2023 European Conference on Computing in Construction

40th International CIB W78 Conference
Heraklion, Crete, Greece
July 10-12, 2023

International Council
for Research and Innovation
in Building and Construction

éB

citlU18 ==

AUTOMATED GENERATION OF SPARQL QUERIES FROM SEMANTIC MARK-UP

Nicholas Nisbet! 2, Zijing Zhang', Ling Ma'
"University College London, London, UK,
2AEC3

Abstract

Regulations and requirement documents contain
normative knowledge that needs to be compared against
actual and proposed built assets, if safety and social
expectations are to be met. Previous work has shown that
semantic mark-up of normative documents can be
consumed directly by a rule-engine or can be
automatically transformed to a number of existing rule
representations. This work investigates the feasibility of
automatically transforming examples of normative
documents into SPARQL and testing the result against
typical building information models. The desirability of
using SPARQL is discussed.

Introduction

Regulations and requirement documents contain
normative knowledge that needs to be compared against
actual and proposed built assets, if safety and social
expectations are to be met. Requirements, Applications,
Selections and Exceptions (RASE) (Nisbet et al., 2008) is
a method of semantic markup up of plain text based on the
identification on the semantic and logical roles of phrases
and sections, from which operable knowledge can then be
deduced. It was initially developed to support knowledge
capture for normative compliance checking.

The RASE method addresses three kinds of knowledge.
The initial motivation for its development has been to
capture normative content, as found in laws, regulations
and requirement documents. Subsequently it has also been
used to capture definitive knowledge as found in
dictionaries, classifications and formulae. A third area of
application is to capture the knowledge found in
descriptive and narrative content as found in written and
database representations of the built environment. In some
cases, this content may be ‘fictitious” when it describes a
plausible future state of the built environment. For
normative knowledge, each objective and metric are typed
as one of four types: Requirement, Applicability,
Selection or Exception. Instead of Requirement metrics,
declarative knowledge wuses Register metrics and
descriptive/narrative knowledge uses Reported metrics.
(Nisbet et al., 2022b). A semantic dictionary can be used
to map between normative terminology and the
descriptive/narrative terminology. This ensures that there
is no requirement for BIM content to be restructured to

264

reflect the regulatory content nor for the regulatory
content to be expressed in the vocabulary of a Building
Information Model (BIM), as proposed by Soliman-
Junior et al. (2022).

The RASE mark-up is applied to text and tables in
documents using four colours which highlight four
distinct roles for phrases and sections. The four roles are
Requirements/registers/reports, Applications, Selections
and Exceptions. This identifies the RASE knowledge
ontology as a recursive tree structure of objectives and
metrics, where objectives contain metrics and other
objectives. Metrics are simple atomic queries that can be
evaluated, by domain experts or by enquiring of a target
domain model. The method is able to capture the logical
meaning of an entire document, section, paragraph or
clause, not just individual sentences. This makes RASE
mark-up particularly relevant to automated code
compliance checking, where regulations are tested against
BIM information to detect non-compliant aspects.
SPARQL is a query language that can be used to retrieve
information from semantic web resources, such as graph-
based BIM models. By automatically converting
regulatory clauses from normative documents into
SPARQL queries, graph-based BIM models can be
validated for compliance checking. This approach can
help ensure that BIM models are compliant with relevant
regulations and standards, and can ultimately improve the
quality of the models and ultimately of the built
environment. Semantic mark-up is being deployed in a
wide range of research and industry scenarios. “AEC3
Requirel” consumes semantic mark-up directly, without
the use of any intermediary rule language (Nisbet et al.,
2022b). In the UK, ‘RegBIM’ (Beach et al., 2013) and the
Digital Compliance ‘DCOM’ project (DCOM, 2023),
semantic mark-up was added by regulatory domain
subject matter experts. The semantic markup was then
transformed into Java Drools, compiled and evaluated
against a substantial building information model
representing a 300-pupil secondary school.

The sematic web and in particular RDF/OWL has been
labeled as the gold standard of ‘description logics’
(Crotts, 2022; Kostylev et al, 2015). It is increasingly
popular for construction research, as existing building
information models can be transformed using online tools
implementing mixtures of ifcOWL (Pauwels et al, 2016)

and other simplified ontologies such as BOT (Rasmussen
et al, 2021).

Simple Protocol and RDF Query Language (SPARQL,
2023) was chosen in preference to other semantic query
syntaxes for RDF/OWL such as Shape Expressions
(SHEX, 2023) because SPARQL has support for logical
operators. SPARQL can be embedded in Shapes
Constraint Language (SHACL, 2023), effectively using a
query to validate an information set.

There has been previous work on automated generation of
SPARQL queries. Some have been based on limited
source domains using keywords (Im et al.,, 2014) or
controlled templates (Shekarpour et al., 2013), both of
which necessarily involve a degree of pre-structuring.
Jung et al. (2020) has investigated the use of Natural
Language Processing (NLP) analysis to generate queries
but this approach has not generated the confidence in the
results appropriate to regulatory or requirements
enforcement tasks.

This work is aimed at identifying the feasibility of the
automated generation of SPARQL queries from semantic
mark-up. It is a further exploration of the feasibility of
representing potentially complex logical queries arising
from semantic markup in another query language, without
resorting to handcrafting of the query or of the target
domain either of which may undermine the generality of
the solution.

Semantic web technologies including RDF/OWL
(RDF/OWL, 2023) represent knowledge as triples,
typically described as subject, predicate (relationship or
property) and object, where both subject and object can be
primitive values or references to other triples. Hence
RDF/OWL triples are in RASE terms a combination of an
Application (the subject) and a Requirement (or Register
or Report) in the predicate and object.

Method

The research objective is to explore whether SPARQL can
be generated systematically from normative documents
with the gain in accuracy and completeness. This research
established specific criteria arising from the objective of
creating such a transparent and fully automated process.
The automated process is detailed below in the Artifact
section. The mapping was refined repeatedly in the
Experiments described below until the four criteria had
been met. The criteria for a solution are:

a. A SPARQL query should be generated in a
layout that supports review and comment, even
though RASE semantic mark-up is proposed as
the primary format for review prior to the
mapping to SPARQL. Clarity of the resulting
SPARQL query is intended to encourage
endorsement and improvement of the
transformation process.

The mapping of RASE to SPARQL should
produce a result that be used directly without

265

further editing or revision. This is necessary to
meet the objective of ‘automation’ and to
eliminate the deployment of tacit ‘craft’
knowledge as seen in exercises focused on a
single regulation clause such as Pauwels et al’s
(2015) investigation into an acoustic regulation.
c¢. The rules within the mapping should be
expressed explicitly so that refinements can be
proposed and adopted. The mapping should, if
possible, be executed using a single pass.
The SPARQL query should be executed and give
reviewable results. Beyond producing a result,
execution performance was not a criterion.

A wvalid SPARQL query must declare the target
ontologies, narrow the target model, filter the selected
objects and report them. The generated query is made of
a WHERE statement to identify the relevant information,
a BIND statement to generate a logical result and an
optional FILTER statement to select only ‘True’ or
‘False’ results. SPARQL therefore presents a number of
challenges compared to the RASE knowledge ontology.

Experiments

Rasmussen et al (2021) developed a semantic BIM
interface which is freely available for use (LD-BIM,
2023). This accepts IFC and generates a simplified
RDF/OWL representation. The visual interface displays
the geometry of the objects found in the IFC. Objects
identified by SPARQL queries can be highlighted
alongside the tabulated results. The application offers a
number of simple SPARQL queries but the interface also
allows for any query to be composed or copy-and-pasted
in, validated and executed.To explore the feasibility of a
RASE to SPARQL mapping and to discover any
limitations, two experiments were conducted. The first
addressed a simple case to confirm the design principles
around creating a generic transformation and the second
then sought to scale the solution to considering a complete
and complex regulatory clause, and assess whether a
satisficing approach had been found. The second
experiment includes combinations of many types of
objectives and metrics, and a variety of measure types
within the metrics, such as logical, textual and numeric
tests.

Experiment 1

A simple sentence “Doors should be at least 850mm
wide” was given RASE semantic mark-up. Figures 1 and
2 show the markup and an automatically derived concept
graph.

Eve

Figure 1 : Simple RASE semantic mark-up

Concept Graph

o g By
width >= o@
n

Figure 2: Automatically generated concept graph

Completed

Previous mappings developed for concept graphs,
predicate logic and other representations have used XSLT
applied to the source HTML (Nisbet et al., 2022). In each
case a recursive depth-first tree traversal algorithm is
used. This algorithm generates and reacts to specific
events such as ‘drop down a level of the tree hierarchy’
‘return up a level’ or ‘consider next item on this level” as
they are discovered within the semantic markup of the
HTML.

Example 1: Doors should be at least ©0.800m wide
PREFIX xsd:
PREFIX ifc:
PREFIX bot:
PREFIX inst:

<http://www.w3.0rg/2001/XMLSchemat>
<http://ifcowl.openbimstandards.org/IFC2X3_Final#>
<https://w3id.org/bot#>
<https://web-bim/resources/>

#1

SELECT DISTINCT ?this ?result WHERE { #2 #3
?this a bot:Element . #4
OPTIONAL {?this inst:widthPSetRevitTypeDimensions ?rl1 } . #5 #6

BIND ((

(! (EXISTS{ ?this a ifc:IfcDoor }) #7 #8
|l (2r1 >= '©.800'~*"xsd:double)) #9

) AS ?result) .

FILTER (?result != 'true'~"xsd:boolean) . #10

}
ORDER BY ?this

Figure 3: Automatically generated SPARQL query

The varying part of the query template is highlighted in
bold in Figure 3. The remainder of the text of the query is
invariant. This highlighting shows that there are two
bodies of varying text, so it is necessary to make two
passes through the normative source, the first to define the
explicit variables and a second to generate the logical
statement bound to the result.

Several challenges arise in generating a SPARQL query.
These issues are noted as comments such as ‘#1’ Each
resolution was then included in an automated process.

1. The appropriate header identifying the selected
ontologies must be provided. The LD-BIM interface
presents the necessary references and the transformation
reproduces them directly.

2. In order to associate any results with the
graphical interface, the ‘this’ reference must be present in
the results, as this is used by the RDF/OWL model, by any
encasing SHACL statement and by the visual graphics.

3. A decision must be made as to what other values
are reported. Whilst further specific values, such as ‘type’
and ‘width’, can be reported during development, in the
general case there could be a very large number of
relevant properties. Once operational, there is no need to
report any of these additional properties. So only ‘this’
and ‘result’ are included by default.

4. Normative judgements are made against
identifiable objects which may have a number of

266

significant attributes. Hence the target realm of ‘objects’
must be distinguished from other triples containing
‘relationships’ or ‘property assignments’. This is achieved
by selecting only the ‘bot:Element’ type.

5. The connection must be made between terms in
the normative metrics and terms in the descriptive model.
RASE offers two means to achieve this: Any metric can
have the determining property, comparator and target
recorded explicitly or reference can be made to a semantic
dictionary to obtain a mapping. In this case a proprietary
attribute is used for ‘width’. The ifcOWL mapping has
suppressed the standard IFC attribute ‘OverallWidth’, so
a proprietary property name is used instead namely
‘widthPSetRevitTypeDimensions’.

6. Variables must be defined for any non-type
attributes. This is done in the selection body because the
syntax for the BIND structure does not support the
naming of specific attributes. RASE markup provides a
readily available identifier for the metric that can be
expected to be unique. These values are marked as
‘OPTIONAL’ so as to postpone any impacts of undefined
properties on the handling of issues related to Closed or
Open World Assumptions (CWA/OWA) until the
evaluation of the result in the BIND statement.

7. Type definition in RDF/OWL is a special
property, often with multiple inheritance being
represented in multiple values in the ‘type array’. This
means that ‘type’ must be identified as a special case since
it has a unique syntax. It is important not to assume that
‘type’ is always present, and even if present it may be part
of a selection of a number of different types. In this case
the concept of ‘door’ exists in both the normative domain
and in the descriptive domain. However, in the descriptive
domain ‘doorness’ is a special attribute embedded in the
type definition ‘IfcDoor’.

8. The logical structure of the query must be
represented. The logical structure of the sample regulation
is derived from interpreting the semantic role for
objectives and metrics, found as Requirement,
Applicability, Selection and Exception, into the
mathematical primitives AND ‘&&’, OR ‘|’, and NOT
‘I’. This logical structure is assigned to a variable called
‘result’ using the BIND construct. In a production
environment this could be a more descriptive
‘clause_ X result’, especially if the results are to be
‘INSERT’ed or ‘CONSTRUCT’ed, giving the results
persistence in the triple store.

9. The comparator operator found in any metric
must be represented. The semantic dictionary can aid the
mapping of phrases such as ‘at least’ to the equivalent
mathematical symbol “>=". Since the units have been
adjusted to SI in the target model, metrics based on
millimetres need to be factored.

10. A decision must be made as to whether the
instances evaluating to “True’ or ‘False’ are to be returned
for reporting. In general, we expect normative evaluation

to generate ‘true’ for passing and ‘false’ for failing, but
the implications of ‘true’ or ‘false’ outcomes may be more
subtle in an adversarial context such as a dispute between
a ‘conservationist’ and a ‘developer’. The FILTER syntax
is used to make the choice as explicit as possible. Here,
the query is used to find the hopefully relatively small
number of non-compliant elements.

Figure 4: LD-BIM highlighting the four ‘non-compliant’ doors

Figure 4 shows that the generated SPARQL query is valid,
and has highlighted four ‘non-compliant’ doors. The
query was then tested further in other cases including
when information is unknown. Comparisons were made
of the expected truth table and the outcomes reported by
the LD-BIM interface in Table 1.

Table 1: Expected and SPARQL results for nine test cases
* indicates ‘Query returned no results’

3 True False False False
4 Unknown True True *
5 Unknown Unknown Unknown *
6 Unknown False Unknown *
7 False True True True
8 False Unknown True *
9 False True True True

Case Is a Door Width > Expected Actual
0.800m Result result
1 True True True True
2 True Unknown Unknown *

Table 1 shows that in all straightforward cases (1,3,7 and
9) the correct outcomes are obtained, using the default
Duplex model as an example. By modifying the query or
the model, scenarios were created and tested where one or
other of the two metrics are ‘Unknown’. Misleading
results are produced in these cases (2,4,5,6 and 8). Case
‘8’ is of particular concern where a non-door should
evaluate to ‘true’ even if its ‘width’ is unknown. This is
an example where ‘short circuit ‘McCarthy’ execution’ is
necessary, if descriptive models are not be overloaded
with unnecessary and irrelevant attributes, purely to
enable the execution algorithms within SPARQL.

Experiment 2

The semantic markup from a substantial clause of the UK
Building Regulation Approved Document M (ADM,
2023) was used. This includes several requirements and a
table of expected widths. Figure 5 shows the marked-up
document.

be possible otherwise for a person to open the door using a force no greater than 20N at the leading edge;

b. the effective clear width through a single leaf door or one leaf of a double door is in accordance with Table 2, and the rules for measurement are in

accordance with Diagram 9;

C.

unless it can be argued otherwise in the Access Statement, e.g. for reasons of security, door leaves and side panels towards the leading edge of the
door whose vertical dimensions include at least the minimum zone or zones of visibility between 500mm and 1500mm from the floor, if necessary
interrupted between 800mm and 1150mm above the floor, e.g. to accommodate an intermediate rail (see Diagram 9).

"Table 2 ﬂ ini effective clear widths of doors
|[Direction and width of approach [New buildings (mm)|Existing buildinas (mm)
.SIl’i.igh.t.Q.(\ (without a turn or oblique approach) _ %
At right angles to an access route at least 1500mm wide
At right.angles. to an access route at least 1200mm wide 825mm

- 775mm
||E)_(tg1:nal._d99;:s_.to buildings used by general public 1000mm

Figure 5: Regulatory clause with RASE semantic mark-up

267

The transformation scaled successfully to generate the
query, shown abbreviated in Figure 6, using twenty-five
metrics and thirty logical checks.

Example 2: UK Government ENG

Approved Document M2 clause 2.13 (2015)

PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
PREFIX ifc:
<http://ifcowl.openbimstandards.org/IFC2X3_Final#>
PREFIX bot: <https://w3id.org/bot#>

PREFIX inst: <https://web-bim/resources/>

SELECT DISTINCT ?this ?result WHERE {

?this a bot:Element .
OPTIONAL{ ?this
inst:partOfAccessibleEntranceUKDoorcapture ?a@l }
several further measures
OPTIONAL{ ?this inst:clearWidthUKDoorcapture ?re9 }
BIND ((

I (EXISTS{ ?this a ifc:IfcDoor } &%
[

several further comparisons and logical tests
(?re9 >= '1.000'~xsd:double)))))

) AS ?result) .

FILTER (?result != 'true'~"xsd:boolean) .

(2a01))

ORDER BY ?this

Figure 6: SPARQL query (part)

i

Figure 7: Office building concept (courtesy of Mace plc)

A further issue arose in that the example regulation
requires wider entrances in new-build buildings as against
the refurbishment of existing buildings. The ‘is new’

268

property is assigned to ‘true’ on the overall building
‘IfcBuilding’ entity. This prevents the query which is
focused on the door element from generating a result.
Figure 7shows the test case where the main entrance of a
proposed office building is too narrow, but the SPARQL
query is unable to generate a result because the ‘is new’
property is unknown. This is discussed further below.

Artifact

The mapping rules using HTML/RASE, depth-first tree
traversal events and SPARQL syntax were tabulated to
explicitly capture the mapping process for review and to
control the mapping process (Figure 8). Further columns
(not shown) hold the further mappings for propositional
logic, predicate logic, and other knowledge schemas.
Green (with dotted underline) indicates tests for
Application. In this case all cells containing Applications
are ‘header’ or ‘sider’ cells. Blue (with solid underline)
indicates defined output. Each pass is represented by a
separate Requirement Section, indicated as a blue box (in
solid line).

An example rule extracted from the table might be that on
a ‘main pass’, with ‘SPARQL’ expected and on
encountering the event ‘before a subsequent exception’
the required output is ‘||’. SPARQL is exceptional in that
its syntax treats tests about ‘type’ differently from all
other property values, requiring additional rule rows in the
table. Tests about ‘type’ are detected by examining a
separate dictionary entry for the term ‘door’ where its
representation in SPARQL is the type specification
‘ifc:IfcDoor’.

Example execution

The input to the process is an HTML document with
RASE markup highlighting a normative knowledge,
along with the HTML document with RASE mark-up
highlighting the mapping rules. Figure 1 shows a simple
example with a single Application and a single
Requirement. Performing the depth-first tree traversal
detects 14 events in sequence in the HTML/RASE and
responds to each of these with appropriate SPARQL
output, as shown in Figure 9. Terms found in the
normative document are translated using a separate
definitive dictionary handling the English language
context, the IFC context and the ifcOWL/BOT context.
The resulting valid SPARQL output was already shown in
Figure 4.

Pre-pass

HTML+RASE Tree iteration SPARQL

<html><body> [start tree] SELECT DISTINCT ?this?result WHERE {
data-raseProperty="@property" Property is not about type OPTIONAL { ?this ?@property* ?@id } .
data-raseProperty="@property" Property is about type [blank]
</body></html> [end tree] [blank]

Main pass

HTML+RASE Tree iteration SPARQL

<html><body> [start tree] BIND ((

<div data-raseType="*Section"> [start branch] (]
data-raseType="Application*" Before first application I
data-raseType="Selection*" Before first selection I
data-raseType="Exception*" Before first exception {
data-raseType="Requirement*" Before first requirement {
data-raseType="Application*" Before subsequent application &&
data-raseType="Selection*" Before subsequent selection il
data-raseType="Exception*" Before subsequent exception J
data-raseType="Requirement*" Before subsequent requirement &&

data-raseProperty="@property"

Property is not about type

data-raseTarget="@target"

data-raseComparator="@comparator"

?@id @comparator* @target .

data-raseProperty="@property"

Property is about type

EXISTS{ ?this a @property*}

[blank] Between RASE groups 11
[blank] After last application)
[blank] After last selection)
[blank] After last exception)
[blank] After last requirement 0
</div> [end branch])
</body></html> [end tree])AS ?result) .

FILTER (?result !="true'Axsd:boolean) . }

Figure 8: Definitive mapping knowledge

HTML/RASE event

Tree traversal event

SPARQL output

<body>

Pre-pass (start tree traversal)

SELECT DISTINCT ?this WHERE {
?this a bot:Element .

<span id="r1"
data-raseProperty="width">

Property not about

(term is translated)

type

OPTIONAL {?this
inst:widthPSetRevitTypeDimensions ?r1 }

</body>

Pre-pass (end tree traversal)

<body> Main pass (start tree traversal) BIND ((
<div data-raseType (start branch) (
="RequirementSection">

Before first Application I(

<span Property about type | EXISTS{ ?this a ifc:IfcDoor }
data-raseProperty="door"> (term is translated)

After last Application)

Between RASE groups |

Before first Requirement (

<span id="r1"
data-raseComparator=">="
data-raseTarget="0.800">

Property not about type

(?r1 >="'0.800"""xsd:double)

After last Requirement)
</div> (end branch))
</body> (end tree traversal)) AS ?result) .

FILTER (?result != "true"xsd:boolean) .

}
ORDER BY ?this

Figure 9: Example execution steps. (Bold text is specific to the example.)

269

Analysis and Discussion

RASE mark-up has been seen to be significantly more
productive than conventional coding (Beach et al., 2013;

DCOM, 2023). Example 1 illustrates this using a simple
case, with only one Application and one Requirement, and
yet the syntax of the SPARQL query and in particular the
BIND construct shows that its correctness is not obvious.
Before SPARQL and RDF/OWL can be considered as a
candidate method, it is necessary to demonstrate that the
generality of regulations including both the variety of
logic constructs and the variety of metric types can be
mapped to SPARQL without for example anticipating the
nature of the queries by configuring the target database.
Example 2 was chosen as a substantial case. It includes
metrics representing multiple Requirements,
Applications, Selections and Exceptions with
implications for the complexity of the BIND statement. It
also uses a range of parameter types including
ontological, text, logical and numeric constructs.

Three issues were encountered in these experiments. The
first is the impact arising from the decisions that
substantial parts of the IFC schema have been omitted
from the published mappings of IFC to RDF/OWL. This
omits the attributes containing the ‘Overall Width’ of door
and window entities. These choices can be remedied by
revisiting the implemented mappings or falling back on
non-standard and proprietary attributes handled in the
semantic dictionary.

The second is considered to be potentially more serious.
Previous work such as a UK Digital Compliance project
(DCOM, 2023) has indicated that there may well be
several thousand metrics in the UK Approved Documents,
representing Requirements, Applicability’s, Selections
and Exceptions. It may be impractical to ensure that a
descriptive model is complete before it is assessed. In this
context, the ‘Closed World Assumption’ (Minker, 1982)
can be summarized as ‘any information not known to be
true is taken as being false’, essentially a two-value logic,
whereas the Open World Assumption can be summarised
as ‘any information not known to be true is taken as being
unknown’, essentially a three-valued logic. The CWA
embedded in the SPARQL language may be a hazard to
the proper enforcement of legally prescribed minimum
performance. No results are generated in five of the nine
test cases examined in experiment 1. The CWA may be
tilted onto the side of caution when considering
requirements such as ‘minimum door width’ but is flawed
when we consider that the larger part of normative text is
made up of applicability’s such as ‘is a door’. In this case
not knowing if an entity is considered to be a door leads
to the width requirement not be tested.

The third issue relates to the understanding of objects in
context. Facilities are managed whenever possible
through the introduction of intermediate specifications
such as product and space types, or intermediate

270

groupings such as zones and systems. Many attributes
describing the context are assigned to these or to the
overall site, building or project objects. It may be that
SPARQL queries and the ‘path’ constructs can affect the
arbitrary number of recursive steps from an element back
to the higher levels to collect this information. It is not
clear how such path syntax or any ‘semantic
enhancement’ - effectively de-normalization - could know
which properties should be disseminated downwards. The
implication is that the appropriate search path for a
particular attribute will have to be stored in the dictionary.
Such search paths are only available in SPARQL vl.1
onwards.

Limitations

The authors anticipate that the experiments can be
extended and the solution further refined. For example,
the work has been undertaken with no particular regard
for the performance optimization of the combination of
SPARQL queries, target ontologies, and the chosen
demonstration platform. Pauwels et al (2016) indicates
that without a process of refinement of the tools, schema
and BIM model size, the performance of SW tools can be
disappointing or prohibitive. Additionally, the examples
have not considered the complexity of unit conversion and
of predicate logic relationships, which is the subject of
further work.

Conclusions

The process has successfully generated queries from
textual and tabular regulations involving several dozen
properties and logical relationships.

SPARQL queries can be automatically generated from
RASE semantic mark-up with correct syntax and content,
and that this outcome is not dependent on the length or
complexity of the source normative regulation.

The mapping between knowledge representations can be
held in a table which can itself be made machine operable
with HTML/RASE semantic markup. This shows that the
mapping can be exposed for discussion and that the craft
skills around SPARQL development can be eliminated
and the potential for error reduced.

However, the first example has demonstrated that the
execution of automated regulatory compliance checking
should use rule-engines that handle logical (three-value)
outcomes correctly. However, this issue cannot be solved
when using SPARQL.

References

ADM: UK Building Regulations Approved Document M
https://www.gov.uk/government/publications/access-
to-and-use-of-buildings-approved-document-m
accessed Jan 2023

Beach, T.H., Kasim, T., Li, H., Nisbet, N. and Rezgui, Y.,
2013, August. Towards automated compliance
checking in the construction industry. In International
Conference on Database and Expert Systems
Applications (pp. 366-380). Springer, Berlin,
Heidelberg.

CSS: https://www.w3.org/Style/CSS/Overview.en.html
Accessed Jan 2023

Crotts, Larry Joshua., 2022, Construction and Evaluation
of a Gold Standard Syntax for Formal Logic Formulas
and Systems. The University of North Carolina at
Greensboro ProQuest Dissertations Publishing,
2022.29065468.

DCOM: https://www.dcom.org.uk/wp-
content/uploads/2022/03/The-Digital-Compliance-
Ecosystem 260222.pdf accessed Jan 2023

HTMLS5: https:// www.w3.org/TR/2008/WD-html5-
20080122/ Accessed Jan 2023

Im, S., Sohn, M. , Jeong, S. and Lee, H. J. , 2014,
"Keyword-Based SPARQL Query Generation System
to Improve Semantic Tractability on LOD
Cloud," 2014 Eighth International Conference on
Innovative Mobile and Internet Services in Ubiquitous
Computing, Birmingham, UK, pp. 102-109, doi:
10.1109/IMIS.2014.95.

Jung, H., Kim, W. Automated conversion from natural
language query to SPARQL query. J Intell Inf Syst 55,
501-520 (2020). https://doi.org/10.1007/s10844-019-
00589-2

Kostylev, E.V., Reutter, J.L., Romero, M. and Vrgoc¢, D.,
2015. SPARQL with property paths. In The Semantic
Web-ISWC 2015: 14th International Semantic Web
Conference, Bethlehem, PA, USA, October 11-15,
2015, Proceedings, Part 1 14 (pp. 3-18). Springer
International Publishing.

LD-BIM: https://ld-bim.web.app/ Accessed Jan 2023

Minker, J., 1982. On indefinite databases and the closed
world assumption. In 6th Conference on Automated
Deduction: New York, USA, June 7-9, 1982 6 (pp.
292-308). Springer Berlin Heidelberg.

Nisbet, N. and Ma, L., 2022a. Nisbet, N. and Ma, L., 2022,
July. Presentations of rase knowledge mark-up. In EC3
Conference 2022 (Vol. 3). University of Turin.

Nisbet, N., Ma, L. 2022. Using RASE to represent
normative, definitive and descriptive knowledge.

271

eWork and eBusiness in Architecture, Engineering and
Construction: ECPPM 2022 Editors: Eilif Hjelseth,
Sujesh F. Sujan & Raimar Scherer. Publisher: CRC
Press.

Nisbet N, Wix J and Conover D. 2008. "The future of
virtual construction and regulation checking”, in
Brandon, P., Kocaturk, T. (Eds), Virtual Futures for
Design, Construction and Procurement, Blackwell,
Oxfordshire. doi: 10.1002/9781444302349.ch17.

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo,
J., De Meyer, R., Van de Walle, R. and Van
Campenhout, J., 2011. A semantic rule checking
environment for building performance checking.
Automation in construction, 20(5), pp.506-518.

Pauwels, P. and Terkaj, W., 2016. EXPRESS to OWL
for construction industry: Towards a recommendable
and usable ifcOWL ontology. Automation in
construction, 63, pp.100-133.

Rasmussen, M.H., Lefrangois, M., Schneider, G.F. and
Pauwels, P., 2021. BOT: The building topology
ontology of the W3C linked building data group.
Semantic Web, 12(1), pp.143-161.

RDF/OWL: https://www.w3.0org/OWL/ . Accessed Jan
2023

Shekarpour, S., Auer, S., Ngonga Ngomo, A.C., Gerber,
D., Hellmann, S. and Stadler, C., 2013. Generating
SPARQL queries using templates. Web Intelligence
and Agent Systems: An International Journal, 11(3),
pp-283-295.

SHEX: https://shex.io/ Accessed Jan 2023

SHACL: https://www.w3.org/TR/shacl/ Accessed Jan
2023

Soliman-Junior, J., Tzortzopoulos, P., and Kagioglou, M.

(2022). "Designers’ perspective on the use of
automation to support regulatory compliance in
healthcare building projects."” Construction

Management and Economics, 40(2), 123-141.

SPARQL: https://www.w3.org/TR/rdf-spargl-query/
Accessed Jan 2023

Zhang, Z., Nisbet, N., Ma, L. and Broyd, T., 2022,
October. A multi-representation method of building
rules for automatic code compliance checking. In:
Proceedings of the European Conference on Product
and Process Modeling 2022. Trondheim, Norway.

