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Abstract
Building energy demand assessment plays a crucial role 
in designing energy-efficient building stocks. However, 
most studies adopting a data-driven approach feel the 
deficiency of datasets with building-specific information 
in building energy consumption estimation. Hence, the 
research objective of this study is to extract new features 
within the climate, demographic, and building use type 
categories and increase the accuracy of a non-parametric 
regression model that estimates the energy consumption 
of a building stock in Seattle. The results show that adding 
new features to the original dataset from the building use 
type category increased the regression results with a 6.8% 
less error and a 30.8% higher R2 Score. Therefore, this 
study shows that building energy consumption estimation 
can be enhanced via new feature extraction equipped with 
domain knowledge.

Introduction
Understanding the building stocks' energy demand in 
cities has great importance since the buildings accounted 
for 34% of the world’s overall energy consumption in 
2021 (Buildings – Analysis - IEA, 2022). Such an energy 
demand covering the embodied and operational 
consumption of the buildings brings along a massive 
carbon emission since the primary energy source of the 
built environment is fossil fuels (2022 Global Status 
Report for Buildings and Construction, 2022). Therefore, 
great attention should be given to assessing the energy 
performance of buildings. In this sense, data-driven 
models can provide accurate consumption estimations 
with computational efficiency (Hong et al., 2020). Data-
driven models are statistical models that seek a correlation 
between energy-related features and energy consumption 
of buildings from historical data. However, statistical 
models are highly dependent on the existing data, and they 
might malfunction when the data is not correctly recorded 
or does not provide relevant information on building 
energy consumption patterns. Thus, data-driven models 
might require data enhancement.
Data enhancement can be interpreted in different ways. 
For example, incorporating new features into a dataset 
might improve the model training (Hancer, 2020). On the 
contrary, some features might be redundant or misleading 
in a dataset. Hence removing these features could benefit 
the efficiency of the model training (Granell et al., 2022). 
It is important to master the context and examine the 
dataset in detail for feeding data-driven models with the 
most efficient feature combinations. Adding new features 
to a dataset can be done by processing the existing 
features or extracting them from external datasets. 

Modelers search for the hidden relationships between the 
features to create new ones when the existing dataset is 
used for feature extraction. Furthermore, external datasets 
might be a good source of information when the existing 
dataset lacks information.
The existing datasets in urban building energy modeling 
practices frequently feel the deficiency of building-
specific information considering the diversity of the large 
building stocks (Hong et al., 2020) and the practical and 
legal challenges in data collection (Cerezo Davila, 
Reinhart and Bemis, 2016). Hence, data-driven urban 
building energy models can benefit from feature 
extraction. It is important to comprehend the factors 
affecting building energy demand to successfully perform 
feature extraction. Thus, domain knowledge is a must 
when enhancing datasets with new energy-related 
information.
Using data-enhancing techniques, the research objective 
of this study is to improve the accuracy of data-driven 
models utilized in urban building energy consumption 
estimation. To that end, a building stock in Seattle is 
selected for a case study. The original dataset and external 
datasets are utilized in feature extraction. In this sense, 
climatic characteristics and demographic profiles of 
neighborhoods, and building use type information are 
used to derive new features. Various feature combinations 
are then assessed (Table 3), and the buildings’ energy 
consumption is estimated using a nonparametric 
regression model. The contribution of the new features is 
analyzed using regression evaluation metrics. Finally, the 
achieved and potential improvements through feature 
extraction are discussed.

Methodology
The original dataset is a building energy benchmarking 
dataset available at Seattle Open Data (2020 Building 
Energy Benchmarking | City of Seattle Open Data portal, 
2021). This dataset includes 3628 building instances with 
42 features, such as the address, use type, and energy 
consumption details. Jupyter Notebook platform and 
Scikit-learn library were used for coding purposes and 
statistical analysis respectively. To enhance the quality of 
the original dataset, new features within the climate, 
demographics, and building use type categories will be 
derived using external data sources.

Data Preprocessing
There are different building use types, such as residential 
buildings, public facilities, and hospitals, in the dataset. 
Some instances include more than one building in their 
facilities that directly affects the total energy 



consumption. Therefore, only the instances with one 
building were selected as the first step of the 
preprocessing. There were 3211 instances after removing 
the missing and incorrect entries. Some columns were 
considered redundant and thus removed. For example, the 
city, state, and data year features are not necessary for the 
analysis since all instances have the same entries: Seattle, 
Washington, and 2020. Moreover, features, such as 
Compliance Status and Total GHG Emissions were 
discarded since they are the products of the total energy 
consumption of a building. The target variable is the 
normalized version of the building energy consumption 
with the gross floor area. It is called Site Energy Use 
Intensity (EUI) with a unit of kBtu/sf. The selected 
features and the target variable are presented in the 
original category in Table 1.

Table 1. Feature categories

Feature Category Features

Original

Building Type
Zip Code
Latitude
Longitude
Year Built
Number of Floors
Property Gross Floor Area (sf)
Site EUI (kBtu/sf)

Climate

Count of Parks
Elevation (ft.)
Rainfall (in.)
Snowfall (in.)

Demographics
Median Home Cost ($)
Median Household Income ($)

Building Use Type

ASHRAE Building Type
Occupancy Density (people/m2)
Lighting Density (W/m2)
WWR (%)
External Wall U-Value (W/m2-K)
EUI by Building Type (kBtu/sf)

Deriving New Features
The features in the original dataset do not provide 
reasonable correlations with the target variable. This 
dataset mainly holds information about the final energy 
consumption of buildings rather than parameters affecting 
the energy consumption. This complicates deriving
relationships between the consumption and available 
features, and thus creating data-driven models estimating 
building energy demand. Therefore, the datasets need 
more features that can help understanding patterns in 
building energy demand. This study aims to derive new 
features to improve the accuracy of building energy 
consumption estimation. In this sense, the original and 

external datasets were used to extract new features. All 
features were collected under four main categories: 
Original, Climate, Demographics, and Building Use Type 
(Table 1).

Climate
Climate conditions have a huge impact on building energy 
consumption since these conditions determine the demand 
type (e.g., cooling or heating) and the envelope properties 
of buildings (Zhou et al., 2020). Therefore, a set of 
features were derived using external sources. The first 
feature was the number of parks (green areas) in each 
district. Seattle Open Data shares the counts of parks by 
zip code (Seattle Parks and Recreation Park Addresses | 
City of Seattle Open Data portal, 2016). Buildings’ zip 
codes were utilized to determine the count of parks. The 
next features were the elevation (ft.) and the annual 
rainfall (in.) and snowfall (in.) information by zip code. 
These features were obtained from an open-source 
website of a private organization called Sperling's Best 
Places (Seattle, Washington: 28 Zip Codes, 2023). The 
buildings were assigned these features using the zip code 
information.

Demographics
The geographical and demographic conditions of a 
neighborhood might help us to estimate the building 
energy consumption. For example, the wealth level of a 
neighborhood might hold valuable insights into the 
condition of buildings in that district. From here, 
buildings’ age, renovation history, and maybe energy 
characteristics can be derived. The aim was to question 
whether the economic profiles of districts can be a good 
descriptor for building energy efficiency. In this sense, 
using an open-source mapping service called 
ZipDataMaps (Seattle Washington ZIP Code Map, 2023), 
the Median Home Cost ($) and Median Household 
Income ($) features were assigned to the buildings by their 
zip codes.

Building Use Type
There are two features related to building use types in the 
original dataset. These are the Building Type and the 
Primary Use of Property (EPA Property) features. 
However, these features are not categorized well. The 
Building Type feature includes only six classes, which are 
low-rise, mid-rise, and high-rise multifamily apartments, 
district schools, university campuses, and non-residentials 
buildings. This feature categorizes most of the instances 
in a very generalized way. For example, hospitals, office 
buildings, and shopping malls are all in the non-
residential class. On the other hand, the Primary Use of 
Property has 65 classes, and more than twenty of these 
classes have only one or two entries. Such categorization 
might complicate understanding the similar patterns 
between the same building use types. Additionally, such 
a large class number poses an obstacle to statistical 
analysis. This is because each class of a categorical
feature must be presented as a single feature with zero or 



one entry in the analysis since most machine learning 
models can only work with numerical values. Considering 
the building use type features in the original dataset were 
either over-generalized or extra detailed, a new feature 
named ASHRAE Building Type was created.
The U.S. Department of Energy (DOE) created prototype 
commercial buildings across the country within a study 
called Commercial Reference Buildings (Commercial 
Reference Buildings, 2011). The prototype buildings were 
created using historical data, regional characteristics, and 
expert opinions in the study. These prototypes were 
exposed to detailed computer energy simulations using 
EnergyPlus with their energy-related properties, such as 
envelope properties and occupancy loads. There is a pilot 
city for each state to hold these energy-related properties 
of buildings in the DOE’s study. Seattle is the selected city 
that represents the commercial buildings in Washington 
State. Hence, this study utilized the building templates of 
Seattle.
The DOE classified buildings under 16 different use 
types, including office buildings, schools, hospitals, and 
residential apartments. These different use types were 
used as a reference in creating the new feature ASHRAE 
Building Type. In this sense, the original features 
Building Type and Primary Use of Property were utilized 
to first create main types. For example, entries with office, 
financial office, and medical office were gathered under 
the Office Class. The entries with hospitals, clinics, and 
physical therapy centers were named hospitals. Similarly, 
multifamily houses, lodging facilities, and residential care 
facilities were collected under the Residential Class. After 
labeling each building with a main type, the age, floor 
number, and gross floor area features were used for 
classifying the building according to its final use type. For 
example, floor numbers were used to classify office 
buildings under small, medium, and large offices. 
Hospitals and outpatient healthcare facilities were 
separated using the gross floor area information.
The aim was to place buildings into the classes in a way 
that obtains the most similar characteristics in each class. 
To that end, using the DOE’s study and considering the 
original building types, 17 building use types were created 
within the ASHRAE Building Type. There is a difference 
in the number of use types between the original and 
extracted use types. This is because there are no instances 
in the original dataset that can be labeled as quick service 
restaurants, which exists in the DOE’s study. Moreover, 
the DOE’s study labels all residential apartments as mid-
rise apartments, where the number of floors varies 
between 1 and 76 in the original dataset. Since it was 
impossible to label each residential building as a mid-rise 
apartment, three classes were created for the residential 
apartments: Low-rise, Mid-rise, and High-rise. Table 2 
illustrates the mean EUI of the buildings within each 
ASHRE building type.
Using the DOE’s templates once again, five more features 
were extracted covering the buildings’ occupancy 
schedules, envelope properties, and consumption details. 

The occupancy schedules were the Occupancy Density 
(people/m2) and Lighting Density (W/m2). The features 
Window-to-Wall Ratio (WWR (%)) and External Wall U-
Value (W/m2-K), which is the thermal transmittance 
value of the external walls, were the envelope properties. 
The final feature was EUI by Building Type (kBtu/sf) 
which represents the annual energy consumption density 
of prototype buildings. The DOE’s study determined such 
densities by computer energy simulations with the 
energy-related properties of the prototype buildings. 
Therefore, each building in this study was assigned these 
five features according to the ASHRAE Building Type 
feature.

Table 2. EUI statistics by ASHRAE Building Type

ASHRAE Building 
Type

Mean of 
EUI

Std. of 
EUI

Number of 
Observations

High-rise 
Apartment

46 15.3 120

Hospital 196 14.1 3

Large Hotel 54.9 22.1 34

Large Office 51.9 25.1 92

Low-rise Apartment 34.1 14.8 989

Medium Office 64 67.9 227

Mid-rise Apartment 36.9 14.6 649
Outpatient Health 
Care 131.8 74 5

Primary School 36.4 15 105

Restaurant 153.9 91.5 8

Secondary School 33.1 7.8 30

Small Hotel 50.2 20.4 50

Small Office 62.7 52.7 207

Stand Alone Retail 50.8 29.8 80

Strip Mall 70.8 53.8 15

Supermarket 201.4 94.3 37

Warehouse 32.6 27.3 183

Model Development
Estimating the energy consumption of buildings forms a 
regression task with a continuous target variable called 
Site Energy Use Intensity (EUI). The aim here is to 
estimate the building energy consumption by analyzing 
the available features and their relationships with the 
target variable. However, the existing and generated 
features do not provide a great correlation with the target 
feature. This is because the existing dataset lacks some of 
the most essential building energy-related parameters, 
such as thermal transmittance value, air infiltration rate, 
and properties of the mechanical systems (Wang et al., 
2020). Therefore, linear models might be insufficient to 
understand the energy consumption patterns of the 



buildings. Moreover, the features in the dataset are not 
perfectly Gaussian or do not have a certain probability 
distribution. In such cases, parametric models fail to 
satisfy accurate estimations. This is because parametric 
models assume a certain distribution for the features of a 
dataset and estimate the parameters of that distribution 
when making estimations (Alpaydin, 2020). On the other 
hand, non-parametric models do not need a certain 
probability distribution to make estimations (Alpaydin, 
2020). These models analyze a small subset of instances 
rather than the whole dataset and derive more complex 
patterns from the data. Therefore, the non-linearity 
provided by such models can represent the correlation 
between the features and the target. It should be noted that 
non-parametric models are computationally exhaustive 
and prone to be overfitted since they aim to understand 
complex patterns more than generalize the correlation 
(Alpaydin, 2020). However, considering the low 
correlation between the features and the target, the non-
parametric models can provide more effective regression 
results than the linear models.

Table 3. Training scenarios

Scenario Combination of Feature Categories

S1 Original

S2 Original + Climate

S3 Original + Demographics

S4 Original + Building Use Type

S5 Original + Climate + Demographics

S6 Original + Climate + Building Use Type

S7
Original + Demographics + Building Use 
Type

S8 Original + Climate + Demographics + 
Building Use Type

In this sense, Random Forest Regressor was selected to 
perform the building energy consumption estimation. 
Random Forest Regressor is an ensemble learning method 
utilizing many random estimators called Decision Trees 
(1.11. Ensemble methods, 2023). A decision tree is an 
algorithm that adopts a hierarchical order by splitting the 
data with yes-no questions according to the features 
(Alpaydin, 2020). Each split forms a binary decision 
node, and, thus, sub-trees (Figure 1). For example, if a 
random feature selected for the first split is the Year Built 
and the arbitrary question is whether the buildings are 
constructed before 1980, there will be two decision nodes 
with buildings constructed before 1980 and the buildings 
constructed after 1980. After each split, the nodes are 
stretched and become more homogenous. Once a certain 
homogeneity is achieved for a decision node, the model 
stops separating the instances and creates the leaf nodes 
with explicit estimation parameters. Assume that we 
would like to estimate the error for a node m in a decision 

tree regression. If X is the whole dataset with features and 
targets, x is an instance with multiple features, Nm is the 
number of instances reaching the node m, y is the target 
variable (output), g is the model’s estimation which is the 
average output of the instances on node m, and E is the 
error function for node m, then the error is calculated 
using Equation 1 (Alpaydin, 2020):

(1)

The objective of the tree model is to minimize the overall 
absolute difference between the targets and estimations 
(Equation 1) covering each node. In Equation 1, the term 
b takes the value of one if the instance x reaches the node 
m and it takes zero otherwise. The split strategy is based 
on a random process. The number of possible splits is 
exponential with the feature numbers. Therefore, there 
might be great variance between the results of the tree 
models initiated with a different random seed. By 
averaging the performance of these trees, however, the 
Random Forest algorithm can converge fast and decrease 
the variance in different tree estimations (Shalev-Shwartz 
and Ben-David, 2014).

Figure 1. A decision tree structure with maximum tree depth of 
three (3).

The Random Forest algorithm used in this study has a 
hundred different Decision Tree Regressors with a 
random splitting strategy. The forest regressor might 
avoid overfitting since each tree within the forest utilizes 
a different subset of data for training and test purposes. 
The error function that the algorithm optimizes is the 
mean absolute error. Another hyperparameter is the 
maximum tree depth among all the trees in the forest 
regressor. The maximum tree depth refers to the 
maximum decision nodes of the branch that is extended 



most in the whole tree (see, e.g., Figure 1). A validation 
curve was used for determining the optimal tree depth. In 
machine learning practices, the aim is to generalize the 
correlation between the features and the target rather than 
memorizing the existing dataset. This is because if a 
machine learning model has a generalization capacity, it 
can represent the population but not only the sample 
space, which is the available dataset. Herein, the 
validation curve helps us determine the optimal 
hyperparameters of a model by observing the error or 
accuracy change over different hyperparameter settings 
on both the training and test data. Once the optimal 
hyperparameters are selected, the model is trained using 
the training set, and the model’s performance is evaluated 
using the test set.
Different tree depths ranging between one and twenty 
were evaluated within the validation curve. However, the 
regression evaluation metrics utilized in the validation 
curve should be first discussed to understand the 
hyperparameter selection procedure. In this study, two 
different regression metrics were employed: Coefficient 
of Determination (R2) and Mean Absolute Percentage 
Error (MAPE). R2 Score is a metric that examines how 
much the model outperforms the mean estimator 
(Equation 2). This metric evaluates to what extent the 
model explains the variance in target values using the 
available features (Ross, 2020). MAPE is the mean 
absolute difference between each actual (target) value and 
the model’s estimation divided by the target value 
(Equation 3). In brief, R2 Score examines the model’s 
generalization capacity, whereas MAPE analyzes the 
model’s accuracy. Equation 2 and 3 denotes how to 
calculate R2 Score and MAPE, respectively, where X is 
the whole dataset with features and targets, N is the total 
number of instances, y is the target value, g is the model’s 
estimation according to the instance x, and r is the mean 
of the target values:

(2)

(3)

The validation curve was utilized over Scenario-1, having 
only the original features (Table 3), for the consistency of 
the model evaluation. This is because if the 
hyperparameters are defined for Scenario-1 and fixed for 
the rest of the scenarios with different feature
combinations, then the contribution of the generated 

features can be assessed. Figure 2 shows that increasing 
the model complexity with larger tree depths could not 
reduce the error after some point. This is the point where 
the maximum tree depth is equal to six (6). Even though 
the R2 Score slightly increases after the depth of six, using 
more complex models should be avoided. This is because 
the model performs well on the training data since it starts 
recognizing the training data with complex structures. 
However, this behavior decreases the accuracy of the 
model on the test set after a certain depth even with a 
minor increase in the R2 Score. Hence, the optimal value 
for the maximum tree depth was defined as six (6) 
according to the validation curves in Figure 2.

Figure 2. Validation curves for the test sets of Scenario-1: R2

Score vs. Maximum Tree Depth (blue curve) and MAPE vs. 
Maximum Tree Depth (red curve).

To better illustrate the trade-off between the complexity 
and generalization power of a regressor, several Random 
Forest Regressors with different tree depths and a Linear 
Regression model were trained, and their regression 
performances were analyzed in Figure 3. The distribution 
of the feature (Number of Floors) and the target variable 
(Gross Floor Area in square feet) was scattered, and 
different regressors were trained and tested over these 
instances without a train-test-split in Figure 3.
The non-parametric regressors, which are the Random 
Forest Regressors, distinguish easily from the Linear 
Regression model as they fit the data points in more detail 
according to Figure 3. However, as the tree depth 
increases, these models tend to memorize the data and 
thus lose their generalization capacity. This is problematic 
because when new instances are introduced, the model 
might not be able to make accurate estimations since it 
recognizes the patterns in the training data rather than 
generalizing them. Therefore, a random forest regressor 
with a maximum tree depth of six (6) was used to assess 
the scenarios (Table 3), including different feature 
combinations according to the validation curves in Figure 
2. The datasets were split into training and test sets to 
prevent overfitting with 25% of the instances belonging to 
the test set. This splitting strategy was repeated five times 
to make sure the model utilizes each instance in both the 



training and test sets. This helps obtain consistent and 
general results because the model is trained over multiple 
instance combinations rather than a single random 
combination.

Figure 3. Model performance vs. model complexity.

Results and Discussion
The complete regression results are given in Table 4. 
Overall, the results show that the linear regression models 
performed worse than the Random Forest Regressors for 
each scenario in terms of both MAPE and R2 Score. This 
indicates the power of the nonparametric models in 
handling datasets with low feature-target correlation and 
features that contain irregular probability distributions. 
The results suggest that Scenario-7 has the least 
regression error and the highest R2 Score. Scenario-7
provided 6.8% less MAPE and 30.8% higher R2 Score 
than Scenario-1, which is the baseline dataset with the 
original features. Such improvement was provided by the 
newly extracted features from the building use type and 
demographics categories. However, it is evident that the 
three best scenarios (Scenario-7, Scenario-4, and 
Scenario-8) contain features from the building use type 
category. Therefore, each feature’s contribution to the 
regression results should be elaborated to better 
understand the improvements achieved in the accuracy 
and generalization power of the model through new 
feature extraction. To that end, a Permutation Feature 
Importance (PFI) function, which detects the singular 
importance of features when training a regressor, was 
used.
The PFI first calculates the score of a machine learning 
model (main score) trained by a certain feature 
combination. Then, it shuffles the instances of a selected 
feature and re-calculates the model score according to the 
selected feature (relative score). Finally, it determines the 
feature’s importance by subtracting the relative score 
from the main score. In brief, PFI determines the 
importance of a feature by analyzing the effect of a change 
in the feature’s order on the overall score (4.2. 
Permutation feature importance, 2023). The relative score 
can be determined by applying multiple shuffles. This 

ensures the PFI function covers many combinations of the 
feature so the results can be more valid and general.

Table 4. Regression results

Model Scenario MAPE R2 Score

Random Forest 
Regressor

S7 0.343 0.436

Random Forest 
Regressor

S4 0.343 0.431

Random Forest 
Regressor S8 0.344 0.436

Random Forest 
Regressor

S6 0.344 0.435

Random Forest 
Regressor S1 0.411 0.128

Random Forest 
Regressor S3 0.412 0.135

Random Forest 
Regressor

S5 0.412 0.135

Random Forest 
Regressor S2 0.413 0.130

Linear Regression S7 0.439 0.422

Linear Regression S4 0.440 0.420

Linear Regression S6 0.441 0.422

Linear Regression S8 0.441 0.418

Linear Regression S2 0.534 0.155

Linear Regression S3 0.535 0.154

Linear Regression S1 0.537 0.155

Linear Regression S5 0.538 0.153

For example, if the main score of the model is s, the 
relative score of a random feature j for each iteration k is 
sk,j, then the importance of the feature ij is calculated using 
Equation 4 (4.2. Permutation feature importance, 2023):

(4)

MAPE (Equation-3) was selected as the scoring metric for 
the PFI calculations. Scenario-7 was used for the PFI 
evaluation since it outperformed the other scenarios.  
Each feature of Scenario-7 was shuffled thirty (30) times 
to obtain a general and reasonable understanding of its 
importance. The permutation feature importance values 
are given in Table 5. According to Table 5, the feature 
EUI by Building Type (kBtu/sf) had a remarkable impact 
on the regression results with a 19.2% change in the main 
score. The rest of the features did not or barely impact the 
regression results. For example, the features that exist in 
the original category cumulatively resulted in a 10.6% 
change in the main score. The other extracted features 



from the Building Use Type and Demographics categories 
provided only a 2.1% change in the main score in total. 
The expected contribution of the other features from the 
building use type category (e.g., External Wall U-Value 
(W/m2-K) and Occupancy Density (people/m2)) was
much higher since these features should represent the 
patterns in building energy demand in theory. However, it 
is understandable that there is not any decent variation in 
the values of these features comprising each building with 
its specific characteristics. To conclude, the 6.8% error 
reduction in MAPE with a 30.8% increase in R2 Score was 
achieved after equipping the original dataset with mainly 
the EUI by Building Type (kBtu/sf).

Table 5. Permutation Feature Importance (PFI)

Feature Name PFI

EUI by Building Type (kBtu/sf) 0.192

Year Built 0.037

Building Type 0.015

Longitude 0.013

Property Gross Floor Area (sf) 0.012

Latitude 0.011

Zip Code 0.009

Number of Floors 0.009

Occupancy Density (people/m2) 0.006

WWR (%) 0.004

ASHRAE Building Type 0.003

Median Home Cost ($) 0.003

Median Household Income ($) 0.003

Lighting Density (W/m2) 0.002

External Wall U-Value (W/m2-K) 0.001

This study has some limitations. The first one is the 
deficiency of the original dataset to make reasonable 
estimations or derive new features that might improve the 
accuracy of regression. The original dataset is an energy 
benchmarking dataset with almost no building energy-
related parameters, such as air infiltration ratio, structural 
material, and occupancy features. Even though some 
valuable features on the building use type category (Table 
1) were added to the original dataset, the values here were 
not specific to the recorded buildings, but they are rather 
based on certain building types. Moreover, there is a great 
variance in the energy consumption of buildings within 
the same use type. Table 2 shows the mean and standard 
deviation of the Site EUI by the classes in the feature 
ASHRAE Building Type. Most of the building types have 
a great variation in energy consumption in the original 
dataset. Considering that the EUI is the normalized form 
of the building energy consumption by the gross floor 

area, standard deviations close to the mean or greater than 
the mean indicate a massive diversity in the dataset. Plus, 
the distribution of the instances by ASHRAE Building 
Type is highly imbalanced. For example, most instances 
are low-rise apartments with 989 observations, whereas 
there are only five outpatient healthcare facilities. Such an 
imbalanced distribution hinders the model from 
adequately generalizing each building type. This is 
because the model is inclined to learn the patterns in the 
building types with many observations (e.g., mid-rise 
apartments). When testing the model’s performance, it is 
likely to confront a low accuracy for the building types 
with fewer observations (e.g., restaurants) since there is 
not much training nor test instances.
All these dataset characteristics complicate obtaining 
homogenous nodes with the same building types and thus 
attaining similar consumption patterns. The building use 
type is a feature that holds uncertainties about the 
occupancy, age, envelope, and mechanical systems of 
buildings. Well-organized and comprehensive databases 
are the keys to reducing these uncertainties and 
discovering the building energy characteristics.
The selection of the machine learning model forms 
another limitation of this study. A non-parametric 
regression model was selected due to the low correlation 
raised from the original dataset and the irregular density 
distribution of the features. However, the optimal 
hyperparameters were defined by testing only Scenario-1
due to the computational capacity of the study. An 
extensive hyperparameter tuning over each scenario 
might yield better results in the future. Despite all these 
difficulties, however, this study showed the potential of 
increasing the accuracy of building energy consumption 
estimation with the help of new feature extraction 
utilizing internal and external data sources and domain 
knowledge.

Conclusion
A building energy benchmarking dataset was used and 
enhanced with new feature extraction in this study to 
estimate the annual energy consumption of a building 
stock in Seattle. Using the original dataset and external 
sources of information, new features within the Climate, 
Demographics, and Building Use Type categories were 
created. A non-parametric machine learning model called 
Random Forest Regressor was then trained over eight 
scenarios with different feature combinations. The results 
showed that Scenario-7 outperformed Scenario-1, which 
is the baseline scenario, with a 6.8% decrease in MAPE 
and a 30.8% increase in the R2 Score. Such improvements 
were achieved through the integration of the new features 
from the Demographics and Building Use Type 
categories. After analyzing the features’ effect on the 
building energy consumption, it was seen that the feature 
EUI by Building Type (kBtu/sf) is the most critical feature 
in the model’s estimation process. This outcome 
underlines the importance of archetypes that represent 



buildings with similar energy performance characteristics 
in analyzing the energy demand of urban building stocks.
This study showed that feature extraction can be a good 
choice for urban planners in estimating the energy 
demand of building stocks in cities when the available 
datasets do not allow for performing accurate estimation. 
Similarly, this study addresses the abundance of external 
information sources that can be associated with the 
parameters affecting building energy performance. For 
example, datasets regarding the building envelope 
properties, climatic and geospatial data, and demographic 
structure of the districts might preserve valuable insights 
into the building materials or microclimate effect in the 
neighborhoods. To that end, it might be possible to 
integrate original datasets with highly correlated features 
and improve the accuracy of the models estimating the 
energy consumption of urban building stocks. A possible 
future work could be collaborating with the municipalities 
that can provide valuable datasets. In this way, the 
performance of data-driven urban building energy models 
can be enhanced.
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