2023 European Conference on Computing in Construction

40th International CIB W78 Conference
Heraklion, Crete, Greece
July 10-12, 2023

International Council
for Research and Innovation
in Building and Construction

&

ciklU18

USING MACHINE LEARNING FOR AUTOMATED DETECTION OF AMBIGUITY IN
BUILDING REQUIREMENTS
Zijing Zhang', Ling Ma'
University College London, London, UK

Abstract

The rule interpretation step is yet to be fully automated in
the compliance checking process, which hinders the
automation of compliance checking. Whilst existing
research has developed numerous methods for automated
interpretation of building requirements, none of them can
identify or address ambiguous requirements. As part of
interpreting ambiguous clauses automatically, this
research proposed a supervised machine learning method
to detect ambiguity automatically, where the best-
performing model achieved recall, precision and accuracy
scores of 99.0%, 71.1%, and 78.2%, respectively. This
research contributes to the body of knowledge by
developing a method for automated detection of
ambiguity in building requirements to support automated
compliance checking.

Introduction

In the architecture, engineering and construction (AEC)
industry, compliance checking is an important step where
the building design is checked against requirements in
building regulatory documents, recommendations and
guidance (Eastman et al., 2009). Traditional compliance
checking is laborious, costly, time-consuming and error-
prone (Eastman et al., 2009; Macit {lal & Giinaydin, 2017;
Zhang et al., 2022a). To address this issue, automated
compliance checking (ACC) has been a research focus in
the past years. Numerous studies have proposed methods
to address different aspects of the ACC challenges,
including the rule interpretation and representation to a
computer-readable form (Hjelseth & Nisbet, 2011;
Solihin & Eastman, 2016; Yurchyshyna & Zarli, 2009;
Zhang et al., 2023), the preparation of the building design
model data for checking (Solihin et al., 2020), and the
development of the automated compliance checking
system (Kim et al., 2020; Pauwels et al., 2011).

Despite the research interest, the rule interpretation and
representation step remains a bottleneck in the ACC
process. Many existing methods (such as the RASE
method (Hjelseth & Nisbet, 2011)) still rely on a manual
or semi-automated rule interpretation, which requires
extensive efforts by domain experts (Zhang & El-Gohary
Nora, 2017). More recently, some automated methods,
mainly based on machine learning, have been proposed
and achieved satisfying performance. However, they can

272

only deal with quantitative clauses or qualitative rules
with attributes; none can deal with rules with ambiguity.

Ambiguous rules are requirements that are open to more
than one interpretation. For example, the rule “Additional
space may be required for special baths.” is ambiguous as
the additional space required is not specified and there is
no explanation of what baths are special. Ambiguity is a
major factor hindering fully automated compliance
checking (Zhang & El-Gohary, 2022). To make matters
worse, as reported by Soliman-Junior et al. (2021), up to
53% of building rules can be ambiguous, which is a
considerable percentage and should be addressed.

The automation of interpreting and representing
ambiguous rules would first require accurate and fast
identification of ambiguous clauses in building
requirements. This paper thus aims to address this issue
by wusing machine learning methods. Identifying
ambiguous clauses would be the crucial first step towards
automated interpreting and representing building
requirement clauses.

The remainder of this paper is structured as follows. The
second section reviews related research. Then, the method
used in this paper is proposed. Next, the results of this
paper are presented, followed by discussions on the
results. Finally, the paper offers some conclusions.

Literature review

Ambiguity in natural language

Ambiguity is a phenomenon in natural language that has
long been studied by linguists, philosophers and
psychologists. Some early studies focused on
understanding ambiguity by providing classifications for
different types of ambiguity. Bach (1998) identified two
types of ambiguity, namely lexical (i.e., a word has more
than one meaning) and structural (i.e., a phrase has more
than one structure). This classification was later expanded
by Berry et al. (2003) into four types: lexical, syntactical
(structural), semantic and pragmatic ambiguity, where
semantic ambiguity is about ambiguity related to the logic
form (e.g., negation and quantifiers in predicate logic) and
pragmatic ambiguity refers to more than one valid
interpretation considering the context. They further
provided more examples and subclasses for each type of
ambiguity. For example, homonymy (e.g., bank) and
polysemy (e.g., green) are two common types of lexical
ambiguity. Some other studies suggested that not all

ambiguity in natural language is harmful and explored its
role in communication. Piantadosi et al. (2012), for
example, believed ambiguity promotes easy and effective
communication when the context is informative. Larina et
al. (2019) suggested that ambiguity in media discourse is
a persuasion strategy and can influence public opinion.

Ambiguity has also been studied in other areas, such as
the legal domain. Reidenberg et al. (2016), for example,
classified vagueness in website privacy policies into four
categories, including condition, generalisation, modality
and numeric quantifier. Incompleteness was also
identified as a type of ambiguity. Similarly, the corpus-
based study on legislative texts by Li (2017) found four
semantic types of vague terms, namely time, quantity,
degree and category. However, these studies focused
mainly on vagueness and incompleteness but neglected
other aspects of ambiguity.

Ambiguity received considerable attention in the software
requirement engineering (RE) domain. Extensive research
has focused on the classification of ambiguity, ambiguity
detection and reduction in software requirements.
Kamsties & Peach (2000) developed a taxonomy of
software requirements by incorporating both linguistic
ambiguity and domain-specific ambiguity in requirement
engineering (i.e., RE-specific ambiguity). They also
proposed a checklist for easier linguistic ambiguity
detection. Their later research proposed software
engineering ambiguity (SE-ambiguity), which includes
three categories: application domain, system domain and
development domain ambiguity (Berry & Kamsties,

2004). A more recent study provided a more
comprehensive ambiguity classification in the RE
domain, including six categories, namely lexical

ambiguity, semantic ambiguity, referential ambiguity,
structural ambiguity, vagueness and incompleteness
(Massey et al., 2014). While these ambiguity
classifications can provide a checklist for manual
ambiguity identification, some more efficient methods
have been proposed, including semi-automated and
automated methods. For example, Bruijn & Dekkers
(2010) used the Alpino tool for automated lexical and
syntactical ambiguity analysis of software requirements.
Some manual tools including panel review and systematic
review were also applied to improve detection accuracy.
As for automated methods, natural language processing
(NLP) techniques were applied. For example, Matsuoka
& Lepage (2011) compared the performance of three
methods, namely C-value, inverse document frequency
(IDF) and similarity to WordNet in detecting ambiguity in
software requirements. Similarly, Ferrari & Gnesi (2012)
proposed an algorithm for identifying pragmatic
ambiguity. The algorithm can first extract the sentence’s
“concept paths” and compare their similarities. A
similarity score lower than the given threshold will lead
to the sentence being regarded as having pragmatic
ambiguity. Other research focused on ambiguity
reduction. They either proposed a formal representation to
represent natural language with less ambiguity (Osborne

273

& MacNish, 1996) or used constrained language (Popescu
et al., 2007). However, both methods have limited
expressiveness and cannot fully capture the meanings of
natural language.

In contrast with the software engineering domain,
ambiguity in building requirements has received little
attention. Only a handful of studies have mentioned
ambiguity. In a study on healthcare facility requirements,
Soliman-Junior et al. (2020) found ambiguity in spatial
connectivity rules (e.g., adjacent to). They further
suggested using semantic enrichment to address the
ambiguity issues in adjacency and containment clauses.
Their more recent work found that there were two types
of ambiguous clauses leading to subjectivity; one is
natural, while the other is artificial (Soliman-Junior et al.,
2021). Natural subjectivity is clauses that include abstract
elements (e.g., design flexibility) and cannot easily be
made unambiguous. Artificial subjectivity, however, can
be avoided if they are carefully written using clear and
precise terms. In the classification of building
requirements proposed by Zhang et al. (2022b), clauses
concerning quality and/or aesthetics are regarded as
ambiguous. Several studies attempted to address the
compliance checking of ambiguous clauses. For example,
Hjelseth (2013) proposed the Test Indicator Objectives
(TIO) methodology to transform ambiguous phrases into
quantitative metrics (e.g., well illuminated to minimum
illumination in lux). Li et al. (2020) developed an
automated method that used spatial artefacts (i.e.,
functional space, visibility space, movement space) to
deal with spatial rules with ambiguity. They pointed out
that the disambiguation of rules needs to be backed by
related evidence. However, both methods still rely on
transforming ambiguous rules into quantitative metrics.

NLP for text classification in the AEC industry

Natural language processing (NLP) techniques have been
widely used to deal with text-related issues in the AEC
industry, such as classifying documents, information
extraction from documents, and ontology engineering. In
this section, we will focus specifically on the methods for
classifying texts in the AEC industry, mainly including
contract and building requirement documents.

Text classification (TC) is a subdomain of NLP.
Depending on the number of output categories and
whether one sentence can belong to more than one
category, TC problems can be further divided into binary
TC, multi-class TC and multi-label TC. Binary TC is
when there are only two possible outputs and one sentence
can only belong to one category. Multi-class TC refers to
sentences that belong to one of three or more mutually
exclusive classes. Multi-label TC means more than one
category can be assigned to the same sentences and there
are more than two categories in total.

In literature, various methods have been proposed to
address the three types of TC problems in the AEC
industry. Some studies focused on binary TC. Hassan &
Le (2020), for example, proposed a method to identify

requirements and non-requirements in construction
contracts. They experimented using the word2vec model,
bag of words model and bag of n-grams model using four
ML algorithms, where the model built on support vector
machines (SVM) achieved the best accuracy of 95%. Also
dealing with contracts, Candas & Tokdemir (2022a)
implemented an ML and rule-based method to detect
vagueness in the FIDIC Silver Book. The study revealed
that a rule-based approach yielded promising performance
on recall, precision and accuracy scores (89.7%) when
seven vague terms were selected. The best-performing
ML model achieved a lower accuracy at 80%. However,
the authors pointed out that a rule-based approach is
typically harder to maintain.

Other studies used various methods to address multi-class
or multi-label TC. One of the first studies on the multi-
class TC problem was Caldas et al. (2002), which
proposed an automated method for classifying
construction project documents. They evaluated the
performance of classifiers based on four ML algorithms
SVM, Rocchio algorithm, Naive Bayes, and k-nearest
neighbours), and the commercial software IBM Miner for
Text, where SVM performed the best. To address multi-
label TC problems, two commonly implemented
strategies are problem transformation and algorithm
adaptation. Based on the former strategy, Salama & El-
Gohary (2016) developed a hybrid method based on a
supervised ML algorithm and a deontic model to classify
requirement clauses into scope-related categories, such as
environmental or emergency management. This method
proved very effective and yielded a perfect recall score
and 96% precision. Candas & Tokdemir (2022b) used a
supervised ML approach with a bag of n-grams
representation for multi-label classification of FIDIC
contracts. They found that the model based on the SVM
algorithm had the best performance, with a precision
score of 0.952, yet the recall is only 0.786. A more
advanced method has been developed by Moon et al.
(2022) to detect different types of contractual risks. They
used bidirectional encoder representations from
transformers (BERT) method, which achieved 88.9%
accuracy on validation and 93.4% recall on the test
dataset. The BERT method showed dominant
performance compared with the model built on SVM and
simple neural networks. Unlike the above-mentioned
research, Zhou & EIl-Gohary (2016b) approached the
multi-label TC problem on environment-related building
requirements using an ontology-based algorithm. A
domain ontology on environmental requirements was
developed to conceptualise related knowledge in the
environmental requirements to improve the classifier
performance. They reported that this ontology-based
approach consistently outperformed ML-based methods
in tests.

Research gap

There have been extensive research efforts in automated
compliance checking. While various methods have been
proposed to manually or automatically classify, extract,

274

interpret and represent building requirements, none can
deal with ambiguous requirements. Although some
scholars have shed light on the nature of ambiguity and/or
subjectivity in building requirements, the categories they
proposed are normally too broad and lack sufficient
details and instructions for manual ambiguity detection.
In addition, no automated or semi-automated methods
have been proposed for detection of ambiguity in building
requirements, which have the potential to greatly improve
the efficiency of this step. This paper aims to propose an
ML method to detect ambiguity in building requirements
automatically. The proposed method is detailed in the
“Methodology” section.

Methodology

Automated ambiguity detection is essentially a text
classification (TC) problem. Specifically, in this paper, as
1) there are only two possible results (i.e., ambiguous or
unambiguous) for each given sentence; 2) the possible
results are mutually exclusive, it is a binary TC problem.
As is shown in the literature review section, the
supervised machine learning method has been widely
used to deal with binary TC problems (Candas &
Tokdemir, 2022a; Hassan & Le, 2020) and TC problems
on building requirements (Salama & EIl-Gohary, 2016;
Zhou & El-Gohary, 2016a), where it has demonstrated
promising performance. Another widely used method for
TC is the rule-based approach. Although the rule-based
approach can outperform supervised machine learning in
some cases, it has two main drawbacks: 1) it is time-
consuming as rules are handcrafted; 2) it is less flexible as
changing or expanding the dataset typically requires more
rules (Schiitze et al., 2008). This research thus selected the
supervised machine learning method for the automated
identification of ambiguous clauses.

The main steps of implementing a supervised machine
learning model include model building and model
evaluation, which are presented in Figure 1 and will be
detailed in the following two subsections.

Data Collection

Data Pre-processing

Lowercasing
Punctuations removal
‘Tokenization
Stopwords removal
Lemmatization

= 464 clauses from
HBN 00-02, 00-03
= Each clause labeled

using “T" or “F

5 Fold Cross-validation

Classifier Evaluation Text Representatio

Bag of words

Train-Test Split

Accuracy Bag of bi-grams

Bag of tri-grams
TF-IDF

ML Algorithm
SVM

80% Train dataset

Precision
Recall

20% Test dataset

Figure 1. The workflows of the supervised ML method

Building the machine learning models

To build a machine learning model, the first step is
preparing the dataset. The authors selected all requirement
clauses from the Health Building Notes (HBN) 00-02 and
00-03 (healthcare building requirements in England and
Wales), as they have been reported to have ambiguous

clauses by Soliman-Junior et al. (2021). The data corpus
includes 464 sentences, where 237 sentences are
ambiguous and 227 are unambiguous. Ambiguous
sentences are sentences that have multiple valid
interpretations. Examples of such sentences include those
with words or phrases that cause borderline cases (e.g.,
sufficient), lack detailed information (e.g., special baths),
etc. The authors reviewed all sentences and gave a label
to each sentence. Either a “T” label (denoting an
ambiguous sentence) or an “F” label (meaning an
unambiguous sentence) was assigned to each sentence to
provide the ground truth of the classification.

The next step is data pre-processing. Five main steps were
conducted. First, all texts were transformed into
lowercase as ambiguity is case-insensitive. Second, the
punctuation marks in the sentences were removed. This
choice was made because in the authors’ preliminary
exploration, punctuation does not contribute much to the
ambiguity of the sentence. The third pre-processing step
is tokenization, where the texts are split into tokens
(subunits of the sentence). Tokenization is an essential
step in TC, as the ML algorithms can only analyse texts
in the form of feature vectors. Next, common English
stopwords (e.g., a, have) were removed by using the
Natural Language Toolkit (NLTK) in Python (Bird,
2006), as stopwords mainly include non-distinctive
features that are not helpful for the ML model. Then,
lemmatization was performed using WordNetLemmatizer
in NLTK to turn each term into its root form (e.g., rooms
to room). Lemmatization helps keep the vocabulary in the
data corpus small and reduces the number of features.
Finally, the dataset was randomly split into a training
dataset to train the machine learning model and a test set
to test the model performance, where 80% of the data was
in the training set and 20% was in the test set.

For the feature extraction step, three types of methods
were experimented with, namely bag of words (BOW),
bag of n-grams and term frequency-inverse document
frequency (TF-IDF). BOW is the most widely used text
representation (Schiitze et al., 2008). Each sentence is
represented by a vector with the counts of each word. It
has the advantages of being simple and computationally
efficient. However, the main drawback of the BOW
representation is that it ignores the sequence of words.
Bag of n-grams refers to a group of models such as
unigram (words, same as BOW), bi-grams (pairs of
words) and tri-grams (three words), etc., where n is an
integer. It considers several consecutive words
(depending on the value of “n”) so that partial information
on the order of words and the contexts are included (Joulin
et al., 2016). Another text representation method used in
this study is TF-IDF. It is a statistical method that
evaluates the relevant importance of a term in a document
(Lam & Lee, 1999). It does so by considering the
frequency of a term in a statement and its
representativeness in the whole document (i.e., the
weighting will be lower for a term if it frequently appears

275

both in a statement and the whole document) (Sebastiani,
2002).

After the feature extraction step, the machine learning
algorithm support vector machines (SVM) was used to
build the classification models. SVM aims to find the best
decision surface for separating the training data points
into classes in a high-dimensional feature space
(Joachims, 1998). It can be used to classify both linear and
non-linear data. It has been reported as one of the best-
performing ML algorithms in previous TC studies on
construction documents (Candas & Tokdemir, 2022b;
Hassan & Le, 2020).

The ML models were then trained on the training dataset
and tested on the test dataset to generate performance
results, which will be presented in the results and
discussions section.

Evaluating the machine learning models

The machine learning models were evaluated using three
metrics, namely accuracy, precision and recall. To
calculate the three metrics, the total number of predictions
needs to be first understood. Its calculation formula is
shown in equation (1). TP (true positive) means the
number of correct predictions on a correct classification;
TN (true negative) is the number of incorrect predictions
on an incorrect classification; FN (false negative) refers to
the number of incorrect predictions on the correct
classification and FP (false positive) means the number of
correct predictions on the incorrect classification
(Sebastiani, 2002). The calculation formulas for the three
metrics are shown in equations (2), (3) and (4),
respectively. Accuracy measures the percentage of correct
predictions. A higher accuracy score denotes better model
performance.

Total number of predictions =TP + TN + FP +

FN (1)
Accuracy = (TPTH) — (2)
Total number of predictions
Precision = —= 3)
TP+FP
Recall = —= 4)
TP+FN

Despite being easy to calculate, the disadvantage of
accuracy is not being discriminant and distinctive enough
to select the best model (Huang & Ling, 2007). Hence,
this study also used precision and recall as evaluation
metrics. Precision measures the proportion of correct
positive predictions. Recall, also known as sensitivity,
denotes the effectiveness of the ML model on positive
class identification. Hence, in general, the higher the
precision and recall scores, the better the model
performance.

Results and Discussions

The authors implemented the above-mentioned ML
methods using Python 3.7. Hyperparameter tuning (based

on grid search) was conducted for each model to select the
best-performing parameters for model building. To
alleviate potential overfitting issues (i.e., only the set of
distinctive features is selected due to a small feature set),
k-fold cross-validation procedures are applied. All
machine learning models were able to complete the
identification fully automatically within seconds. In this
section, the authors look at the performance of different
models based on three metrics: accuracy, precision and
recall.

Table 1: Mean performance scores of the four ML models

Performance Bag of Bag of Bag of
. . TF-IDF
score (mean) words bi-grams tri-grams
Accuracy 82.2% 75.5% 78.2% 83.0%
Precision 80.3% 73.1% 71.1% 82.5%
Recall 88.3% 84.7% 99.0% 86.2%

The mean accuracy, precision and recall scores of
different models with 5-fold cross-validation procedures
and varying feature representation methods are shown in
Table 1. As can be seen from Table 1, the model based on
the TF-IDF feature weighting method performed the best
among the four models, with an average accuracy score of
83.0%. Among the three n-grams models, the unigram
model (bag of words model) yielded the best accuracy
results, where the mean score was 82.2%. As the number
of grams increased, the mean accuracy score first fell to
75.5% in the bi-grams model and then increased to 78.2%
in the tri-gram model.

The accuracy results indicate that the increase in the size
of grams is not helpful. A similar binary TC study by
Hassan & Le (2020) also showed that the unigram model
achieved the highest accuracy score compared with the bi-
grams and tri-grams models. The data sparsity issue could
be a reason for the reduction in accuracy in the bi-grams
and tri-grams models (Farhoodi et al., 2011). The reason
for the better performance of the tri-grams model over the
bi-grams model could be that the tri-grams model helped
the ML algorithm learn more semantic information in
three consecutive words over two-word phrases, thereby
helping the detection of ambiguity.

As for the precision and recall scores, they are typically
two duelling performance metrics (Buckland & Gey,
1994). In this study, the recall score is more important
than precision and accuracy because not omitting a single
ambiguous sentence is more critical than 1) ensuring
every ambiguous sentence detected by the ML model is
actually ambiguous and/or; 2) ensuring all the predictions
are correct (no matter positive or negative predictions).
Ideally, a 100% recall score means domain experts can
rest assured that all ambiguous sentences are among those
identified by the ML model.

As shown in Table 1, the highest mean precision was
achieved by the model based on the TF-IDF
representation (82.5%), followed by the unigram model,
which yielded a mean precision score of 80.3%. As the
number of grams increased, a drop in the mean precision
score was observed. The precision scores of models based
on bi-grams and tri-grams were only 73.1% and 71.1%,

276

respectively. Despite the low precision scores, the tri-
grams model performed the best regarding the recall score
(99.0%), while the mean recall scores of all other models
were below 90%.

Overall, the satisfactory performance of the supervised
ML models proposed in this paper shows that a supervised
ML method is a viable and reliable way to detect
ambiguity in building requirements. As the recall score is
the most important metric among the three evaluation
metrics, the model based on tri-grams with the SVM
algorithm is the best-performing model, which achieved
an almost perfect mean recall score of 99.0 % and a mean
precision and accuracy score of 71.1% and 78.2%,
respectively.

Conclusions

Accurate and efficient rule interpretation is a bottleneck
in the ACC process. The current automated interpretation
methods are often incapable of dealing with ambiguous
clauses. A quick and reliable way to identify ambiguous
clauses is a crucial first step in addressing this issue. This
paper proposed a supervised ML method to detect
ambiguity in building requirements automatically. Four
models using the bag of words, bag of bi-grams, bag of
tri-grams and TF-IDF representations based on the SVM
algorithm were experimented. They were trained and
tested on 464 building requirements collected from Health
Building Notes in England, with train and test percentages
of 80% and 20%, respectively. All four models showed
significant improvement in the efficiency of ambiguity
detection compared with manual identification and
finished detection in seconds. Among the four models, the
bag of tri-grams model achieved the best recall score at
99.0%, while the TF-IDF model achieved the best
accuracy score of 83.0%.

This research is the first to propose an automated method
for ambiguity detection in building requirements. The
proposed method significantly reduced the manual effort
in detecting ambiguity in building requirements and
achieved satisfactory overall performance on three
evaluation metrics. The recognised ambiguous clauses
can then be reviewed and interpreted by domain experts
to support the automated compliance checking process.
Practitioners in the AEC industry can benefit from using
this tool to improve the accuracy and efficiency of
checking regulations before design submission. This tool
could also help improve regulators’ regulations drafting
to avoid excessive ambiguity.

This research has some limitations. Firstly, the dataset
only includes 464 sentences. More data can be added to
improve the model performance further and alleviate the
data overfitting issue. Secondly, the authors only
experimented with the SVM algorithm for model
building. In future research, more complex ML models
such as word embeddings can be used to see if the
performance can be improved. Thirdly, this paper only
experimented with one data pre-processing method and a
4:1 training-test split ratio. Different data pre-processing

methods and training-test set ratios can be tested in future
research to achieve better performance. Future research
can also widen the research scope by considering the
automatic detection of more than individual sentences or
detecting other valuable attributes, such as complexity, to
facilitate the ACC process.

References

Bach, K. 1998. Routledge Encyclopedia of Philosophy:
Index. Taylor & Francis.

Berry, D. M. & Kamsties, E. 2004. Ambiguity in
requirements specification. Perspectives on software
requirements. Springer.

Berry, D. M., Kamsties, E. & Krieger, M. M. 2003. From
contract drafting to software specification: Linguistic
sources of ambiguity-a handbook. Perspectives on
Software Requirements, Series: The Springer
International Series in Engineering and Computer
Science 753.

Bird, S. NLTK: the natural language toolkit. 2006. 69-72.

Bruijn, F. d. & Dekkers, H. L. Ambiguity in natural
language software requirements: A case study. 2010
2010. Springer, 233-247.

Buckland, M. & Gey, F. 1994. The relationship between
recall and precision. Journal of the American society
for information science 45: 12-19.

Caldas, C. H., Soibelman, L. & Han, J. 2002. Automated
classification of construction project documents.
Journal of Computing in Civil Engineering 16: 234-
243.

Candas, A. B. & Tokdemir, O. B. 2022a. Automated
Identification of Vagueness in the FIDIC Silver Book
Conditions of Contract. Journal of Construction
Engineering and Management 148: 04022007.

Candas, A. B. & Tokdemir, O. B. 2022b. Automating
Coordination Efforts for Reviewing Construction
Contracts with Multilabel Text Classification. Journal
of Construction Engineering and Management 148:
04022027.

Eastman, C., Lee, J.-m., Jeong, Y.-s. & Lee, J.-k. 2009.
Automatic rule-based checking of building designs.
Automation in Construction 18: 1011-1033.

Farhoodi, M., Yari, A. & Sayah, A. N-gram based text
classification for Persian newspaper corpus. 2011.
IEEE, 55-59.

Ferrari, A. & Gnesi, S. 2012. Using collective intelligence
to detect pragmatic ambiguities. 2012. IEEE, 191-200.

Hassan, F. u. & Le, T. 2020. Automated requirements
identification from construction contract documents
using natural language processing. Journal of Legal
Affairs and Dispute Resolution in Engineering and
Construction 12: 04520009.

277

Hjelseth, E. 2013. Experiences on converting
interpretative regulations into computable rules.
Presented at TKS 2013: 01-15.

Hjelseth, E. & Nisbet, N. 2011. Capturing normative
constraints by use of the semantic mark-up RASE
methodology. 2011. 1-10.

Huang, J. & Ling, C. X. Constructing New and Better
Evaluation Measures for Machine Learning. 2007
2007. 859-864.

Joachims, T. Text categorization with support vector
machines: Learning with many relevant features. 1998
1998. Springer, 137-142.

Joulin, A., Grave, E., Bojanowski, P. & Mikolov, T. 2016.
Bag of tricks for efficient text classification. arXiv
preprint arXiv:1607.01759.

Kamsties, E. & Peach, B. 2000. Taming ambiguity in
natural language requirements. 2000.

Kim, 1., Choi, J., Teo, E. A. L. & Sun, H. 2020.
Development of K-Bim E-Submission Prototypical
System for the Openbim-Based Building Permit
Framework. Journal of Civil Engineering and
Management 26: 744-756.

Lam, S. L. Y. & Lee, D. L. Feature reduction for neural
network based text categorization. 1999. IEEE, 195-
202.

Larina, T., Ozyumenko, V. & Ponton, D. M. 2019.
Persuasion strategies in media discourse about Russia:
Linguistic ambiguity and uncertainty. 15: 3-22.

Li, B., Dimyadi, J., Amor, R. & Schultz, C. 2020.
Qualitative and traceable calculations for building
codes. 2020. 69-84.

Li, S. 2017. A corpus-based study of vague language in
legislative texts: Strategic use of vague terms. English
for Specific Purposes 45: 98-109.

Macit flal, S. & Giinaydin, H. M. 2017. Computer
representation of building codes for automated
compliance checking. Automation in Construction 82:
43-58.

Massey, A. K., Rutledge, R. L., Anton, A. I. & Swire, P.
P. 2014. Identifying and classifying ambiguity for
regulatory requirements. 2014 IEEE 22nd international
requirements engineering conference (RE), 2014.
IEEE, 83-92.

Matsuoka, J. & Lepage, Y. Ambiguity spotting using
wordnet semantic similarity in support to
recommended practice for software requirements
specifications. 2011 2011. IEEE, 479-484.

Moon, S., Chi, S. & Im, S.-B. 2022. Automated detection
of contractual risk clauses from construction
specifications using bidirectional encoder

representations from transformers (BERT). Automation
in Construction 142: 104465.

Osborne, M. & MacNish, C. K. 1996. Processing natural
language software requirement specifications. 1996.
IEEE, 229-236.

Pauwels, P., Van Deursen, D., Verstraeten, R., De Roo, J.,
De Meyer, R., Van de Walle, R. & Van Campenhout,
J. 2011. A semantic rule checking environment for
building performance checking. Automation in
Construction 20: 506-518.

Piantadosi, S. T., Tily, H. & Gibson, E. 2012. The
communicative function of ambiguity in language.
Cognition 122: 280-291.

Popescu, D., Rugaber, S., Medvidovic, N. & Berry, D. M.
2007. Reducing ambiguities in requirements
specifications via automatically created object-oriented
models. Monterey Workshop, 2007. Springer, 103-
124.

Reidenberg, J. R., Bhatia, J., Breaux, T. D. & Norton, T.
B. 2016. Ambiguity in privacy policies and the impact
of regulation. The Journal of Legal Studies 45: S163-
S190.

Salama, D. M. & El-Gohary, N. M. 2016. Semantic text
classification for supporting automated compliance
checking in construction. Journal of Computing in Civil
Engineering 30: 04014106.

Schiitze, H., Manning, C. D. & Raghavan, P. 2008.
Introduction to information retrieval. Cambridge
University Press Cambridge.

Sebastiani, F. 2002. Machine learning in automated text
categorization. ACM computing surveys (CSUR) 34: 1-
47.

Solihin, W., Dimyadi, J., Lee, Y.-C., Eastman, C. &
Amor, R. 2020. Simplified schema queries for
supporting BIM-based rule-checking applications.
Automation in Construction 117.

Solihin, W. & Eastman, C. 2016. A knowledge
representation approach in BIM rule requirement
analysis using the conceptual graph. Journal of
Information Technology in Construction 21: 370-402.

Soliman-Junior, J., Pedo, B., Tzortzopoulos, P. &
Kagioglou, M. 2020. The Relationship Between
Requirements ~ Subjectivity and Semantics for
Healthcare Design Support Systems. 2020. Springer,
801-809.

Soliman-Junior, J., Tzortzopoulos, P., Baldauf, J. P,
Pedo, B., Kagioglou, M., Formoso, C. T. &
Humphreys, J. 2021. Automated compliance checking
in healthcare building design. Automation in
Construction 129.

Yurchyshyna, A. & Zarli, A. 2009. An ontology-based
approach for formalisation and semantic organisation

278

of conformance requirements in construction.
Automation in Construction 18: 1084-1098.

Zhang, J. & El-Gohary Nora, M. 2017. Semantic-Based
Logic Representation and Reasoning for Automated
Regulatory Compliance Checking. Journal of
Computing in Civil Engineering 31: 04016037.

Zhang, R. & El-Gohary, N. 2022. Natural language
generation and deep learning for intelligent building
codes. Advanced Engineering Informatics 52: 101557.

Zhang, Z., Ma, L. & Broyd, T. 2022. Towards fully-
automated code compliance checking of building
regulations: challenges for rule interpretation and
representation. 2022a. EC® (European Conference on
Computing in Construction).

Zhang, Z., Nisbet, N., Ma, L. & Broyd, T. 2022. A multi-
representation method of building rules for automatic
code compliance checking. European Conference on
Product and Process Modeling 2022, 2022b
Trondheim, Norway.

Zhang, Z., Nisbet, N., Ma, L. & Broyd, T. 2023.
Capabilities of rule representations for automated
compliance checking in healthcare buildings.
Automation in Construction 146: 104688.

Zhou, P. & El-Gohary, N. 2016a. Domain-Specific
Hierarchical Text Classification for Supporting
Automated Environmental Compliance Checking.
Journal of Computing in Civil Engineering 30.

Zhou, P. & El-Gohary, N. 2016b. Ontology-Based
Multilabel Text Classification of Construction
Regulatory Documents. Journal of Computing in Civil
Engineering 30.

