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Abstract

Digital twins have the potential to leverage Al in
buildings. The quality of Al algorithms is dependent on
the quality of the input data and its preprocessing. This
paper discusses the potential of using semantic web
technologies in preprocessing tasks. After reviewing
state-of-the-art initiatives in this field, a data integration
method is introduced based on semantic web
technologies. This integrated data is used in approaches to
find outliers and missing values in time series data and in
two semantic similarity-based imputation methods. The
paper shows that semantic web technologies can enhance
preprocessing tasks, by applying both explicit and implicit
reasoning.

Introduction

Construction digital twins have the potential to take
artificial intelligence (Al) in the construction industry to
a next level (Boje et al., 2020). Leveraging Al could lead
to better simulations of our buildings, potentially leading
to predictions and optimization of systems in the built
environment. Solutions to improve building energy use
and indoor comfort, detect operational inefficiencies and
HVAC (heating, ventilation and air conditioning) failures,
understanding occupant behavior, and improving safety
and scheduling are within reach (Petrova et al., 2019; Boje
et al., 2020).

Various authors mention data interoperability as a
requirement to reach this potential and mention semantic
web technologies as a solution (Pauwels, Zhang and Lee,
2017; Boje et al., 2020). Gary Marcus (2020) boldly states
that semantic models are a requirement for robust
intelligence, and that Al systems should be able to reason
over cognitive models of our real world in order to draw
knowledge and be reliable.

Recent research initiatives followed the claims of Marcus
and used semantic web technologies to support Al in the
construction industry. Petrova et al. (2019) used data
mining techniques to find patterns in indoor sensor data.
Esnaola-Gonzalez et al. (2018) applied data mining to
predict future indoor temperature states. Semantic web
technologies were applied in data selection,
preprocessing, and transformation stages.
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The quality of Al models is dependent on the quality of
the data that we feed them. Data preparation is therefore
an important, but also time-consuming task (Perez-Rey,
Anguita and Crespo, 2006). Kang (2013) lists various
techniques for handling missing data. These range from
simple deletion (listwise deletion, pairwise deletion) to
simple imputation (mean substitution, regression
imputation, last observation carried forward) to more
complex imputation methods (maximum likelihood,
expectation-maximization, multiple imputation, and
sensitivity analysis). As Kang (2013) mentions, these data
preparation methods require expert knowledge about the
specific system and its context. Especially in the
architecture and construction industry, typified as a mass
customization industry, a single piece of code is not likely
to provide accurate data preparation results. Buildings are
unique objects, causing the context of sensors to be
different from case to case. Simultaneously, sensors,
databases, and end-user applications differ per building,
resulting in a wide range of protocols that need to be
understood by the expert. Paradoxically, while the
cleaning process requires expert knowledge, the
development of IoT systems causes data in the built
environment to come in growing volumes, making it
harder for experts to understand and process this data.

In this work, we aim to find the potential of using
semantic web technologies in the data preparation phase.
The work specifically focuses on three practical tasks: 1.
What values in the time series database are missing
values? 2. What values in the time series database are
outliers? 3. By what values should those missing values
and outliers be replaced?

The paper starts with reviewing related work, after which
the data integration method is presented. Sections 4 and 5
respectively present methods to find missing values and
outliers. Section 6 presents a method to replace these
values based on semantic similarity, after which this paper
ends with a discussion and conclusion.

Related work

Semantic web and data preprocessing

Fayyad et al. (1996) described a five-step model for
knowledge discovery in databases: [. Selection, 2.



Preprocessing, 3. Transformation, 4. Data mining, and 5.
Evaluation and interpretation. There has been an uptake
in research aiming to combine semantic web technologies
with preprocessing tasks, as covered by the literature
review of Ristoski and Paulheim (2016). They found that
ontologies can help in performing preprocessing tasks,
such as data validity checks and data cleaning, and
categorized these ontologies into two groups. The first
category contains domain-independent specifications for
preprocessing tasks. The second category contains
domain-specific knowledge that can be used to reason on
how to preprocess data.

Perez-Rey et al. (2006) created the OntoDataClean
ontology to represent a generic, domain-independent
model for data preprocessing in the semantic web. Every
data source in the knowledge graph is linked to an
instance of the CleaningModel-class, which then
explicitly describes how that data source should be
cleaned in case of a missing value.

Gao et al. (2013) used their Correlated Environmental
Sensor Properties ontology to manually add information
about the correlation between two sensor properties. They
could for example model that the temperature of a space
is strongly correlated to the relative humidity of that
space. This information is then queried and combined
with the physical distance between two sensors to find
sensors that are neighboring and correlated. Outliers and
suspicious values are detected by comparing sensor
streams with the streams of those similar sensors.

The SemOD framework (Esnaola-Gonzalez et al., 2017)
also aims to find suspicious sensor values by reusing
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information from knowledge graphs. Contextual
information about the sensors, in this case the solar
radiation of an outdoor temperature sensor, is added to the
knowledge graph. Compared to Gao et al. (2013), SemOD
(Esnaola-Gonzalez et al., 2017) aims to be more
expressive in identifying the root cause of the outlier by
using different types of information than just physical
distance and correlation. Rules to find outliers are then
transformed into SPARQL queries that return outliers
based on the information in the knowledge graph.

Esnaola-Gonzalez et al. (2021) argue that the performance
of machine learning methods to impute data decreases if
they are used outside their training environments, and that
the capabilities of semantic web technologies to create
structured representations of metadata can improve
imputation methods. They proposed a semantics-based
data imputation approach to replace missing values. An
office room is represented using the BOT (Rasmussen et
al., 2020) ontology and time-series data is converted to
RDF (resource description framework) using SOSA/SSN
(Janowicz et al., 2019). Missing values of a sensor are
replaced by values of the most similar sensor. The
similarity is calculated based on physical distance and the
hosting building element of the sensor.

Some of the examples in this section require transforming
time series data into RDF triples. Fiirber and Hepp (2013)
argue that this adds complexity to the preprocessing stage,
while earlier research (Esnaola-Gonzalez and Javier Diez,
2019; Petrova et al., 2019) argues that time series data
should be stored in time series databases for performance
reasons.
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Figure 1: Structure of the knowledge graph



Semantic web and building information

Integrating data in the construction industry is a
challenge. It typically requires integrating cross-domain
knowledge from multiple stakeholders that speak their
own domain language, produce files in different software
packages, and store them in different locations. The de
facto standard for Building Information Models (BIM),
IFC (Industry Foundation Classes), is limited in its data
integration capabilities (Pauwels, Zhang and Lee, 2017).

In response to data integration challenges similar to those
in BIM, semantic web technologies are proposed as a
solution, first introduced by Tim Berners-Lee (Berners-
Lee, Hendler and Lassila, 2001). In the semantic web,
information is structured as triples following the resource
description framework (RDF) model. Multiple RDF
graphs can be linked with each other, eventually resulting
in a web of data. Data in this web can be classified using
ontologies, that give a semantic meaning and structure to
the data.

Since the introduction of the semantic web, various
initiatives took place to represent building information
using semantic web technologies (Pauwels, Zhang and
Lee, 2017). This led to the development of a central
ontology for the AEC sector, the ifcOWL ontology
(Pauwels and Terkaj, 2016). Critiques on this ontology —
it being too complex, difficult to extend — were answered
by the development of a range of smaller domain
ontologies, capturing for example a building’s topology
(Rasmussen et al., 2020), static and dynamic properties
(Donkers et al., 2022), and geometry (Wagner et al.,
2019).

Methodology

To test our approach, a digital representation of a
residential building is created using semantic web
technologies. Figure 1 shows a simplified representation
of the semantic representation and Figure 2 shows a
graphical summary of how the data are integrated and
used in this paper. The building — the Open Family Home
— is created using Revit 2020 and converted to RDF
Turtle, based on methods presented in earlier work
(Donkers et al., 2021). It follows the BOT (Rasmussen et
al., 2020) and BOP (Donkers et al., 2022) ontologies to
represent the buildings’ topology and static and dynamic
properties, respectively. Indoor environmental quality
parameters (temperature, relative humidity, CO2, indoor
air quality, and illuminance) were measured for 4 weeks
in January and February 2022 with a frequency of one
measurement per minute. The sensor data is stored in an
InfluxDB cloud storage, and basic metadata of this
storage is added to the knowledge graph to automatically
identify the right data point in the InfluxDB database.

The core topological nodes of the building are enriched
with DBPedia (a linked open data encyclopedia)
resources. This enrichment can be used to perform

! https://www.w3.org/ns/ssn/systems/
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human-like reasoning. As DBPedia is an open-source
knowledge graph, multiple stakeholders in multiple
projects can link concepts to the same DBPedia resources,
so that queries can be reused in the future. In this work,
we reused location information from DBPedia.

The sensor nodes in the knowledge graph are extended
with system capabilities provided by the manufacturer. To
do so, the ssn-system ontology ' was reused. The ontology
introduces concepts to describe a range of system
capabilities, such as measurement range, resolution,
frequency, and drift.
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Figure 2: Graphical summary of the research method

Results

Missing value detection

Sensors and databases have different methods to represent
missing values (or null values). This adds complexity to
the preprocessing phase, as the data scientist (or
algorithm) should know this representation before
processing these specific values. The architecture of
systems and databases is different for most projects,
which is why simple filters to find null values require
manual input from the data scientist. This information can
however be stored in the knowledge graph, so that data
scientists can query that information and feed this into
their algorithms. Figure 1 shows how the null value
representation of a sensor can be added to the graph by
using a simple datatype property. Listing 2 queries this
representation using SPARQL, after which it can be used
to automatically find the null values from a specific
sensor. Similar to adding a null value representation to the
sensor, one could also add this information to (or deduce
it from) the data point node in the graph, as databases
might also have their own representation of null values.



Temperature data before and after semantic missing value and outlier detection
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Figure 3: Temperature data before and after the missing value and outlier detection

The explicit reasoning-based missing value detection
requires that the database contains a timestamp with a
missing value representation. In case of communication
failures, sensors might not be able to communicate with a
database at all, possibly causing a gap in the timestamps.
The previously introduced approach will not be sufficient
in those cases.

To find whether there should be a value at a certain
timestamp, we can perform implicit reasoning using the
information in the knowledge graph. Listing 1 shows how
the frequency of a sensor can be queried using SPARQL.
Using this frequency, one could identify gaps in a time
series stream. Consider the time series data in Listing 2.
Based on the frequency of this sensor (Figure 1) and the
type of sensor, we would expect data at 14:04 and 14:05.
In this implicit reasoning-based missing value detection,
we calculate the time difference of two consecutive time
series measurements. If this time difference is two or more
times the sensor’s frequency, we are expecting missing
data points. Algorithms can then impute new timestamps
by taking the timestamp before the gap (14:03 in Listing
2) and adding timestamps based on the queried frequency
until it reaches the timestamp after the gap (14:06 in
Listing 2).

PREFIX OFH:
<http://github.com/AlexDonkers/OpenFamilyHome#>
PREFIX bop: <https://w3id.org/bop#>
PREFIX ssn-system:
<http://www.w3.org/ns/ssn/systems/>
SELECT * WHERE {
OFH:Kitchen bop:hasProperty ?property .
?property a quantitykind:Temperature .
?property bop:isObservedBy ?sensor .
?sensor ssn-system:hasSystemProperty ?range ,
>frequency .
?sensor bop:hasNullValueRepresentation
?nullValueRepresentation .
?range bop:hasSimpleMinimum |
bop:hasSimpleMaximum ?rangeValue .
?frequency a ssn-system:Frequency .
?frequency bop:hasSimpleResult ?frequencyValue .
}
Listing 1: Querying the measurement range and null value
representation of a temperature sensor using SPARQL
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2022-11-23T14:02:00Z 183.1 KitchenIlluminanceSensorl
2022-11-23T14:03:00Z 188.3 KitchenIlluminanceSensorl
2022-11-23T14:06:00Z 186.1 KitchenIlluminanceSensorl
2022-11-23T14:07:00Z 197.2 KitchenIlluminanceSensorl

Listing 2: Time series data containing two missing values

Outlier detection

A data scientist can classify a value as an outlier because
it is technically impossible, or because it is very unlikely
given the context of the sensor. This section aims to tackle
both challenges using the available data in the RDF graph.

Sensor systems are typically designed to only measure
values between a certain measurement range. This range
can be explicitly described in the knowledge graph using
the ssn-system ontology. This measurement range
contains a minimum and maximum value. Listing 1 shows
how these values can be queried using SPARQL.

Next to applying explicit reasoning to find outliers,
knowledge graphs enable implicit reasoning to apply
more complex knowledge patterns. In practice, experts
might classify values as outliers not only based on the
system boundaries but also based on expert knowledge.
For example, a certain temperature sensor might
technically be able to measure temperatures between -30
and 50 °C, but if this sensor measures the temperature of
an indoor space in a residential building in the
Netherlands, this technical range is way larger than the
reasonable range of values that we can expect. Experts,
therefore, use the available contextual information to
determine if a value is reasonable.

Listing 3 and Listing 4 show how implicit reasoning based
on contextual information can be used to filter out
outliers. Listing 3 first selects all sensors that observe the
temperature in a residential building in the Netherlands
and adds a new custom measurement range to these
sensors. This custom range can then be queried using
SPARQL (Figure 2) and inserted in a Flux query (Listing
4) using a filter function, to only query the values that fall
within this range.

Figure 3 shows the result of both the missing value
detection and outlier detection on a temperature data



Table 1: Results of the similarity search

Entity Score bop:isHostedBy bop:hasXYZ
1 OFH:KitchenllluminanceSensorl 1.0000 OFH:KitchenTable "(-13.59 1.09 0.77)"
2 OFH:KitchenllluminanceSensor2 0.8996 OFH:KitchenTable "(-13.49 1.00 0.77)"
3 OFH:KitchenllluminanceSensor3 0.7923 OFH:KitchenTable "(-14.49 -1.00 0.77)"
4 OFH:KitchenllluminanceSensor4 0.6542 - "(-11.32 -2.55 0.77)"
5 OFH:KitchenIlluminanceSensorS 0.6507 - "(-11.32 -2.55 2.00)"

stream, measured in the Open Family Home. Both the
outliers and missing values are removed based on the
information in the knowledge graph.

PREFIX OFH:
<http://github.com/AlexDonkers/OpenFamilyHome#>
PREFIX bot: <https://w3id.org/bot#>
PREFIX ssn-system:
<http://www.w3.org/ns/ssn/systems/>
PREFIX bop: <https://w3id.org/bop#>
PREFIX quantitykind:
<http://qudt.org/vocab/quantitykind/>
PREFIX dbo: <https://dbpedia.org/ontology/>
PREFIX dbr: <https://dbpedia.org/resource/>
INSERT {
?sensor ssn-system:hasSystemProperty
OFH:CustomRange .
OFH:CustomRange rdf:type ssn-system:Range,
bop:Property , ssn-system:CustomRange.
OFH:CustomRange bop:hasSimpleMinimum "10" .
OFH:CustomRange bop:hasSimpleMaximum "30" .
} WHERE {
?property bop:isObservedBy ?sensor .
?property a quantitykind:Temperature .
?sensor bop:isHostedBy ?host .
?zone bot:containsElement ?host .
?building bot:hasSpace ?zone .
?building a dbr:House .
?site bot:hasBuilding ?building .
?site dbo:location dbr:Netherlands .
}
Listing 3: Insert a custom range for temperature sensors in
residential buildings in the Netherlands

from(bucket: "?database")
|> range(start: v.timeRangeStart, stop:
v.timeRangeStop)
|> filter(fn: (r) => r["_measurement"] ==
"?dataPoint")
|> filter(fn: (r) => r._value > ?minRange)
|> filter(fn: (r) => r._value < ?maxRange)
Listing 4. Query data within the new custom range using Flux

Semantic similarity-based imputation

After finding the missing values and outliers, the
knowledge graph is used to replace those values with
more realistic ones. Two methods are proposed: the
semantic similarity approach and the semantic shape
follower approach. In both methods, values are replaced
based on the values of similar sensors. To find those
similar sensors, a predication-based semantic indexing
(PSI) (Cohen, Schvaneveldt and Rindflesch, 2009)
algorithm was applied in GraphDB. In PSI, semantic
predications are encoded based on the information in the
knowledge graph and presented in a vector space. PSI
creates a vector for each entity in the graph and uses these
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vectors to calculate similarity. Four training cycles were
performed to improve the outcome of the predictions.

Table 1 shows the results of the similarity search when
searching for similar objects as
OFH:KitchenllluminanceSensorl. The location of the
five sensors is visible in Figure 1. As expected,
OFH:KitchenllluminanceSensor2  has the highest
similarity score. We, therefore, use the time series data of
this sensor in the semantic similarity-based imputation.

In the first method — the semantic similarity approach —
missing values and outliers of sensor 2 are directly
replaced by the value of sensor 1. In the second method —
the semantic shape follower approach — missing values
and outliers of sensor 2 are computed by taking the
previous value and incrementing the same value as the
increment of sensor 1. The imputed values in the second
method thus follow the same shape as the time series of
sensor 1 but have a different starting value. The first
approach hypothetically works well if two sensors are
expected to have similar values, while the second
approach hypothetically works well if the time series of
two sensors have similar shapes.

These approaches were tested on
OFH:KitchenllluminanceSensorl and
OFH:KitchenllluminanceSensor2. Two case studies are
tested. In the first case study (MV), we randomly replaced
single values with outliers and missing values in the time
series of sensor 2. In the second case study (MP), we
randomly added missing periods of 30 successive values.
Next to the two developed approaches, a linear
interpolation and a multiple imputation (Kang, 2013) that
combines the other three methods are tested. The sensor’s
resolution (Figure 1) is queried from the knowledge graph
using SPARQL and all newly added values are rounded
based on this resolution.

Table 2 shows the average value and the root mean
squared error for all four methods and two case studies. It
shows that for this specific case, the semantic shape
follower approach is the most accurate. Figure 4 shows
the shape of the imputed data, where missing values were
replaced between 09:28 and 09:58. The semantic shape
follower approach seamlessly follows the original data.



Table 2: Results of the different imputation methods

Linear Semantic Sematic shape Multiple
interpolation similarity follower imputation
Actual MV MP MV MP MV MP MV MP
Average 28.21 28.18  28.30 2827 2838 28.19 2822 2821 28.30
RMSE 0 1.23 1.49 1.37 0.93 1.23 0.27 1.24 0.59

Results of four imputation methods (MP)
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Figure 4: Results of four imputation methods (MP)

While the semantic shape follower does perform the best
in this use case, it has a limitation, namely that it requires
a similar sensor to be installed near the original sensor.
This is often not the case in practice. Therefore, a second
study is performed to test if the sensor values could be
replaced by an illuminance sensor on the second floor of
the Open Smart Home. The sensor is placed in an office
space that is located on the same side of the building as
the kitchen. Next to this, the same experiment is
performed with two temperature sensors with similar
locations. Table 3 shows the results of this experiment.
The actual values represent the values by the kitchen
sensors on floor 0, while the values in the semantic
similarity and semantic shape follower columns make use
of the office sensors on floor 1 to replace missing values
and outliers. The similarity score shows the similarity of
the two sensors, based on the PSI algorithm as also
presented in Table 1.

Using the illuminance sensor in the office to replace
missing values results in a low performance of the
algorithms compared to the performance in Table 2.
Zooming into the same timeframe as Figure 4 shows that
the shape of the imputed data is nowhere near the actual
data. However, imputing the missing values of the
temperature sensor with the sensor in the office room —
especially when using the semantic shape follower
approach - shows very good performance. The difference
is explainable. The office room and the kitchen are used
differently over time, and the lighting sources are
individually controlled for both spaces. The temperature,
however, is controlled by a central heating system. Even
though the temperature in the kitchen and the office space
might not be the same, their patterns show the same
behavior.

Discussion

This paper presented an approach to apply semantic web
technologies in the data preprocessing phase in the
architecture and construction industry. Since a one-size-
fits-all solution is unlikely to perform well in the
construction industry, this paper applies data from
knowledge graphs to enhance preprocessing tasks.

To the best of our knowledge, this is the first work that
uses implicit reasoning on cross-domain (and potentially
federated) knowledge graphs to perform both missing
value and outlier detection and replacement in time series
databases. By applying semantic web technologies in the
data preparation phase, automate certain parts of the
reasoning process and reduce the human effort of data
preparation compared to existing methods (as mentioned
by Kang (2013)).

Various challenges remain unanswered in this paper. This
work shows an example of applying both implicit and
explicit reasoning-based algorithms in a residential home
in the Netherlands. The exact algorithms, the data that
needs to be stored in the knowledge graph, and the

Table 3: Performance of the semantic imputation approaches when using sensors from another floor

[lluminance Temperature
Actual Semantic Semantic Actual Semantic Semantic
similarity shape similarity shape
(MP) follower (MP) follower
(MP) (MP)
Average 28.21 43.98 28.37 19.52 19.45 19.52
RMSE 0 76.01 14.87 0 0.26 0.05
Similarity 1.000 0.3238 0.3238 1.000 0.2054 0.2054
score
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reasoning performed in this study are highly context-
specific. Researchers are encouraged to redo this study for
other building types, other sensors, and other locations in
the world.

For this reason, the results of the imputation methods are
only valid for this specific use case. Researchers should
distinguish the best imputation methods for various cases.
If more knowledge in this domain becomes available, the
knowledge graph might again help the data scientist in
finding the most suitable method based on the available
contextual information.

We applied a semantic similarity algorithm that found the
most similar sensor. However, this work does not provide
insight into when a similarity score is high enough to
replace values. In fact, while the similarity between the
two temperature sensors in Table 3 was lower than
between the two illuminance sensors, the imputation
algorithms performed better. The search query to find
similar objects can be extended to show more contextual
information (such as the host and coordinates in Table 1).
Performing more practical use cases could give more
insight into acceptable similarity scores, and the extended
search query might give practitioners more insight into
why the scores are as such.

Finally, this research is reactive and focuses on problem-
solving. The results currently give no insights into why
certain sensors show more outliers or missing values. By
extracting certain data quality metrics from the algorithms
in this research, and feeding them back into the
knowledge graph, we might be able to inform facility
managers about failing systems or find root causes for
suspicious behavior of sensors.

Conclusion

Data preprocessing is a time-consuming task that requires
expert knowledge. To reach the full potential of Al,
approaches to ease these tasks should be developed. Due
to the nature of the construction industry — a mass
customization industry — single pieces of code are not
likely to perform accurate preprocessing tasks on a large
scale. Semantic web technologies have proven to enable
the integration of cross-domain building information in
so-called semantic digital twins. This paper applied these
semantic web technologies to enhance preprocessing
tasks, more specifically, the following three practical
tasks: 1. What values in the time series database are
missing values? 2. What values in the time series database
are outliers? 3. By what values should those missing
values and outliers be replaced?

Reviewing the state-of-the-art shows us that there is an
uptake in combining semantic web technologies and Al
however, the practice of applying semantic web
technologies in preprocessing tasks in the construction
industry is limited.

Based on methods in earlier research, heterogeneous
building information was integrated by converting data
from a building information model, product data from
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various Eltek sensors, and metadata related to the
placement of those sensors to an RDF turtle format and
combining these files in GraphDB. The knowledge graph
was enriched by DBpedia data.

The paper then introduces methods to find outliers and
missing values. First, explicit reasoning is used to find
those values. A sensor’s null value representation and
measurement range were added to the knowledge graph.
After querying them using SPARQL, they were used to
filter data on missing values and outliers, respectively. As
not all missing values and outliers let themselves be
caught with explicit reasoning, more complex, implicit
reasoning approaches are introduced. Missing values are
found by finding gaps in the time series data based on the
resolution of the sensor, while outliers are found by
adding custom measurement ranges based on contextual
information about the sensor in the knowledge graph.

Finally, the paper introduces two methods to replace the
missing values and outliers with new values. First,
semantic similarity is calculated using a predication-based
semantic indexing algorithm. The sensor data of similar
sensors are then used in two approaches: the semantic
similarity approach and the semantic shape follower
approach. These approaches were tested for sensors in the
same room, but also for sensors on a different floor. The
performance of the approaches is highly context-specific,
strengthening our views that contextual information in
semantic digital twins can enhance preprocessing tasks.
Following the viewpoint of Marcus (Marcus, 2020),
semantic models of our real world do have the potential to
enhance Al systems, at least in the construction industry.
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