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Abstract

Building energy demand assessment plays a crucial role
in designing energy-efficient building stocks. However,
most studies adopting a data-driven approach feel the
deficiency of datasets with building-specific information
in building energy consumption estimation. Hence, the
research objective of this study is to extract new features
within the climate, demographic, and building use type
categories and increase the accuracy of a non-parametric
regression model that estimates the energy consumption
of a building stock in Seattle. The results show that adding
new features to the original dataset from the building use
type category increased the regression results with a 6.8%
less error and a 30.8% higher R? Score. Therefore, this
study shows that building energy consumption estimation
can be enhanced via new feature extraction equipped with
domain knowledge.

Introduction

Understanding the building stocks' energy demand in
cities has great importance since the buildings accounted
for 34% of the world’s overall energy consumption in
2021 (Buildings — Analysis - IEA, 2022). Such an energy
demand covering the embodied and operational
consumption of the buildings brings along a massive
carbon emission since the primary energy source of the
built environment is fossil fuels (2022 Global Status
Report for Buildings and Construction, 2022). Therefore,
great attention should be given to assessing the energy
performance of buildings. In this sense, data-driven
models can provide accurate consumption estimations
with computational efficiency (Hong et al., 2020). Data-
driven models are statistical models that seek a correlation
between energy-related features and energy consumption
of buildings from historical data. However, statistical
models are highly dependent on the existing data, and they
might malfunction when the data is not correctly recorded
or does not provide relevant information on building
energy consumption patterns. Thus, data-driven models
might require data enhancement.

Data enhancement can be interpreted in different ways.
For example, incorporating new features into a dataset
might improve the model training (Hancer, 2020). On the
contrary, some features might be redundant or misleading
in a dataset. Hence removing these features could benefit
the efficiency of the model training (Granell et al., 2022).
It is important to master the context and examine the
dataset in detail for feeding data-driven models with the
most efficient feature combinations. Adding new features
to a dataset can be done by processing the existing
features or extracting them from external datasets.

187

Modelers search for the hidden relationships between the
features to create new ones when the existing dataset is
used for feature extraction. Furthermore, external datasets
might be a good source of information when the existing
dataset lacks information.

The existing datasets in urban building energy modeling
practices frequently feel the deficiency of building-
specific information considering the diversity of the large
building stocks (Hong et al., 2020) and the practical and
legal challenges in data collection (Cerezo Davila,
Reinhart and Bemis, 2016). Hence, data-driven urban
building energy models can benefit from feature
extraction. It is important to comprehend the factors
affecting building energy demand to successfully perform
feature extraction. Thus, domain knowledge is a must
when enhancing datasets with new energy-related
information.

Using data-enhancing techniques, the research objective
of this study is to improve the accuracy of data-driven
models utilized in urban building energy consumption
estimation. To that end, a building stock in Seattle is
selected for a case study. The original dataset and external
datasets are utilized in feature extraction. In this sense,
climatic characteristics and demographic profiles of
neighborhoods, and building use type information are
used to derive new features. Various feature combinations
are then assessed (Table 3), and the buildings’ energy
consumption is estimated using a nonparametric
regression model. The contribution of the new features is
analyzed using regression evaluation metrics. Finally, the
achieved and potential improvements through feature
extraction are discussed.

Methodology

The original dataset is a building energy benchmarking
dataset available at Seattle Open Data (2020 Building
Energy Benchmarking | City of Seattle Open Data portal,
2021). This dataset includes 3628 building instances with
42 features, such as the address, use type, and energy
consumption details. Jupyter Notebook platform and
Scikit-learn library were used for coding purposes and
statistical analysis respectively. To enhance the quality of
the original dataset, new features within the climate,
demographics, and building use type categories will be
derived using external data sources.

Data Preprocessing

There are different building use types, such as residential
buildings, public facilities, and hospitals, in the dataset.
Some instances include more than one building in their
facilities that directly affects the total energy



consumption. Therefore, only the instances with one
building were selected as the first step of the
preprocessing. There were 3211 instances after removing
the missing and incorrect entries. Some columns were
considered redundant and thus removed. For example, the
city, state, and data year features are not necessary for the
analysis since all instances have the same entries: Seattle,
Washington, and 2020. Moreover, features, such as
Compliance Status and Total GHG Emissions were
discarded since they are the products of the total energy
consumption of a building. The target variable is the
normalized version of the building energy consumption
with the gross floor area. It is called Site Energy Use
Intensity (EUI) with a unit of kBtu/sf. The selected
features and the target variable are presented in the
original category in Table 1.

Table 1. Feature categories

Feature Category Features

Building Type

Zip Code

Latitude

Longitude

Year Built

Number of Floors

Property Gross Floor Area (sf)
Site EUI (kBtu/sf)

Original

Count of Parks
Elevation (ft.)
Rainfall (in.)
Snowfall (in.)

Climate

Median Home Cost ($)

Demographics Median Household Income ($)

ASHRAE Building Type
Occupancy Density (people/m2)
Lighting Density (W/m2)

WWR (%)

External Wall U-Value (W/m2-K)
EUI by Building Type (kBtu/sf)

Building Use Type

Deriving New Features

The features in the original dataset do not provide
reasonable correlations with the target variable. This
dataset mainly holds information about the final energy
consumption of buildings rather than parameters affecting
the energy consumption. This complicates deriving
relationships between the consumption and available
features, and thus creating data-driven models estimating
building energy demand. Therefore, the datasets need
more features that can help understanding patterns in
building energy demand. This study aims to derive new
features to improve the accuracy of building energy
consumption estimation. In this sense, the original and

188

external datasets were used to extract new features. All
features were collected under four main categories:
Original, Climate, Demographics, and Building Use Type
(Table 1).

Climate

Climate conditions have a huge impact on building energy
consumption since these conditions determine the demand
type (e.g., cooling or heating) and the envelope properties
of buildings (Zhou et al., 2020). Therefore, a set of
features were derived using external sources. The first
feature was the number of parks (green areas) in each
district. Seattle Open Data shares the counts of parks by
zip code (Seattle Parks and Recreation Park Addresses |
City of Seattle Open Data portal, 2016). Buildings’ zip
codes were utilized to determine the count of parks. The
next features were the elevation (ft.) and the annual
rainfall (in.) and snowfall (in.) information by zip code.
These features were obtained from an open-source
website of a private organization called Sperling's Best
Places (Seattle, Washington: 28 Zip Codes, 2023). The
buildings were assigned these features using the zip code
information.

Demographics

The geographical and demographic conditions of a
neighborhood might help us to estimate the building
energy consumption. For example, the wealth level of a
neighborhood might hold valuable insights into the
condition of buildings in that district. From here,
buildings’ age, renovation history, and maybe energy
characteristics can be derived. The aim was to question
whether the economic profiles of districts can be a good
descriptor for building energy efficiency. In this sense,
using an open-source mapping service called
ZipDataMaps (Seattle Washington ZIP Code Map, 2023),
the Median Home Cost ($) and Median Household
Income ($) features were assigned to the buildings by their
zip codes.

Building Use Type

There are two features related to building use types in the
original dataset. These are the Building Type and the
Primary Use of Property (EPA Property) features.
However, these features are not categorized well. The
Building Type feature includes only six classes, which are
low-rise, mid-rise, and high-rise multifamily apartments,
district schools, university campuses, and non-residentials
buildings. This feature categorizes most of the instances
in a very generalized way. For example, hospitals, office
buildings, and shopping malls are all in the non-
residential class. On the other hand, the Primary Use of
Property has 65 classes, and more than twenty of these
classes have only one or two entries. Such categorization
might complicate understanding the similar patterns
between the same building use types. Additionally, such
a large class number poses an obstacle to statistical
analysis. This is because each class of a categorical
feature must be presented as a single feature with zero or



one entry in the analysis since most machine learning
models can only work with numerical values. Considering
the building use type features in the original dataset were
either over-generalized or extra detailed, a new feature
named ASHRAE Building Type was created.

The U.S. Department of Energy (DOE) created prototype
commercial buildings across the country within a study
called Commercial Reference Buildings (Commercial
Reference Buildings, 2011). The prototype buildings were
created using historical data, regional characteristics, and
expert opinions in the study. These prototypes were
exposed to detailed computer energy simulations using
EnergyPlus with their energy-related properties, such as
envelope properties and occupancy loads. There is a pilot
city for each state to hold these energy-related properties
of buildings in the DOE’s study. Seattle is the selected city
that represents the commercial buildings in Washington
State. Hence, this study utilized the building templates of
Seattle.

The DOE classified buildings under 16 different use
types, including office buildings, schools, hospitals, and
residential apartments. These different use types were
used as a reference in creating the new feature ASHRAE
Building Type. In this sense, the original features
Building Type and Primary Use of Property were utilized
to first create main types. For example, entries with office,
financial office, and medical office were gathered under
the Office Class. The entries with hospitals, clinics, and
physical therapy centers were named hospitals. Similarly,
multifamily houses, lodging facilities, and residential care
facilities were collected under the Residential Class. After
labeling each building with a main type, the age, floor
number, and gross floor area features were used for
classifying the building according to its final use type. For
example, floor numbers were used to classify office
buildings under small, medium, and large offices.
Hospitals and outpatient healthcare facilities were
separated using the gross floor area information.

The aim was to place buildings into the classes in a way
that obtains the most similar characteristics in each class.
To that end, using the DOE’s study and considering the
original building types, 17 building use types were created
within the ASHRAE Building Type. There is a difference
in the number of use types between the original and
extracted use types. This is because there are no instances
in the original dataset that can be labeled as quick service
restaurants, which exists in the DOE’s study. Moreover,
the DOE’s study labels all residential apartments as mid-
rise apartments, where the number of floors varies
between 1 and 76 in the original dataset. Since it was
impossible to label each residential building as a mid-rise
apartment, three classes were created for the residential
apartments: Low-rise, Mid-rise, and High-rise. Table 2
illustrates the mean EUI of the buildings within each
ASHRE building type.

Using the DOE’s templates once again, five more features

were extracted covering the buildings’ occupancy
schedules, envelope properties, and consumption details.

189

The occupancy schedules were the Occupancy Density
(people/m2) and Lighting Density (W/m2). The features
Window-to-Wall Ratio (WWR (%)) and External Wall U-
Value (W/m2-K), which is the thermal transmittance
value of the external walls, were the envelope properties.
The final feature was EUI by Building Type (kBtu/sf)
which represents the annual energy consumption density
of prototype buildings. The DOE’s study determined such
densities by computer energy simulations with the
energy-related properties of the prototype buildings.
Therefore, each building in this study was assigned these
five features according to the ASHRAE Building Type
feature.

Table 2. EUI statistics by ASHRAE Building Type

ASHRAE Building ~ Mean of  Std. of Number of
Type EUI EUI Observations
i;ilz:lse‘:n 46 15.3 120
Hospital 196 14.1 3
Large Hotel 54.9 22.1 34
Large Office 51.9 25.1 92
Low-rise Apartment 34.1 14.8 989
Medium Office 64 67.9 227
Mid-rise Apartment 36.9 14.6 649
8;1:§atient Health 1318 74 5
Primary School 36.4 15 105
Restaurant 153.9 91.5 8
Secondary School 33.1 7.8 30
Small Hotel 50.2 20.4 50
Small Office 62.7 52.7 207
Stand Alone Retail 50.8 29.8 80
Strip Mall 70.8 53.8 15
Supermarket 201.4 943 37
Warehouse 32.6 273 183
Model Development

Estimating the energy consumption of buildings forms a
regression task with a continuous target variable called
Site Energy Use Intensity (EUI). The aim here is to
estimate the building energy consumption by analyzing
the available features and their relationships with the
target variable. However, the existing and generated
features do not provide a great correlation with the target
feature. This is because the existing dataset lacks some of
the most essential building energy-related parameters,
such as thermal transmittance value, air infiltration rate,
and properties of the mechanical systems (Wang et al.,
2020). Therefore, linear models might be insufficient to
understand the energy consumption patterns of the



buildings. Moreover, the features in the dataset are not
perfectly Gaussian or do not have a certain probability
distribution. In such cases, parametric models fail to
satisfy accurate estimations. This is because parametric
models assume a certain distribution for the features of a
dataset and estimate the parameters of that distribution
when making estimations (Alpaydin, 2020). On the other
hand, non-parametric models do not need a certain
probability distribution to make estimations (Alpaydin,
2020). These models analyze a small subset of instances
rather than the whole dataset and derive more complex
patterns from the data. Therefore, the non-linearity
provided by such models can represent the correlation
between the features and the target. It should be noted that
non-parametric models are computationally exhaustive
and prone to be overfitted since they aim to understand
complex patterns more than generalize the correlation
(Alpaydin, 2020). However, considering the low
correlation between the features and the target, the non-
parametric models can provide more effective regression
results than the linear models.

Table 3. Training scenarios

Scenario Combination of Feature Categories
S1 Original
S2 Original + Climate
S3 Original + Demographics
S4 Original + Building Use Type
S5 Original + Climate + Demographics
S6 Original + Climate + Building Use Type
$7 Original + Demographics + Building Use
Type
S8 Original + Climate + Demographics +

Building Use Type

In this sense, Random Forest Regressor was selected to
perform the building energy consumption estimation.
Random Forest Regressor is an ensemble learning method
utilizing many random estimators called Decision Trees
(1.11. Ensemble methods, 2023). A decision tree is an
algorithm that adopts a hierarchical order by splitting the
data with yes-no questions according to the features
(Alpaydin, 2020). Each split forms a binary decision
node, and, thus, sub-trees (Figure 1). For example, if a
random feature selected for the first split is the Year Built
and the arbitrary question is whether the buildings are
constructed before 1980, there will be two decision nodes
with buildings constructed before 1980 and the buildings
constructed after 1980. After each split, the nodes are
stretched and become more homogenous. Once a certain
homogeneity is achieved for a decision node, the model
stops separating the instances and creates the leaf nodes
with explicit estimation parameters. Assume that we
would like to estimate the error for a node m in a decision
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tree regression. If X is the whole dataset with features and
targets, x is an instance with multiple features, Ny, is the
number of instances reaching the node m, y is the target
variable (output), g is the model’s estimation which is the
average output of the instances on node m, and E is the
error function for node m, then the error is calculated
using Equation 1 (Alpaydin, 2020):
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The objective of the tree model is to minimize the overall
absolute difference between the targets and estimations
(Equation 1) covering each node. In Equation 1, the term
b takes the value of one if the instance x reaches the node
m and it takes zero otherwise. The split strategy is based
on a random process. The number of possible splits is
exponential with the feature numbers. Therefore, there
might be great variance between the results of the tree
models initiated with a different random seed. By
averaging the performance of these trees, however, the
Random Forest algorithm can converge fast and decrease
the variance in different tree estimations (Shalev-Shwartz
and Ben-David, 2014).

BUILDING TYPE
== Low-rise
Apartment
YES

BUILDING Decision :
AGE >= 1980 Node :
|

Figure 1. A decision tree structure with maximum tree depth of
three (3).

The Random Forest algorithm used in this study has a
hundred different Decision Tree Regressors with a
random splitting strategy. The forest regressor might
avoid overfitting since each tree within the forest utilizes
a different subset of data for training and test purposes.
The error function that the algorithm optimizes is the
mean absolute error. Another hyperparameter is the
maximum tree depth among all the trees in the forest
regressor. The maximum tree depth refers to the
maximum decision nodes of the branch that is extended



most in the whole tree (see, e.g., Figure 1). A validation
curve was used for determining the optimal tree depth. In
machine learning practices, the aim is to generalize the
correlation between the features and the target rather than
memorizing the existing dataset. This is because if a
machine learning model has a generalization capacity, it
can represent the population but not only the sample
space, which is the available dataset. Herein, the
validation curve helps us determine the optimal
hyperparameters of a model by observing the error or
accuracy change over different hyperparameter settings
on both the training and test data. Once the optimal
hyperparameters are selected, the model is trained using
the training set, and the model’s performance is evaluated
using the test set.

Different tree depths ranging between one and twenty
were evaluated within the validation curve. However, the
regression evaluation metrics utilized in the validation
curve should be first discussed to understand the
hyperparameter selection procedure. In this study, two
different regression metrics were employed: Coefficient
of Determination (R?) and Mean Absolute Percentage
Error (MAPE). R? Score is a metric that examines how
much the model outperforms the mean estimator
(Equation 2). This metric evaluates to what extent the
model explains the variance in target values using the
available features (Ross, 2020). MAPE is the mean
absolute difference between each actual (target) value and
the model’s estimation divided by the target value
(Equation 3). In brief, R? Score examines the model’s
generalization capacity, whereas MAPE analyzes the
model’s accuracy. Equation 2 and 3 denotes how to
calculate R? Score and MAPE, respectively, where X is
the whole dataset with features and targets, N is the total
number of instances, y is the target value, g is the model’s
estimation according to the instance x, and r is the mean
of the target values:

0t -gY
R2(y,g)=1-21 7~
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The validation curve was utilized over Scenario-1, having
only the original features (Table 3), for the consistency of
the model evaluation. This is because if the
hyperparameters are defined for Scenario-1 and fixed for
the rest of the scenarios with different feature
combinations, then the contribution of the generated
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features can be assessed. Figure 2 shows that increasing
the model complexity with larger tree depths could not
reduce the error after some point. This is the point where
the maximum tree depth is equal to six (6). Even though
the R? Score slightly increases after the depth of six, using
more complex models should be avoided. This is because
the model performs well on the training data since it starts
recognizing the training data with complex structures.
However, this behavior decreases the accuracy of the
model on the test set after a certain depth even with a
minor increase in the R? Score. Hence, the optimal value
for the maximum tree depth was defined as six (6)
according to the validation curves in Figure 2.

Q0.5

0.4

0.3]

0.2

01 // MAPE
— R2

2 4 3 16 18 20

§ 10 1z 14
Maximum Tree Depth
Figure 2. Validation curves for the test sets of Scenario-1: R?
Score vs. Maximum Tree Depth (blue curve) and MAPE vs.
Maximum Tree Depth (red curve).

To better illustrate the trade-off between the complexity
and generalization power of a regressor, several Random
Forest Regressors with different tree depths and a Linear
Regression model were trained, and their regression
performances were analyzed in Figure 3. The distribution
of the feature (Number of Floors) and the target variable
(Gross Floor Area in square feet) was scattered, and
different regressors were trained and tested over these
instances without a train-test-split in Figure 3.

The non-parametric regressors, which are the Random
Forest Regressors, distinguish easily from the Linear
Regression model as they fit the data points in more detail
according to Figure 3. However, as the tree depth
increases, these models tend to memorize the data and
thus lose their generalization capacity. This is problematic
because when new instances are introduced, the model
might not be able to make accurate estimations since it
recognizes the patterns in the training data rather than
generalizing them. Therefore, a random forest regressor
with a maximum tree depth of six (6) was used to assess
the scenarios (Table 3), including different feature
combinations according to the validation curves in Figure
2. The datasets were split into training and test sets to
prevent overfitting with 25% of the instances belonging to
the test set. This splitting strategy was repeated five times
to make sure the model utilizes each instance in both the



training and test sets. This helps obtain consistent and
general results because the model is trained over multiple
instance combinations rather than a single random
combination.

Linear Regression: e
R2=0.406 & MAPE=0.406
Random Farest Regression (max_depth=4): °
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Figure 3. Model performance vs. model complexity.

Results and Discussion

The complete regression results are given in Table 4.
Overall, the results show that the linear regression models
performed worse than the Random Forest Regressors for
each scenario in terms of both MAPE and R? Score. This
indicates the power of the nonparametric models in
handling datasets with low feature-target correlation and
features that contain irregular probability distributions.
The results suggest that Scenario-7 has the Ileast
regression error and the highest R?> Score. Scenario-7
provided 6.8% less MAPE and 30.8% higher R? Score
than Scenario-1, which is the baseline dataset with the
original features. Such improvement was provided by the
newly extracted features from the building use type and
demographics categories. However, it is evident that the
three best scenarios (Scenario-7, Scenario-4, and
Scenario-8) contain features from the building use type
category. Therefore, each feature’s contribution to the
regression results should be elaborated to better
understand the improvements achieved in the accuracy
and generalization power of the model through new
feature extraction. To that end, a Permutation Feature
Importance (PFI) function, which detects the singular
importance of features when training a regressor, was
used.

The PFI first calculates the score of a machine learning
model (main score) trained by a certain feature
combination. Then, it shuffles the instances of a selected
feature and re-calculates the model score according to the
selected feature (relative score). Finally, it determines the
feature’s importance by subtracting the relative score
from the main score. In brief, PFI determines the
importance of a feature by analyzing the effect of a change
in the feature’s order on the overall score (4.2.
Permutation feature importance, 2023). The relative score
can be determined by applying multiple shuffles. This
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ensures the PFI function covers many combinations of the
feature so the results can be more valid and general.

Table 4. Regression results

Model Scenario MAPE R? Score
Random Forest S7 0343 0.436
Regressor

Random Forest S4 0343 0431
Regressor

Random Forest S8 0.344 0436
Regressor

Random Forest 6 0.344 0.435
Regressor

Random Forest S 0411 0.128
Regressor

Random Forest S3 0.412 0135
Regressor

Random Forest S5 0.412 0.135
Regressor

Random Forest $ 0.413 0.130
Regressor

Linear Regression S7 0.439 0.422
Linear Regression S4 0.440 0.420
Linear Regression S6 0.441 0.422
Linear Regression S8 0.441 0.418
Linear Regression S2 0.534 0.155
Linear Regression S3 0.535 0.154
Linear Regression S1 0.537 0.155
Linear Regression S5 0.538 0.153

For example, if the main score of the model is s, the
relative score of a random feature j for each iteration k is
sk, then the importance of the feature i; is calculated using
Equation 4 (4.2. Permutation feature importance, 2023):

K

) 1

Lj —S_E Sk,j
k=1

MAPE (Equation-3) was selected as the scoring metric for
the PFI calculations. Scenario-7 was used for the PFI
evaluation since it outperformed the other scenarios.
Each feature of Scenario-7 was shuffled thirty (30) times
to obtain a general and reasonable understanding of its
importance. The permutation feature importance values
are given in Table 5. According to Table 5, the feature
EUI by Building Type (kBtu/sf) had a remarkable impact
on the regression results with a 19.2% change in the main
score. The rest of the features did not or barely impact the
regression results. For example, the features that exist in
the original category cumulatively resulted in a 10.6%
change in the main score. The other extracted features
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from the Building Use Type and Demographics categories
provided only a 2.1% change in the main score in total.
The expected contribution of the other features from the
building use type category (e.g., External Wall U-Value
(W/m2-K) and Occupancy Density (people/m2)) was
much higher since these features should represent the
patterns in building energy demand in theory. However, it
is understandable that there is not any decent variation in
the values of these features comprising each building with
its specific characteristics. To conclude, the 6.8% error
reduction in MAPE with a 30.8% increase in R? Score was
achieved after equipping the original dataset with mainly
the EUI by Building Type (kBtu/sf).

Table 5. Permutation Feature Importance (PFI)

Feature Name PFI

EUI by Building Type (kBtu/sf) 0.192
Year Built 0.037
Building Type 0.015
Longitude 0.013
Property Gross Floor Area (sf) 0.012
Latitude 0.011
Zip Code 0.009
Number of Floors 0.009
Occupancy Density (people/m2) 0.006
WWR (%) 0.004
ASHRAE Building Type 0.003
Median Home Cost ($) 0.003
Median Household Income ($) 0.003
Lighting Density (W/m2) 0.002
External Wall U-Value (W/m2-K) 0.001

This study has some limitations. The first one is the
deficiency of the original dataset to make reasonable
estimations or derive new features that might improve the
accuracy of regression. The original dataset is an energy
benchmarking dataset with almost no building energy-
related parameters, such as air infiltration ratio, structural
material, and occupancy features. Even though some
valuable features on the building use type category (Table
1) were added to the original dataset, the values here were
not specific to the recorded buildings, but they are rather
based on certain building types. Moreover, there is a great
variance in the energy consumption of buildings within
the same use type. Table 2 shows the mean and standard
deviation of the Site EUI by the classes in the feature
ASHRAE Building Type. Most of the building types have
a great variation in energy consumption in the original
dataset. Considering that the EUI is the normalized form
of the building energy consumption by the gross floor
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area, standard deviations close to the mean or greater than
the mean indicate a massive diversity in the dataset. Plus,
the distribution of the instances by ASHRAE Building
Type is highly imbalanced. For example, most instances
are low-rise apartments with 989 observations, whereas
there are only five outpatient healthcare facilities. Such an
imbalanced distribution hinders the model from
adequately generalizing each building type. This is
because the model is inclined to learn the patterns in the
building types with many observations (e.g., mid-rise
apartments). When testing the model’s performance, it is
likely to confront a low accuracy for the building types
with fewer observations (e.g., restaurants) since there is
not much training nor test instances.

All these dataset characteristics complicate obtaining
homogenous nodes with the same building types and thus
attaining similar consumption patterns. The building use
type is a feature that holds uncertainties about the
occupancy, age, envelope, and mechanical systems of
buildings. Well-organized and comprehensive databases
are the keys to reducing these uncertainties and
discovering the building energy characteristics.

The selection of the machine learning model forms
another limitation of this study. A non-parametric
regression model was selected due to the low correlation
raised from the original dataset and the irregular density
distribution of the features. However, the optimal
hyperparameters were defined by testing only Scenario-1
due to the computational capacity of the study. An
extensive hyperparameter tuning over each scenario
might yield better results in the future. Despite all these
difficulties, however, this study showed the potential of
increasing the accuracy of building energy consumption
estimation with the help of new feature extraction
utilizing internal and external data sources and domain
knowledge.

Conclusion

A building energy benchmarking dataset was used and
enhanced with new feature extraction in this study to
estimate the annual energy consumption of a building
stock in Seattle. Using the original dataset and external
sources of information, new features within the Climate,
Demographics, and Building Use Type categories were
created. A non-parametric machine learning model called
Random Forest Regressor was then trained over eight
scenarios with different feature combinations. The results
showed that Scenario-7 outperformed Scenario-1, which
is the baseline scenario, with a 6.8% decrease in MAPE
and a 30.8% increase in the R2 Score. Such improvements
were achieved through the integration of the new features
from the Demographics and Building Use Type
categories. After analyzing the features’ effect on the
building energy consumption, it was seen that the feature
EUI by Building Type (kBtu/sf) is the most critical feature
in the model’s estimation process. This outcome
underlines the importance of archetypes that represent



buildings with similar energy performance characteristics
in analyzing the energy demand of urban building stocks.

This study showed that feature extraction can be a good
choice for urban planners in estimating the energy
demand of building stocks in cities when the available
datasets do not allow for performing accurate estimation.
Similarly, this study addresses the abundance of external
information sources that can be associated with the
parameters affecting building energy performance. For
example, datasets regarding the building envelope
properties, climatic and geospatial data, and demographic
structure of the districts might preserve valuable insights
into the building materials or microclimate effect in the
neighborhoods. To that end, it might be possible to
integrate original datasets with highly correlated features
and improve the accuracy of the models estimating the
energy consumption of urban building stocks. A possible
future work could be collaborating with the municipalities
that can provide valuable datasets. In this way, the
performance of data-driven urban building energy models
can be enhanced.
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