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Abstract
Digital twins have the potential to leverage AI in 
buildings. The quality of AI algorithms is dependent on 
the quality of the input data and its preprocessing. This 
paper discusses the potential of using semantic web 
technologies in preprocessing tasks. After reviewing
state-of-the-art initiatives in this field, a data integration 
method is introduced based on semantic web 
technologies. This integrated data is used in approaches to 
find outliers and missing values in time series data and in 
two semantic similarity-based imputation methods. The 
paper shows that semantic web technologies can enhance 
preprocessing tasks, by applying both explicit and implicit 
reasoning. 

Introduction
Construction digital twins have the potential to take 
artificial intelligence (AI) in the construction industry to 
a next level (Boje et al., 2020). Leveraging AI could lead 
to better simulations of our buildings, potentially leading 
to predictions and optimization of systems in the built 
environment. Solutions to improve building energy use 
and indoor comfort, detect operational inefficiencies and 
HVAC (heating, ventilation and air conditioning) failures, 
understanding occupant behavior, and improving safety 
and scheduling are within reach (Petrova et al., 2019; Boje 
et al., 2020). 
Various authors mention data interoperability as a 
requirement to reach this potential and mention semantic 
web technologies as a solution (Pauwels, Zhang and Lee, 
2017; Boje et al., 2020). Gary Marcus (2020) boldly states 
that semantic models are a requirement for robust 
intelligence, and that AI systems should be able to reason 
over cognitive models of our real world in order to draw 
knowledge and be reliable. 
Recent research initiatives followed the claims of Marcus 
and used semantic web technologies to support AI in the 
construction industry. Petrova et al. (2019) used data 
mining techniques to find patterns in indoor sensor data. 
Esnaola-Gonzalez et al. (2018) applied data mining to 
predict future indoor temperature states. Semantic web 
technologies were applied in data selection, 
preprocessing, and transformation stages.

The quality of AI models is dependent on the quality of 
the data that we feed them. Data preparation is therefore 
an important, but also time-consuming task (Perez-Rey, 
Anguita and Crespo, 2006). Kang (2013) lists various 
techniques for handling missing data. These range from 
simple deletion (listwise deletion, pairwise deletion) to 
simple imputation (mean substitution, regression 
imputation, last observation carried forward) to more 
complex imputation methods (maximum likelihood, 
expectation-maximization, multiple imputation, and 
sensitivity analysis). As Kang (2013) mentions, these data 
preparation methods require expert knowledge about the 
specific system and its context. Especially in the 
architecture and construction industry, typified as a mass 
customization industry, a single piece of code is not likely 
to provide accurate data preparation results. Buildings are 
unique objects, causing the context of sensors to be 
different from case to case. Simultaneously, sensors, 
databases, and end-user applications differ per building, 
resulting in a wide range of protocols that need to be 
understood by the expert. Paradoxically, while the 
cleaning process requires expert knowledge, the 
development of IoT systems causes data in the built 
environment to come in growing volumes, making it 
harder for experts to understand and process this data.
In this work, we aim to find the potential of using 
semantic web technologies in the data preparation phase. 
The work specifically focuses on three practical tasks: 1. 
What values in the time series database are missing 
values? 2. What values in the time series database are 
outliers? 3. By what values should those missing values 
and outliers be replaced?
The paper starts with reviewing related work, after which 
the data integration method is presented. Sections 4 and 5 
respectively present methods to find missing values and 
outliers. Section 6 presents a method to replace these 
values based on semantic similarity, after which this paper 
ends with a discussion and conclusion.

Related work
Semantic web and data preprocessing
Fayyad et al. (1996) described a five-step model for 
knowledge discovery in databases: 1. Selection, 2. 



Preprocessing, 3. Transformation, 4. Data mining, and 5. 
Evaluation and interpretation. There has been an uptake 
in research aiming to combine semantic web technologies 
with preprocessing tasks, as covered by the literature 
review of Ristoski and Paulheim (2016). They found that 
ontologies can help in performing preprocessing tasks, 
such as data validity checks and data cleaning, and 
categorized these ontologies into two groups. The first 
category contains domain-independent specifications for 
preprocessing tasks. The second category contains 
domain-specific knowledge that can be used to reason on 
how to preprocess data. 
Perez-Rey et al. (2006) created the OntoDataClean 
ontology to represent a generic, domain-independent 
model for data preprocessing in the semantic web. Every 
data source in the knowledge graph is linked to an 
instance of the CleaningModel-class, which then 
explicitly describes how that data source should be 
cleaned in case of a missing value. 
Gao et al. (2013) used their Correlated Environmental 
Sensor Properties ontology to manually add information 
about the correlation between two sensor properties. They 
could for example model that the temperature of a space 
is strongly correlated to the relative humidity of that 
space. This information is then queried and combined 
with the physical distance between two sensors to find 
sensors that are neighboring and correlated. Outliers and 
suspicious values are detected by comparing sensor 
streams with the streams of those similar sensors. 
The SemOD framework (Esnaola-Gonzalez et al., 2017)
also aims to find suspicious sensor values by reusing 

information from knowledge graphs. Contextual 
information about the sensors, in this case the solar 
radiation of an outdoor temperature sensor, is added to the 
knowledge graph. Compared to Gao et al. (2013), SemOD 
(Esnaola-Gonzalez et al., 2017) aims to be more 
expressive in identifying the root cause of the outlier by 
using different types of information than just physical 
distance and correlation. Rules to find outliers are then 
transformed into SPARQL queries that return outliers 
based on the information in the knowledge graph.
Esnaola-Gonzalez et al. (2021) argue that the performance 
of machine learning methods to impute data decreases if 
they are used outside their training environments, and that 
the capabilities of semantic web technologies to create 
structured representations of metadata can improve 
imputation methods. They proposed a semantics-based 
data imputation approach to replace missing values. An 
office room is represented using the BOT (Rasmussen et 
al., 2020) ontology and time-series data is converted to 
RDF (resource description framework) using SOSA/SSN 
(Janowicz et al., 2019). Missing values of a sensor are 
replaced by values of the most similar sensor. The 
similarity is calculated based on physical distance and the 
hosting building element of the sensor.
Some of the examples in this section require transforming 
time series data into RDF triples. Fürber and Hepp (2013)
argue that this adds complexity to the preprocessing stage, 
while earlier research (Esnaola-Gonzalez and Javier Diez, 
2019; Petrova et al., 2019) argues that time series data 
should be stored in time series databases for performance 
reasons. 

Figure 1: Structure of the knowledge graph



Semantic web and building information
Integrating data in the construction industry is a 
challenge. It typically requires integrating cross-domain 
knowledge from multiple stakeholders that speak their 
own domain language, produce files in different software 
packages, and store them in different locations. The de 
facto standard for Building Information Models (BIM), 
IFC (Industry Foundation Classes), is limited in its data 
integration capabilities (Pauwels, Zhang and Lee, 2017). 
In response to data integration challenges similar to those 
in BIM, semantic web technologies are proposed as a 
solution, first introduced by Tim Berners-Lee (Berners-
Lee, Hendler and Lassila, 2001). In the semantic web, 
information is structured as triples following the resource 
description framework (RDF) model. Multiple RDF 
graphs can be linked with each other, eventually resulting 
in a web of data. Data in this web can be classified using 
ontologies, that give a semantic meaning and structure to 
the data.
Since the introduction of the semantic web, various 
initiatives took place to represent building information 
using semantic web technologies (Pauwels, Zhang and 
Lee, 2017). This led to the development of a central 
ontology for the AEC sector, the ifcOWL ontology 
(Pauwels and Terkaj, 2016). Critiques on this ontology – 
it being too complex, difficult to extend – were answered 
by the development of a range of smaller domain 
ontologies, capturing for example a building’s topology 
(Rasmussen et al., 2020), static and dynamic properties 
(Donkers et al., 2022), and geometry (Wagner et al., 
2019). 

Methodology 
To test our approach, a digital representation of a 
residential building is created using semantic web 
technologies. Figure 1 shows a simplified representation 
of the semantic representation and Figure 2 shows a
graphical summary of how the data are integrated and 
used in this paper. The building – the Open Family Home 
– is created using Revit 2020 and converted to RDF 
Turtle, based on methods presented in earlier work 
(Donkers et al., 2021). It follows the BOT (Rasmussen et 
al., 2020) and BOP (Donkers et al., 2022) ontologies to 
represent the buildings’ topology and static and dynamic 
properties, respectively. Indoor environmental quality 
parameters (temperature, relative humidity, CO2, indoor 
air quality, and illuminance) were measured for 4 weeks 
in January and February 2022 with a frequency of one 
measurement per minute. The sensor data is stored in an 
InfluxDB cloud storage, and basic metadata of this 
storage is added to the knowledge graph to automatically 
identify the right data point in the InfluxDB database.
The core topological nodes of the building are enriched 
with DBPedia (a linked open data encyclopedia) 
resources. This enrichment can be used to perform 

1 https://www.w3.org/ns/ssn/systems/

human-like reasoning. As DBPedia is an open-source 
knowledge graph, multiple stakeholders in multiple 
projects can link concepts to the same DBPedia resources, 
so that queries can be reused in the future. In this work, 
we reused location information from DBPedia.
The sensor nodes in the knowledge graph are extended 
with system capabilities provided by the manufacturer. To 
do so, the ssn-system ontology1 was reused. The ontology 
introduces concepts to describe a range of system 
capabilities, such as measurement range, resolution, 
frequency, and drift. 

Figure 2: Graphical summary of the research method

Results
Missing value detection
Sensors and databases have different methods to represent 
missing values (or null values). This adds complexity to 
the preprocessing phase, as the data scientist (or 
algorithm) should know this representation before 
processing these specific values. The architecture of 
systems and databases is different for most projects, 
which is why simple filters to find null values require 
manual input from the data scientist. This information can 
however be stored in the knowledge graph, so that data 
scientists can query that information and feed this into 
their algorithms. Figure 1 shows how the null value 
representation of a sensor can be added to the graph by 
using a simple datatype property. Listing 2 queries this 
representation using SPARQL, after which it can be used 
to automatically find the null values from a specific 
sensor. Similar to adding a null value representation to the 
sensor, one could also add this information to (or deduce 
it from) the data point node in the graph, as databases 
might also have their own representation of null values.  



The explicit reasoning-based missing value detection 
requires that the database contains a timestamp with a 
missing value representation. In case of communication 
failures, sensors might not be able to communicate with a 
database at all, possibly causing a gap in the timestamps. 
The previously introduced approach will not be sufficient 
in those cases.
To find whether there should be a value at a certain 
timestamp, we can perform implicit reasoning using the 
information in the knowledge graph. Listing 1 shows how 
the frequency of a sensor can be queried using SPARQL. 
Using this frequency, one could identify gaps in a time 
series stream. Consider the time series data in Listing 2. 
Based on the frequency of this sensor (Figure 1) and the 
type of sensor, we would expect data at 14:04 and 14:05. 
In this implicit reasoning-based missing value detection, 
we calculate the time difference of two consecutive time 
series measurements. If this time difference is two or more 
times the sensor’s frequency, we are expecting missing 
data points. Algorithms can then impute new timestamps 
by taking the timestamp before the gap (14:03 in Listing 
2) and adding timestamps based on the queried frequency 
until it reaches the timestamp after the gap (14:06 in 
Listing 2). 
PREFIX OFH: 
<http://github.com/AlexDonkers/OpenFamilyHome#>
PREFIX bop: <https://w3id.org/bop#> 
PREFIX ssn-system: 
<http://www.w3.org/ns/ssn/systems/> 
SELECT * WHERE { 
    OFH:Kitchen bop:hasProperty ?property .
    ?property a quantitykind:Temperature .
    ?property bop:isObservedBy ?sensor .
    ?sensor ssn-system:hasSystemProperty ?range , 
        ?frequency .
    ?sensor bop:hasNullValueRepresentation 
        ?nullValueRepresentation .
    ?range bop:hasSimpleMinimum |
        bop:hasSimpleMaximum ?rangeValue .

?frequency a ssn-system:Frequency .
    ?frequency bop:hasSimpleResult ?frequencyValue . 
}

Listing 1: Querying the measurement range and null value 
representation of a temperature sensor using SPARQL

2022-11-23T14:02:00Z 183.1 KitchenIlluminanceSensor1
2022-11-23T14:03:00Z 188.3 KitchenIlluminanceSensor1
2022-11-23T14:06:00Z 186.1 KitchenIlluminanceSensor1
2022-11-23T14:07:00Z 197.2 KitchenIlluminanceSensor1

Listing 2: Time series data containing two missing values

Outlier detection
A data scientist can classify a value as an outlier because 
it is technically impossible, or because it is very unlikely 
given the context of the sensor. This section aims to tackle 
both challenges using the available data in the RDF graph. 
Sensor systems are typically designed to only measure 
values between a certain measurement range. This range 
can be explicitly described in the knowledge graph using 
the ssn-system ontology. This measurement range 
contains a minimum and maximum value. Listing 1 shows 
how these values can be queried using SPARQL. 
Next to applying explicit reasoning to find outliers, 
knowledge graphs enable implicit reasoning to apply 
more complex knowledge patterns. In practice, experts 
might classify values as outliers not only based on the 
system boundaries but also based on expert knowledge. 
For example, a certain temperature sensor might 
technically be able to measure temperatures between -30 
and 50 °C, but if this sensor measures the temperature of 
an indoor space in a residential building in the 
Netherlands, this technical range is way larger than the 
reasonable range of values that we can expect. Experts, 
therefore, use the available contextual information to 
determine if a value is reasonable.
Listing 3 and Listing 4 show how implicit reasoning based 
on contextual information can be used to filter out 
outliers. Listing 3 first selects all sensors that observe the 
temperature in a residential building in the Netherlands 
and adds a new custom measurement range to these 
sensors. This custom range can then be queried using 
SPARQL (Figure 2) and inserted in a Flux query (Listing 
4) using a filter function, to only query the values that fall 
within this range. 
Figure 3 shows the result of both the missing value 
detection and outlier detection on a temperature data 
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stream, measured in the Open Family Home. Both the 
outliers and missing values are removed based on the 
information in the knowledge graph. 
 

PREFIX OFH: 
<http://github.com/AlexDonkers/OpenFamilyHome#> 
PREFIX bot: <https://w3id.org/bot#> 
PREFIX ssn-system: 
<http://www.w3.org/ns/ssn/systems/> 
PREFIX bop: <https://w3id.org/bop#> 
PREFIX quantitykind: 
<http://qudt.org/vocab/quantitykind/> 
PREFIX dbo: <https://dbpedia.org/ontology/> 
PREFIX dbr: <https://dbpedia.org/resource/> 
INSERT { 
    ?sensor ssn-system:hasSystemProperty  
        OFH:CustomRange . 
    OFH:CustomRange rdf:type ssn-system:Range,  
        bop:Property , ssn-system:CustomRange. 
    OFH:CustomRange bop:hasSimpleMinimum "10" . 
    OFH:CustomRange bop:hasSimpleMaximum "30" . 
} WHERE { 
    ?property bop:isObservedBy ?sensor . 
    ?property a quantitykind:Temperature . 
    ?sensor bop:isHostedBy ?host . 
    ?zone bot:containsElement ?host . 
    ?building bot:hasSpace ?zone . 
    ?building a dbr:House . 
    ?site bot:hasBuilding ?building . 
    ?site dbo:location dbr:Netherlands .  
} 

Listing 3: Insert a custom range for temperature sensors in 
residential buildings in the Netherlands 

 

from(bucket: "?database") 
    |> range(start: v.timeRangeStart, stop:  
        v.timeRangeStop) 
    |> filter(fn: (r) => r["_measurement"] ==  
        "?dataPoint") 
    |> filter(fn: (r) => r._value > ?minRange) 
    |> filter(fn: (r) => r._value < ?maxRange) 
Listing 4: Query data within the new custom range using Flux 

 

Semantic similarity-based imputation 
After finding the missing values and outliers, the 
knowledge graph is used to replace those values with 
more realistic ones. Two methods are proposed: the 
semantic similarity approach and the semantic shape 
follower approach. In both methods, values are replaced 
based on the values of similar sensors. To find those 
similar sensors, a predication-based semantic indexing 
(PSI) (Cohen, Schvaneveldt and Rindflesch, 2009) 
algorithm was applied in GraphDB. In PSI, semantic 
predications are encoded based on the information in the 
knowledge graph and presented in a vector space. PSI 
creates a vector for each entity in the graph and uses these 

vectors to calculate similarity. Four training cycles were 
performed to improve the outcome of the predictions. 
Table 1 shows the results of the similarity search when 
searching for similar objects as 
OFH:KitchenIlluminanceSensor1. The location of the 
five sensors is visible in Figure 1. As expected, 
OFH:KitchenIlluminanceSensor2 has the highest 
similarity score. We, therefore, use the time series data of 
this sensor in the semantic similarity-based imputation. 
In the first method – the semantic similarity approach – 
missing values and outliers of sensor 2 are directly 
replaced by the value of sensor 1. In the second method – 
the semantic shape follower approach – missing values 
and outliers of sensor 2 are computed by taking the 
previous value and incrementing the same value as the 
increment of sensor 1. The imputed values in the second 
method thus follow the same shape as the time series of 
sensor 1 but have a different starting value. The first 
approach hypothetically works well if two sensors are 
expected to have similar values, while the second 
approach hypothetically works well if the time series of 
two sensors have similar shapes. 
These approaches were tested on 
OFH:KitchenIlluminanceSensor1 and 
OFH:KitchenIlluminanceSensor2. Two case studies are 
tested. In the first case study (MV), we randomly replaced 
single values with outliers and missing values in the time 
series of sensor 2. In the second case study (MP), we 
randomly added missing periods of 30 successive values. 
Next to the two developed approaches, a linear 
interpolation and a multiple imputation (Kang, 2013) that 
combines the other three methods are tested. The sensor’s 
resolution (Figure 1) is queried from the knowledge graph 
using SPARQL and all newly added values are rounded 
based on this resolution. 
Table 2 shows the average value and the root mean 
squared error for all four methods and two case studies. It 
shows that for this specific case, the semantic shape 
follower approach is the most accurate. Figure 4 shows 
the shape of the imputed data, where missing values were 
replaced between 09:28 and 09:58. The semantic shape 
follower approach seamlessly follows the original data.  
 

Table 1: Results of the similarity search 
 

 Entity Score bop:isHostedBy bop:hasXYZ 
1 OFH:KitchenIlluminanceSensor1 1.0000 OFH:KitchenTable "(-13.59 1.09 0.77)" 
2 OFH:KitchenIlluminanceSensor2 0.8996 OFH:KitchenTable "(-13.49 1.00 0.77)" 
3 OFH:KitchenIlluminanceSensor3 0.7923 OFH:KitchenTable "(-14.49 -1.00 0.77)" 
4 OFH:KitchenIlluminanceSensor4 0.6542 - "(-11.32 -2.55 0.77)" 
5 OFH:KitchenIlluminanceSensor5 0.6507 - "(-11.32 -2.55 2.00)" 



Figure 4: Results of four imputation methods (MP)

While the semantic shape follower does perform the best 
in this use case, it has a limitation, namely that it requires 
a similar sensor to be installed near the original sensor. 
This is often not the case in practice. Therefore, a second 
study is performed to test if the sensor values could be 
replaced by an illuminance sensor on the second floor of 
the Open Smart Home. The sensor is placed in an office 
space that is located on the same side of the building as 
the kitchen. Next to this, the same experiment is 
performed with two temperature sensors with similar 
locations. Table 3 shows the results of this experiment. 
The actual values represent the values by the kitchen 
sensors on floor 0, while the values in the semantic 
similarity and semantic shape follower columns make use 
of the office sensors on floor 1 to replace missing values 
and outliers. The similarity score shows the similarity of 
the two sensors, based on the PSI algorithm as also 
presented in Table 1. 

Using the illuminance sensor in the office to replace 
missing values results in a low performance of the 
algorithms compared to the performance in Table 2. 
Zooming into the same timeframe as Figure 4 shows that 
the shape of the imputed data is nowhere near the actual 
data. However, imputing the missing values of the 
temperature sensor with the sensor in the office room – 
especially when using the semantic shape follower 
approach - shows very good performance. The difference 
is explainable. The office room and the kitchen are used 
differently over time, and the lighting sources are 
individually controlled for both spaces. The temperature, 
however, is controlled by a central heating system. Even 
though the temperature in the kitchen and the office space 
might not be the same, their patterns show the same 
behavior.

Discussion
This paper presented an approach to apply semantic web 
technologies in the data preprocessing phase in the 
architecture and construction industry. Since a one-size-
fits-all solution is unlikely to perform well in the 
construction industry, this paper applies data from 
knowledge graphs to enhance preprocessing tasks.
To the best of our knowledge, this is the first work that 
uses implicit reasoning on cross-domain (and potentially 
federated) knowledge graphs to perform both missing 
value and outlier detection and replacement in time series 
databases. By applying semantic web technologies in the 
data preparation phase, automate certain parts of the 
reasoning process and reduce the human effort of data 
preparation compared to existing methods (as mentioned 
by Kang (2013)).
Various challenges remain unanswered in this paper. This 
work shows an example of applying both implicit and 
explicit reasoning-based algorithms in a residential home 
in the Netherlands. The exact algorithms, the data that 
needs to be stored in the knowledge graph, and the 
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Table 2: Results of the different imputation methods

Linear 
interpolation

Semantic 
similarity

Sematic shape 
follower

Multiple 
imputation

Actual MV MP MV MP MV MP MV MP
Average 28.21 28.18 28.30 28.27 28.38 28.19 28.22 28.21 28.30
RMSE 0 1.23 1.49 1.37 0.93 1.23 0.27 1.24 0.59

Table 3: Performance of the semantic imputation approaches when using sensors from another floor

Illuminance Temperature
Actual Semantic 

similarity 
(MP)

Semantic 
shape 
follower 
(MP)

Actual Semantic 
similarity 
(MP)

Semantic 
shape 
follower 
(MP)

Average 28.21 43.98 28.37 19.52 19.45 19.52
RMSE 0 76.01 14.87 0 0.26 0.05
Similarity 
score

1.000 0.3238 0.3238 1.000 0.2054 0.2054



reasoning performed in this study are highly context-
specific. Researchers are encouraged to redo this study for 
other building types, other sensors, and other locations in 
the world. 
For this reason, the results of the imputation methods are 
only valid for this specific use case. Researchers should 
distinguish the best imputation methods for various cases. 
If more knowledge in this domain becomes available, the 
knowledge graph might again help the data scientist in 
finding the most suitable method based on the available 
contextual information.  
We applied a semantic similarity algorithm that found the 
most similar sensor. However, this work does not provide 
insight into when a similarity score is high enough to 
replace values. In fact, while the similarity between the 
two temperature sensors in Table 3 was lower than 
between the two illuminance sensors, the imputation 
algorithms performed better. The search query to find 
similar objects can be extended to show more contextual 
information (such as the host and coordinates in Table 1). 
Performing more practical use cases could give more 
insight into acceptable similarity scores, and the extended 
search query might give practitioners more insight into 
why the scores are as such. 
Finally, this research is reactive and focuses on problem-
solving. The results currently give no insights into why 
certain sensors show more outliers or missing values. By 
extracting certain data quality metrics from the algorithms 
in this research, and feeding them back into the 
knowledge graph, we might be able to inform facility 
managers about failing systems or find root causes for 
suspicious behavior of sensors. 

Conclusion 
Data preprocessing is a time-consuming task that requires 
expert knowledge. To reach the full potential of AI, 
approaches to ease these tasks should be developed. Due 
to the nature of the construction industry – a mass 
customization industry – single pieces of code are not 
likely to perform accurate preprocessing tasks on a large 
scale. Semantic web technologies have proven to enable 
the integration of cross-domain building information in 
so-called semantic digital twins. This paper applied these 
semantic web technologies to enhance preprocessing 
tasks, more specifically, the following three practical 
tasks: 1. What values in the time series database are 
missing values? 2. What values in the time series database 
are outliers? 3. By what values should those missing 
values and outliers be replaced? 
Reviewing the state-of-the-art shows us that there is an 
uptake in combining semantic web technologies and AI, 
however, the practice of applying semantic web 
technologies in preprocessing tasks in the construction 
industry is limited.  
Based on methods in earlier research, heterogeneous 
building information was integrated by converting data 
from a building information model, product data from 

various Eltek sensors, and metadata related to the 
placement of those sensors to an RDF turtle format and 
combining these files in GraphDB. The knowledge graph 
was enriched by DBpedia data. 
The paper then introduces methods to find outliers and 
missing values. First, explicit reasoning is used to find 
those values. A sensor’s null value representation and 
measurement range were added to the knowledge graph. 
After querying them using SPARQL, they were used to 
filter data on missing values and outliers, respectively. As 
not all missing values and outliers let themselves be 
caught with explicit reasoning, more complex, implicit 
reasoning approaches are introduced. Missing values are 
found by finding gaps in the time series data based on the 
resolution of the sensor, while outliers are found by 
adding custom measurement ranges based on contextual 
information about the sensor in the knowledge graph.  
Finally, the paper introduces two methods to replace the 
missing values and outliers with new values. First, 
semantic similarity is calculated using a predication-based 
semantic indexing algorithm. The sensor data of similar 
sensors are then used in two approaches: the semantic 
similarity approach and the semantic shape follower 
approach. These approaches were tested for sensors in the 
same room, but also for sensors on a different floor. The 
performance of the approaches is highly context-specific, 
strengthening our views that contextual information in 
semantic digital twins can enhance preprocessing tasks. 
Following the viewpoint of Marcus (Marcus, 2020), 
semantic models of our real world do have the potential to 
enhance AI systems, at least in the construction industry. 
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