will be crucial to investigate
the effect size of additional training data and to provide
evidence for the gradual improvements achievable with
transformer-based models and, with it, the advantage of
our approach over rule-based methods, such as Wu et al.
(2023).

Conclusion

In this paper, we proposed a novel LRML Editor, which
supports efficient translation of building codes and stan-
dards into a semantic representation usable for automated
compliance checking. At the heart of the editor lies
a transformer-based model to provide both full transla-
tions and context-dependent autocompletion options. The
LRML Editor stands out from previous semi-automated
translation tools by providing more extensive translation
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support, thus reducing the manual workload. With the
editor, rule authors have the means to create a com-
putable representation of building regulations without
much overhead, and data scientists could produce train-
ing data more efficiently, resulting in higher-quality fully-
automated translation.
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