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Abstract 
The rule interpretation step is yet to be fully automated in 
the compliance checking process, which hinders the 
automation of compliance checking. Whilst existing 
research has developed numerous methods for automated 
interpretation of building requirements, none of them can 
identify or address ambiguous requirements. As part of 
interpreting ambiguous clauses automatically, this 
research proposed a supervised machine learning method 
to detect ambiguity automatically, where the best-
performing model achieved recall, precision and accuracy 
scores of 99.0%, 71.1%, and 78.2%, respectively. This 
research contributes to the body of knowledge by 
developing a method for automated detection of 
ambiguity in building requirements to support automated 
compliance checking. 

Introduction 
In the architecture, engineering and construction (AEC) 
industry, compliance checking is an important step where 
the building design is checked against requirements in 
building regulatory documents, recommendations and 
guidance (Eastman et al., 2009). Traditional compliance 
checking is laborious, costly, time-consuming and error-
prone (Eastman et al., 2009; Macit İlal & Günaydın, 2017; 
Zhang et al., 2022a). To address this issue, automated 
compliance checking (ACC) has been a research focus in 
the past years. Numerous studies have proposed methods 
to address different aspects of the ACC challenges, 
including the rule interpretation and representation to a 
computer-readable form (Hjelseth & Nisbet, 2011; 
Solihin & Eastman, 2016; Yurchyshyna & Zarli, 2009; 
Zhang et al., 2023), the preparation of the building design 
model data for checking (Solihin et al., 2020), and the 
development of the automated compliance checking 
system (Kim et al., 2020; Pauwels et al., 2011). 
Despite the research interest, the rule interpretation and 
representation step remains a bottleneck in the ACC 
process. Many existing methods (such as the RASE 
method (Hjelseth & Nisbet, 2011)) still rely on a manual 
or semi-automated rule interpretation, which requires 
extensive efforts by domain experts (Zhang & El-Gohary 
Nora, 2017). More recently, some automated methods, 
mainly based on machine learning, have been proposed 
and achieved satisfying performance. However, they can 

only deal with quantitative clauses or qualitative rules 
with attributes; none can deal with rules with ambiguity.  
Ambiguous rules are requirements that are open to more 
than one interpretation. For example, the rule “Additional 
space may be required for special baths.” is ambiguous as 
the additional space required is not specified and there is 
no explanation of what baths are special. Ambiguity is a 
major factor hindering fully automated compliance 
checking (Zhang & El-Gohary, 2022). To make matters 
worse, as reported by Soliman-Junior et al. (2021), up to 
53% of building rules can be ambiguous, which is a 
considerable percentage and should be addressed.  
The automation of interpreting and representing 
ambiguous rules would first require accurate and fast 
identification of ambiguous clauses in building 
requirements. This paper thus aims to address this issue 
by using machine learning methods. Identifying 
ambiguous clauses would be the crucial first step towards 
automated interpreting and representing building 
requirement clauses.  
The remainder of this paper is structured as follows. The 
second section reviews related research. Then, the method 
used in this paper is proposed. Next, the results of this 
paper are presented, followed by discussions on the 
results. Finally, the paper offers some conclusions.  

Literature review 
Ambiguity in natural language 
Ambiguity is a phenomenon in natural language that has 
long been studied by linguists, philosophers and 
psychologists. Some early studies focused on 
understanding ambiguity by providing classifications for 
different types of ambiguity. Bach (1998) identified two 
types of ambiguity, namely lexical (i.e., a word has more 
than one meaning) and structural (i.e., a phrase has more 
than one structure). This classification was later expanded 
by Berry et al. (2003) into four types: lexical, syntactical 
(structural), semantic and pragmatic ambiguity, where 
semantic ambiguity is about ambiguity related to the logic 
form (e.g., negation and quantifiers in predicate logic) and 
pragmatic ambiguity refers to more than one valid 
interpretation considering the context. They further 
provided more examples and subclasses for each type of 
ambiguity. For example, homonymy (e.g., bank) and 
polysemy (e.g., green) are two common types of lexical 
ambiguity. Some other studies suggested that not all 



ambiguity in natural language is harmful and explored its 
role in communication. Piantadosi et al. (2012), for 
example, believed ambiguity promotes easy and effective 
communication when the context is informative. Larina et 
al. (2019) suggested that ambiguity in media discourse is 
a persuasion strategy and can influence public opinion.  
Ambiguity has also been studied in other areas, such as 
the legal domain. Reidenberg et al. (2016), for example, 
classified vagueness in website privacy policies into four 
categories, including condition, generalisation, modality 
and numeric quantifier. Incompleteness was also 
identified as a type of ambiguity. Similarly, the corpus-
based study on legislative texts by Li (2017) found four 
semantic types of vague terms, namely time, quantity, 
degree and category. However, these studies focused 
mainly on vagueness and incompleteness but neglected 
other aspects of ambiguity.  
Ambiguity received considerable attention in the software 
requirement engineering (RE) domain. Extensive research 
has focused on the classification of ambiguity, ambiguity 
detection and reduction in software requirements. 
Kamsties & Peach (2000) developed a taxonomy of 
software requirements by incorporating both linguistic 
ambiguity and domain-specific ambiguity in requirement 
engineering (i.e., RE-specific ambiguity). They also 
proposed a checklist for easier linguistic ambiguity 
detection. Their later research proposed software 
engineering ambiguity (SE-ambiguity), which includes 
three categories: application domain, system domain and 
development domain ambiguity (Berry & Kamsties, 
2004). A more recent study provided a more 
comprehensive ambiguity classification in the RE 
domain, including six categories, namely lexical 
ambiguity, semantic ambiguity, referential ambiguity, 
structural ambiguity, vagueness and incompleteness 
(Massey et al., 2014). While these ambiguity 
classifications can provide a checklist for manual 
ambiguity identification, some more efficient methods 
have been proposed, including semi-automated and 
automated methods. For example, Bruijn & Dekkers 
(2010) used the Alpino tool for automated lexical and 
syntactical ambiguity analysis of software requirements. 
Some manual tools including panel review and systematic 
review were also applied to improve detection accuracy. 
As for automated methods, natural language processing 
(NLP) techniques were applied. For example, Matsuoka 
& Lepage (2011) compared the performance of three 
methods, namely C-value, inverse document frequency 
(IDF) and similarity to WordNet in detecting ambiguity in 
software requirements. Similarly, Ferrari & Gnesi (2012) 
proposed an algorithm for identifying pragmatic 
ambiguity. The algorithm can first extract the sentence’s 
“concept paths” and compare their similarities. A 
similarity score lower than the given threshold will lead 
to the sentence being regarded as having pragmatic 
ambiguity. Other research focused on ambiguity 
reduction. They either proposed a formal representation to 
represent natural language with less ambiguity (Osborne 

& MacNish, 1996) or used constrained language (Popescu 
et al., 2007). However, both methods have limited 
expressiveness and cannot fully capture the meanings of 
natural language.  
In contrast with the software engineering domain, 
ambiguity in building requirements has received little 
attention. Only a handful of studies have mentioned 
ambiguity. In a study on healthcare facility requirements, 
Soliman-Junior et al. (2020) found ambiguity in spatial 
connectivity rules (e.g., adjacent to). They further 
suggested using semantic enrichment to address the 
ambiguity issues in adjacency and containment clauses. 
Their more recent work found that there were two types 
of ambiguous clauses leading to subjectivity; one is 
natural, while the other is artificial (Soliman-Junior et al., 
2021). Natural subjectivity is clauses that include abstract 
elements (e.g., design flexibility) and cannot easily be 
made unambiguous. Artificial subjectivity, however, can 
be avoided if they are carefully written using clear and 
precise terms. In the classification of building 
requirements proposed by Zhang et al. (2022b), clauses 
concerning quality and/or aesthetics are regarded as 
ambiguous. Several studies attempted to address the 
compliance checking of ambiguous clauses.  For example, 
Hjelseth (2013) proposed the Test Indicator Objectives 
(TIO) methodology to transform ambiguous phrases into 
quantitative metrics (e.g., well illuminated to minimum 
illumination in lux). Li et al. (2020) developed an 
automated method that used spatial artefacts (i.e., 
functional space, visibility space, movement space) to 
deal with spatial rules with ambiguity. They pointed out 
that the disambiguation of rules needs to be backed by 
related evidence. However, both methods still rely on 
transforming ambiguous rules into quantitative metrics.   

NLP for text classification in the AEC industry 
Natural language processing (NLP) techniques have been 
widely used to deal with text-related issues in the AEC 
industry, such as classifying documents, information 
extraction from documents, and ontology engineering. In 
this section, we will focus specifically on the methods for 
classifying texts in the AEC industry, mainly including 
contract and building requirement documents.     
Text classification (TC) is a subdomain of NLP. 
Depending on the number of output categories and 
whether one sentence can belong to more than one 
category, TC problems can be further divided into binary 
TC, multi-class TC and multi-label TC. Binary TC is 
when there are only two possible outputs and one sentence 
can only belong to one category. Multi-class TC refers to 
sentences that belong to one of three or more mutually 
exclusive classes. Multi-label TC means more than one 
category can be assigned to the same sentences and there 
are more than two categories in total.  
In literature, various methods have been proposed to 
address the three types of TC problems in the AEC 
industry. Some studies focused on binary TC. Hassan & 
Le (2020), for example, proposed a method to identify 



requirements and non-requirements in construction 
contracts. They experimented using the word2vec model, 
bag of words model and bag of n-grams model using four 
ML algorithms, where the model built on support vector 
machines (SVM) achieved the best accuracy of 95%. Also 
dealing with contracts, Candaş & Tokdemir (2022a)
implemented an ML and rule-based method to detect 
vagueness in the FIDIC Silver Book. The study revealed 
that a rule-based approach yielded promising performance 
on recall, precision and accuracy scores (89.7%) when 
seven vague terms were selected. The best-performing 
ML model achieved a lower accuracy at 80%.   However, 
the authors pointed out that a rule-based approach is 
typically harder to maintain. 
Other studies used various methods to address multi-class 
or multi-label TC. One of the first studies on the multi-
class TC problem was Caldas et al. (2002), which
proposed an automated method for classifying 
construction project documents. They evaluated the 
performance of classifiers based on four ML algorithms 
SVM, Rocchio algorithm, Naïve Bayes, and k-nearest 
neighbours), and the commercial software IBM Miner for 
Text, where SVM performed the best. To address multi-
label TC problems, two commonly implemented 
strategies are problem transformation and algorithm 
adaptation. Based on the former strategy, Salama & El-
Gohary (2016) developed a hybrid method based on a 
supervised ML algorithm and a deontic model to classify 
requirement clauses into scope-related categories, such as 
environmental or emergency management. This method 
proved very effective and yielded a perfect recall score 
and 96% precision. Candaş & Tokdemir (2022b) used a 
supervised ML approach with a bag of n-grams 
representation for multi-label classification of FIDIC 
contracts. They found that the model based on the SVM 
algorithm had the best performance, with a precision 
score of 0.952, yet the recall is only 0.786. A more 
advanced method has been developed by Moon et al. 
(2022) to detect different types of contractual risks. They 
used bidirectional encoder representations from 
transformers (BERT) method, which achieved 88.9% 
accuracy on validation and 93.4% recall on the test 
dataset. The BERT method showed dominant 
performance compared with the model built on SVM and 
simple neural networks. Unlike the above-mentioned 
research, Zhou & El-Gohary (2016b) approached the 
multi-label TC problem on environment-related building 
requirements using an ontology-based algorithm. A 
domain ontology on environmental requirements was
developed to conceptualise related knowledge in the 
environmental requirements to improve the classifier 
performance. They reported that this ontology-based 
approach consistently outperformed ML-based methods 
in tests.

Research gap
There have been extensive research efforts in automated 
compliance checking. While various methods have been 
proposed to manually or automatically classify, extract, 

interpret and represent building requirements, none can 
deal with ambiguous requirements. Although some 
scholars have shed light on the nature of ambiguity and/or
subjectivity in building requirements, the categories they 
proposed are normally too broad and lack sufficient 
details and instructions for manual ambiguity detection. 
In addition, no automated or semi-automated methods 
have been proposed for detection of ambiguity in building 
requirements, which have the potential to greatly improve 
the efficiency of this step. This paper aims to propose an
ML method to detect ambiguity in building requirements
automatically. The proposed method is detailed in the 
“Methodology” section. 

Methodology
Automated ambiguity detection is essentially a text 
classification (TC) problem. Specifically, in this paper, as 
1) there are only two possible results (i.e., ambiguous or 
unambiguous) for each given sentence; 2) the possible 
results are mutually exclusive, it is a binary TC problem. 
As is shown in the literature review section, the 
supervised machine learning method has been widely 
used to deal with binary TC problems (Candaş & 
Tokdemir, 2022a; Hassan & Le, 2020) and TC problems
on building requirements (Salama & El-Gohary, 2016; 
Zhou & El-Gohary, 2016a), where it has demonstrated 
promising performance. Another widely used method for 
TC is the rule-based approach. Although the rule-based 
approach can outperform supervised machine learning in 
some cases, it has two main drawbacks: 1) it is time-
consuming as rules are handcrafted; 2) it is less flexible as
changing or expanding the dataset typically requires more 
rules (Schütze et al., 2008). This research thus selected the 
supervised machine learning method for the automated 
identification of ambiguous clauses. 
The main steps of implementing a supervised machine 
learning model include model building and model 
evaluation, which are presented in Figure 1 and will be 
detailed in the following two subsections. 

Figure 1. The workflows of the supervised ML method

Building the machine learning models
To build a machine learning model, the first step is 
preparing the dataset. The authors selected all requirement 
clauses from the Health Building Notes (HBN) 00-02 and 
00-03 (healthcare building requirements in England and 
Wales), as they have been reported to have ambiguous 



clauses by Soliman-Junior et al. (2021). The data corpus 
includes 464 sentences, where 237 sentences are 
ambiguous and 227 are unambiguous. Ambiguous 
sentences are sentences that have multiple valid 
interpretations. Examples of such sentences include those 
with words or phrases that cause borderline cases (e.g., 
sufficient), lack detailed information (e.g., special baths), 
etc. The authors reviewed all sentences and gave a label 
to each sentence. Either a “T” label (denoting an 
ambiguous sentence) or an “F” label (meaning an 
unambiguous sentence) was assigned to each sentence to 
provide the ground truth of the classification.  
The next step is data pre-processing. Five main steps were 
conducted. First, all texts were transformed into 
lowercase as ambiguity is case-insensitive. Second, the 
punctuation marks in the sentences were removed. This 
choice was made because in the authors’ preliminary 
exploration, punctuation does not contribute much to the 
ambiguity of the sentence. The third pre-processing step 
is tokenization, where the texts are split into tokens 
(subunits of the sentence). Tokenization is an essential 
step in TC, as the ML algorithms can only analyse texts 
in the form of feature vectors. Next, common English 
stopwords (e.g., a, have) were removed by using the 
Natural Language Toolkit (NLTK) in Python (Bird, 
2006), as stopwords mainly include non-distinctive 
features that are not helpful for the ML model. Then, 
lemmatization was performed using WordNetLemmatizer 
in NLTK to turn each term into its root form (e.g., rooms 
to room). Lemmatization helps keep the vocabulary in the 
data corpus small and reduces the number of features. 
Finally, the dataset was randomly split into a training 
dataset to train the machine learning model and a test set 
to test the model performance, where 80% of the data was 
in the training set and 20% was in the test set.  
For the feature extraction step, three types of methods 
were experimented with, namely bag of words (BOW), 
bag of n-grams and term frequency-inverse document 
frequency (TF-IDF). BOW is the most widely used text 
representation (Schütze et al., 2008). Each sentence is 
represented by a vector with the counts of each word. It 
has the advantages of being simple and computationally 
efficient. However, the main drawback of the BOW 
representation is that it ignores the sequence of words. 
Bag of n-grams refers to a group of models such as 
unigram (words, same as BOW), bi-grams (pairs of 
words) and tri-grams (three words), etc., where n is an 
integer. It considers several consecutive words 
(depending on the value of “n”) so that partial information 
on the order of words and the contexts are included (Joulin 
et al., 2016). Another text representation method used in 
this study is TF-IDF. It is a statistical method that 
evaluates the relevant importance of a term in a document 
(Lam & Lee, 1999). It does so by considering the 
frequency of a term in a statement and its 
representativeness in the whole document (i.e., the 
weighting will be lower for a term if it frequently appears 

both in a statement and the whole document) (Sebastiani, 
2002).  
After the feature extraction step, the machine learning 
algorithm support vector machines (SVM) was used to 
build the classification models. SVM aims to find the best 
decision surface for separating the training data points 
into classes in a high-dimensional feature space 
(Joachims, 1998). It can be used to classify both linear and 
non-linear data. It has been reported as one of the best-
performing ML algorithms in previous TC studies on 
construction documents (Candaş & Tokdemir, 2022b; 
Hassan & Le, 2020).  
The ML models were then trained on the training dataset 
and tested on the test dataset to generate performance 
results, which will be presented in the results and 
discussions section.  

Evaluating the machine learning models 
The machine learning models were evaluated using three 
metrics, namely accuracy, precision and recall. To 
calculate the three metrics, the total number of predictions 
needs to be first understood. Its calculation formula is 
shown in equation (1). TP (true positive) means the 
number of correct predictions on a correct classification; 
TN (true negative) is the number of incorrect predictions 
on an incorrect classification; FN (false negative) refers to 
the number of incorrect predictions on the correct 
classification and FP (false positive) means the number of 
correct predictions on the incorrect classification 
(Sebastiani, 2002). The calculation formulas for the three 
metrics are shown in equations (2), (3) and (4), 
respectively. Accuracy measures the percentage of correct 
predictions. A higher accuracy score denotes better model 
performance.  

                                                                                 
                                       

                    

          

Despite being easy to calculate, the disadvantage of 
accuracy is not being discriminant and distinctive enough 
to select the best model (Huang & Ling, 2007). Hence, 
this study also used precision and recall as evaluation 
metrics. Precision measures the proportion of correct 
positive predictions. Recall, also known as sensitivity, 
denotes the effectiveness of the ML model on positive 
class identification. Hence, in general, the higher the 
precision and recall scores, the better the model 
performance.  

Results and Discussions 
The authors implemented the above-mentioned ML 
methods using Python 3.7. Hyperparameter tuning (based 



on grid search) was conducted for each model to select the 
best-performing parameters for model building. To 
alleviate potential overfitting issues (i.e., only the set of 
distinctive features is selected due to a small feature set), 
k-fold cross-validation procedures are applied. All 
machine learning models were able to complete the 
identification fully automatically within seconds. In this 
section, the authors look at the performance of different 
models based on three metrics: accuracy, precision and 
recall.  

Table 1: Mean performance scores of the four ML models 
Performance 
score (mean) 

Bag of 
words 

Bag of 
bi-grams 

Bag of 
tri-grams TF-IDF 

Accuracy 82.2% 75.5% 78.2% 83.0% 
Precision 80.3% 73.1% 71.1% 82.5% 

Recall 88.3% 84.7% 99.0% 86.2% 
The mean accuracy, precision and recall scores of 
different models with 5-fold cross-validation procedures 
and varying feature representation methods are shown in 
Table 1. As can be seen from Table 1, the model based on 
the TF-IDF feature weighting method performed the best 
among the four models, with an average accuracy score of 
83.0%. Among the three n-grams models, the unigram 
model (bag of words model) yielded the best accuracy 
results, where the mean score was 82.2%. As the number 
of grams increased, the mean accuracy score first fell to 
75.5% in the bi-grams model and then increased to 78.2% 
in the tri-gram model.  
The accuracy results indicate that the increase in the size 
of grams is not helpful. A similar binary TC study by 
Hassan & Le (2020) also showed that the unigram model 
achieved the highest accuracy score compared with the bi-
grams and tri-grams models. The data sparsity issue could 
be a reason for the reduction in accuracy in the bi-grams 
and tri-grams models (Farhoodi et al., 2011). The reason 
for the better performance of the tri-grams model over the 
bi-grams model could be that the tri-grams model helped 
the ML algorithm learn more semantic information in 
three consecutive words over two-word phrases, thereby 
helping the detection of ambiguity.  
As for the precision and recall scores, they are typically 
two duelling performance metrics (Buckland & Gey, 
1994). In this study, the recall score is more important 
than precision and accuracy because not omitting a single 
ambiguous sentence is more critical than 1) ensuring 
every ambiguous sentence detected by the ML model is 
actually ambiguous and/or; 2) ensuring all the predictions 
are correct (no matter positive or negative predictions). 
Ideally, a 100% recall score means domain experts can 
rest assured that all ambiguous sentences are among those 
identified by the ML model.  
As shown in Table 1, the highest mean precision was 
achieved by the model based on the TF-IDF 
representation (82.5%), followed by the unigram model, 
which yielded a mean precision score of 80.3%. As the 
number of grams increased, a drop in the mean precision 
score was observed. The precision scores of models based 
on bi-grams and tri-grams were only 73.1% and 71.1%, 

respectively. Despite the low precision scores, the tri-
grams model performed the best regarding the recall score 
(99.0%), while the mean recall scores of all other models 
were below 90%.  
Overall, the satisfactory performance of the supervised 
ML models proposed in this paper shows that a supervised 
ML method is a viable and reliable way to detect 
ambiguity in building requirements. As the recall score is 
the most important metric among the three evaluation 
metrics, the model based on tri-grams with the SVM 
algorithm is the best-performing model, which achieved 
an almost perfect mean recall score of 99.0 % and a mean 
precision and accuracy score of 71.1% and 78.2%, 
respectively.  

Conclusions 
Accurate and efficient rule interpretation is a bottleneck 
in the ACC process. The current automated interpretation 
methods are often incapable of dealing with ambiguous 
clauses. A quick and reliable way to identify ambiguous 
clauses is a crucial first step in addressing this issue. This 
paper proposed a supervised ML method to detect 
ambiguity in building requirements automatically. Four 
models using the bag of words, bag of bi-grams, bag of 
tri-grams and TF-IDF representations based on the SVM 
algorithm were experimented. They were trained and 
tested on 464 building requirements collected from Health 
Building Notes in England, with train and test percentages 
of 80% and 20%, respectively. All four models showed 
significant improvement in the efficiency of ambiguity 
detection compared with manual identification and 
finished detection in seconds. Among the four models, the 
bag of tri-grams model achieved the best recall score at 
99.0%, while the TF-IDF model achieved the best 
accuracy score of 83.0%.  
This research is the first to propose an automated method 
for ambiguity detection in building requirements. The 
proposed method significantly reduced the manual effort 
in detecting ambiguity in building requirements and 
achieved satisfactory overall performance on three 
evaluation metrics. The recognised ambiguous clauses 
can then be reviewed and interpreted by domain experts 
to support the automated compliance checking process.  
Practitioners in the AEC industry can benefit from using 
this tool to improve the accuracy and efficiency of 
checking regulations before design submission. This tool 
could also help improve regulators’ regulations drafting 
to avoid excessive ambiguity.  
This research has some limitations. Firstly, the dataset 
only includes 464 sentences. More data can be added to 
improve the model performance further and alleviate the 
data overfitting issue. Secondly, the authors only 
experimented with the SVM algorithm for model 
building. In future research, more complex ML models 
such as word embeddings can be used to see if the 
performance can be improved. Thirdly, this paper only 
experimented with one data pre-processing method and a 
4:1 training-test split ratio. Different data pre-processing 



methods and training-test set ratios can be tested in future 
research to achieve better performance. Future research 
can also widen the research scope by considering the 
automatic detection of more than individual sentences or 
detecting other valuable attributes, such as complexity, to 
facilitate the ACC process.  
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