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Abstract 
With the advent of Artificial Intelligence (AI) powered 
classification techniques, data-driven Fault Detection and 
Diagnosis (FDD) methods have become increasingly 
prominent in smart building implementation. Of these, 
cluster analysis is particularly promising for Building 
management system (BMS) data. This paper presents an 
unsupervised learning-based strategy for detecting faults 
in terminal air handling units as well as the systems 
serving them. Historical sensor data are pre-processed 
with PCA to reduce dimensions, followed by OPTICS 
clustering, which is compared with k-means. OPTICS 
outperformed the latter, readily identifying noise and had 
high accuracy across all seasons. 

Introduction 
In recent years, many efforts have been made to develop 
and apply various strategies for fault detection and 
diagnosis (FDD) in HVAC systems, typically at the 
individual component level. Early fault detection can 
improve the energy efficiency, reliability, and safety of 
HVAC systems, while reducing maintenance costs and 
downtime (Guo et al., 2018; Rosato et al., 2022). Recent 
research has applied physical model-based methods, rule- 
based methods, and data-driven methods for HVAC 
system FDD; for reviews see (Katipamula & Brambley, 
2005; Mirnaghi & Haghighat, 2020). Data-driven 
techniques have been gaining popularity in recent years 
due to their high accuracy and low level of effort 
(Mirnaghi & Haghighat, 2020); however, they are limited 
by their dependence on a large volume of high-quality 
operational data (Yang et al., 2014). New approaches to 
extract such data from building management systems 
(BMSs) mitigates this issue. 
This paper proposes a fault detection method using cluster 
analysis to detect potential faults in fan coil units (FCUs), 
terminal units providing heating and cooling to rooms 
served by a dedicated outdoor air system. Data are 
extracted Time-series data obtained via the BMS is 
analysed using the Ordering Points to Identify the 
Clustering Structure (OPTICS) algorithm is used in 
combination with Principal Component Analysis to 
differentiate between normal and faulty operations data 

from time- series data extracted from a BMS. The results 
were compared with Principal Component Analysis 
(PCA) and k-means and all data traces were reviewed by 
a Certified Energy Manager familiar with the building 
systems to confirm findings and label faults to inform 
learning. 

Background 
The early detection and diagnosis of faults in HVAC 
systems is valuable both to prevent further system or 
component damage and to avoid loss of service. Several 
challenges exist for such FDD applications. First, HVAC 
operation is highly responsive to occupancy and weather, 
resulting in variable system operation that can make 
‘normal’ vs ‘abnormal’ conditions difficult to distinguish 
(Chen et al., 2022a). Second, HVAC systems are highly 
interconnected and diverse (Sun et al., 2013). For 
example, the FCUs considered in this paper contain both 
heating and cooling coils, tying these systems to the 
central heating and chilled water plants, respectively. 
Further, they are provided with tempered outdoor air by 
an energy recovery ventilator (ERV). Third, 
interconnections such as these can complicate fault 
diagnosis, particularly as some faults may balance others, 
obscuring the problem on the larger system, resulting in 
complex fault symptoms (Verbert et al., 2017). 
As noted previously, data-driven methods are widely 
used, and of these, cluster analysis has been identified as 
highly promising for FDD effort (Mirnaghi & Haghighat, 
2020). Clustering approaches leverage the statistical 
differences between ‘normal’ and ‘faulty’ operational 
data to detect anomalies and identify operational 
behaviour uncaptured by automated FDD rules such as 
BMS alarms. Inherent in this strategy is the idea that 
faulty data and normal data have different features and can 
be distinguished by identifying their spatial and temporal 
separation. Cluster analysis is used to separate faulty data 
from normal data through this method. In order to 
implement this fault detection strategy, a set of reference 
data free from errors is needed to identify faults. These 
reference data are usually obtained during the thorough 
commissioning process of the HVAC system. Algorithms 
such as linear discriminant analysis (Li et al., 2016) and 
k-means (Luo et al., 2019) have both been used for FDD 



in HVAC systems. Cluster analysis has also been used in 
semi-supervised learning approaches for FDD (Gunay 
and Shi, 2020). Of particular interest to this paper are the 
OPTICS, k-means, and PCA algorithms, discussed in 
detail in the following sections. 

OPTICS cluster analysis 
OPTICS (Ankerst et al., 1999) is a variation of the Density 
Based Spatial Clustering of Applications with Noise 
(DBSCAN; Khan et al., 2014) algorithm that uses density- 
based clustering to identify clusters by searching for areas 
of high density separated by areas of low density. The core 
concept of density-based clustering is that each data point 
in a cluster must have a minimum number of data points 
(MinPts) within a specified radius (Eps) around it (Ester 
et al., 1996). Unlike traditional clustering, OPTICS orders 
data based on reachability-distance (k-distance; the 
minimum cluster radius to contain the minimum defined 
number of points), making it valuable for fault detection 
as it can discover clusters of any shape and are more 
resistant to noise (Yan et al., 2016). For point p to be 
directly density-reachable from point q, it must meet the 
following conditions. 

where  refers to the set of data points within the 
radius Eps of point q. The reachability-distance between 
point p and o is expressed as follows. 

 

While, 

 

 
To tune OPTICS, both a minimum number of cluster 
points (MinPts) and the cluster distance (Eps) must be 
determined; this balance is critical as too few points can 
give false positives for noise in the data while too many 
can result in false negatives as significant – albeit 
infrequent – faults are missed. OPTICS has been used 
with PCA for pre-processing to detect sensor faults (Yan 
et al., 2016) but there is no published literature 
demonstrating its application to identify equipment faults. 

k-means clustering 
k-means clustering is a popular unsupervised machine 
learning technique that is used to divide an unlabeled data 
set into a predefined number of clusters, where k 
represents the number of clusters. The algorithm is 
centroid-based, meaning that each cluster is associated 
with a centroid, which is the center point of the cluster. 
The aim of the algorithm is to minimize the sum of 
distances between the data points and their respective 
cluster centroids. Du et al. (2014) proposed a Fault 
Detection and Diagnosis (FDD) algorithm which 
combines subtractive clustering analysis and neural 

networks. They used neural networks to detect faults in the 
supply air temperature control loop in Heating, 
Ventilation, and Air Conditioning (HVAC) systems, and 
the subtractive clustering method to diagnose the faults. 
This approach has been proven to be effective in 
identifying and diagnosing faults in HVAC systems. 
While larger equipment such as Air-handling units 
(AHUs), chillers, and boilers have been the topic of 
significant research, for example (Yu et al., 2014; 
Mirnaghi & Haghighat, 2020), there has been limited 
research on FDD for terminal units such as fan coil units 
(Ranade et al., 2020; Chen et al, 2022b). These units have 
additional complexity because they are highly dependent 
on the occupancy of the served space as well as the 
broader weather impacts on the heating and cooling 
systems that serve them. This paper addresses this gap, 
presenting a PCA-Clustering method tested across 
multiple units, seasons, and occupancy conditions. 

Methodology 
The approach used for fault detection and labeling of 
FCUs is shown in Figure 1. 
 

 
Figure 1: Fault detection and diagnosis methodology for 

terminal air-handling units, incorporating BMS data, 
preprocessing, PCA, and OPTICS clustering 



Several time-series datasets, including one with a known 
fault for initial testing, were created by extracting one-
week windows for equipment measurement and control 
points from the BMS. These included both controls 
{heating (HTG-O) and cooling (CLG-O) coil valve open 
commands} and sensor measurements {zone temperature 
(T), discharge air temperature (DA-T), discharge air 
relative humidity, discharge air flow rate, supply water 
temperature, and fan speed measurements}. Table 1 lists 
the sensor names and their descriptions. The purpose of 
this study is to showcase the efficiency of the proposed 
fault detection method by analyzing a data set containing 
HVAC mechanical cooling operation. To achieve this, 
data from the cooling coil control valves within the 
interquartile range (IQR), which denotes the range with 
the most closely grouped observations, is utilized for the 
subsequent fault detection analysis. Because FCUs 
typically operate under two normal conditions: cooling 
and heating, it was necessary to distinguish between them 
to avoid confounding results. Further, only data when the 
device was enabled (“ON”) was selected. The existence 
of multiple clusters in the data points is thus not due to 
different modes of operation, but rather to the presence of 
a fault so the number of faults can be calculated as the 
number of clusters minus one. 
 

Table 1. Sensor names and their descriptions 

Designation Description 
HTG-O Heating coil valve 
CLG-O Cooling coil valve 
OA-T Outside air temperature 
DA-T Discharge air temperature 

T Zone temperature 
INSLAB-T In-slab temperature 

SF-S Supply fan status 
ST Supply water temperature 
Q Zone quality 

 

With the assumption of single and non-simultaneous 
faults, it was anticipated that two clusters of data would 
be generated, representing normal and faulty system 
operation. The thresholds for the OPTICS algorithm were 
thus chosen from the k-distance graph to produce two 
clusters with MinPts=25. We selected a MinPts value of 
25 for the k-distance graph using a trial-and-error 
approach, with the goal of striking a balance between 
noise sensitivity and effective cluster formation. In order 
to verify the robustness of our method, we experimented 
with different MinPts values and found that the outcome 
was not particularly sensitive to the specific value 
selected. As a result, we chose MinPts = 25, which 
provided satisfactory fault detection and diagnosis 
performance. It is important to note that the suitability of 
other values may vary depending on the characteristics of 
the dataset and the requirements of the specific 
application. Similarly, the number of clusters in k-means 

was determined as two. By analyzing the clustering 
results and observing the system operation data traces, 
time intervals with faulty operation can be identified as 
they are grouped under a label distinct from the normal 
operation. However, the possibility of multiple faults can 
be explored by using a lower threshold value in the 
OPTICS algorithm or by using a larger value for k in k-
means clustering.  
To detect faults, clusters were automatically labeled as 
‘normal’ and ‘faulty’ operation and non-clusters as 
‘noise’. PCA plots were created and examined in detail to 
gain a deeper understanding of the data, which were 
reviewed by a Certified Energy Manager (CEM) to 
diagnose the faults. This review served two purposes: it 
provided expert validation of results beyond the k-means 
comparison and it allowed for diagnosis of the most likely 
fault, which was applied as a label to the faulty data to 
permit diagnosis to be learned in future research. 

Result and Discussion 
This study evaluated the performance of the proposed 
fault detection method using data from three FCUs. In this 
study, we looked at three FCUs (FCU-XX, FCU-YY, and 
FCU-ZZ) located in office spaces in building at Toronto 
Metropolitan University. These FCUs were chosen to 
provide a proof of concept and to illustrate that our 
methodology can be successfully applied to a larger series 
of units and the systems that serve them. By choosing 
FCUs from different locations representing the extremes 
of room sizes and occupancies, we aimed to show that our 
approach is versatile and can accommodate varying 
operational conditions and environmental factors, thus 
increasing its generalizability to a broader range of 
installed equipment. Moreover, the scenarios in our study 
were selected to cover a diverse set of possible fault 
conditions, enabling us to assess the performance of our 
method across different fault types and magnitudes. Table 
2 outlines the properties of the chosen FCUs, including 
their spaces served and their associates thermal zones. All 
are served by the same central air handling unit. 
 

Table 2. FCUs' Properties 

FCU Feeds Location 

FCU-XX 50m2 entrance lobby  Thermal zone #3 - 
level 01 

FCU-YY 176m2  open-plan 
student lounge 

Thermal zone #3 - 
level 01 

FCU-ZZ 8m2 study room Thermal zone #3 - 
level 02 

 

These units are representative of the most common type 
used in the building and provide heating and cooling to 
different offices located on first and second floors. Data 
were sampled from FCU-XX, FCU-YY, and FCU-ZZ 
year-round during the peak heating (December 2019) and 
peak cooling (June 2020) seasons.  



The first test case, FCU-XX, was specifically chosen to 
demonstrate the capability of the proposed strategy in 
detecting faults in FCUs through cluster analysis and its 
sequential steps. A test scenario was selected as it 
presented a recognizable fault. The data were initially 
categorized as cooling or heating operation, and fault 
detection was solely based on data collected from that 
specific operation. In this study, the data set that captures 
the HVAC mechanical cooling operation is employed for 
further analysis to showcase the efficacy of the suggested 
fault detection approach. The subsequent step involved 
determining the number of principal components using a 
scree plot, and ultimately selecting two PCs (Table 3). 
 

Table 3. Principal Components for FCU-XX 

Feature PC1 Weight PC2 Weight 
T -0.58 -0.08 

INSLAB-T -0.44 -0.41 
Q 0.22 0.58 

DA-T 0.34 -0.57 
CLG-O -0.39 -0.02 
HTG-O 0.41 -0.43 

 

From this, we note correlations between variables with the 
same direction of change (e.g., T, INSLAB-T, CLG- O), 
inverse correlations between those with opposite changes 
(e.g., T and HTG-O) in one PC, and none when both PCs 
show opposite changes (e.g., T and Q). 
After PCA, we plotted the k-distance diagram and 
determined Eps, which is the inflection point of the curve 
(Figure 2); this value was 0.6 for all FCUs considered. 
Using Eps in OPTICS, we plotted the reachability 
distance graph and selected a threshold reachability 
distance that would generate two distinct clusters, 
representing the faulty and normal operation of the 
system; in this case 0.5 (Figure 3, bottom). Data were 
automatically labelled based on this analysis as either 
‘faulty’ and ‘normal’ operation. When color-coded on 
time-series charts, the fault time(s) became quickly 
evident, revealing two distinct periods of faulty operation: 
June 3, 2020 11:00-17:15 and from 01:10 on June 12, 
2020 through 17:15 on June 18. 
Cross-checking with known issues validated by the 
facility engineer confirmed this fault. The application of 
k-means on the PCA-transformed data showed similar 
results for the former, with the fault detected from June 3, 
2020 11:00-17:25, but only intermittent detection {from 
09:20 on June 12, 2020 – 05:30 on June 13, 2020 and from 
09:10 on June 13, 2020 through 05:15 on June 14 and 
from 09:00 on June 14 through 12:50 on June 18} of the 
latter, showing a decreased sensitivity. 

 
Figure 2. k-distance graph 

 

 

Figure 3: OPTICS Clustering Results and Cluster 
Identification Using User-Defined Threshold for the 

FCU-XX Dataset  

Figure 4 presents the results of both clustering algorithms, 
demonstrating the discrepancy between the results of the 
OPTICS and k- means methods. This occurred due to 
OPTICS’s ability to distinguish noise, while k-means 
falsely identified these as faults. According to the CEM, 
this indicates a lack of adequate chilled water flow to meet 
the cooling requirements, which is further validated by the 
time-series data trace illustrated in Figure 5 (top right). 
Review by the CEM verified the presence of a fault in the 
identified intervals as well and confirmed that OPTICS 
was correct in its identification of noise. However, 
reviewing the broader dataset, she identified a fault 
missed by both algorithms during the heating season 
(from approximately 13:00 December 28, 2019 through 
0:30 December 29, 2019). This is evident in in the small 
negative spike in the DA-T data trace between these times 
in Figure 5 (top left data series).   
To investigate the fault, PCA plots were color-coded and 
analyzed, adding vectors to indicate the direction of 
change for each variable. Based on the correlations noted 
from Figure 4, DA-T and CLG- O should change along a 
diagonal trajectory, thus, the tail of points extending to the 
bottom-left indicates an unusual occurrence. While DA-T 
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Figure 4: OPTICS (top) vs k-means (bottom) results for FCU-XX plotted against PC1 and PC2.

Figure 5: Extracts from time-series data analyzed during peak heating season (left) and cooling season (right) for 
FCU-XX (top), FCU-YY (middle), and FCU-ZZ (bottom). Solid boxes indicate detected faults while dashed boxes 

indicate those not detected by either algorithm but confirmed by the CEM.



 

should decrease towards the right; instead, it is increasing, 
as illustrated in Figure 6. 
 

 

Figure 6: Sample PCA plots with color spectra added  

The same process was repeated for the other cases of FCU-
YY and FCU-ZZ, identifying an Eps 0.5 and reachability 
distance thresholds at values of 0.4 for each unit to 
separate the data into two distinct clusters.  
The results of the OPTICS and k-means clustering process 
for FCU-YY is presented in Figure 7. As observed in this 
figure, both clustering algorithms revealed two instances 
of system malfunction during the heating season, 
extending beyond the period identified by the CEM.  
To better understand these faults, once again a PCA plot 
(Figure 8) was consulted, indicating a group of points on 
the left revealing an unexpected system behavior. Despite 
CLG- O being at 100% open, DA-T is high, once again 
indicating a lack of adequate chilled water. Because FCU- 
XX and FCU-YY are located on the same level and 
hydronic zone, this indicates a system fault at either the 
zone or full-building level.  
Review by the CEM verified the presence of a fault in the 
identified intervals as well and confirmed that OPTICS 
was correct in its identification of noise. However, 
reviewing the broader dataset, she identified that the same 
fault period identified by OPTICS and k-means in June 
for FCU-XX was also evident in the FCU-YY data but 
missed by both algorithms (box on Figure 5, middle right 
data series). 

 

 

Figure 7: OPTICS (top) & k-means (bottom) (FCU-YY) 

FCU-ZZ showed similar results. Figure 9 displays the 
results of the OPTICS and k-means analysis, revealing the 
presence of faults in the time frames of 2019-12-23 13:40 
to 2020-01-01 23:50. OPTICS also detected a fault from 
2019-12-02 12:55 to 20:05 of the same day.  As in 
previous cases, OPTICS outperformed k-means both 
detecting a fault missed by the latter and by avoiding 
misclassifying noise as faults. This was confirmed by the 
PCA results, which indicated that DA-T did not respond 
correctly to CLG-O at certain times in December. This is 
indicated on the figure by the red arrows showing the 
actual change in direction for DA-T compared with the 
expected (black arrow): despite CLG-O being at 100%, 
DA-T was still high. Further input from the CEM noted 
that this same issue occurred in FCUs on multiple levels, 
suggesting a central plant fault, rather than a local one, as 
evidenced in Figure 5. This is was similarly visible in the 
PCA plots, which displayed similar fault trends as those 
of FCU-YY. 
Review by the CEM again verified the presence of a fault 
in the identified intervals and confirmed that OPTICS was 
correct in its identification of noise. However, reviewing 
the broader dataset, she once again identified that the same 
fault period identified by OPTICS and k-means in June for 
FCU-XX was also evident in the FCU-ZZ data and again 
missed by both algorithms (box on Figure 5, bottom right 
data series). 
 
 



Figure 8: PCA Plot for diagnosing fault in  FCU-YY 

 

 

 

Figure 9: OPTICS (top) vs k-means (bottom) ( FCU- ZZ) 

Table 2 presents a summary of the results to compare 
the OPTIC and k-means approaches. To contextualize 
this, the null accuracy was calculated as 0.751 (1846 
actual fault and 5554 normal data points out of 7400 
total). 

Table 4: Results Summary 
 

Measure PCA + OPTICS PCA + k-means 

Sensitivity 0.989 0.869 

Specificity 0.986 0.978 

Precision 0.959 0.928 

Accuracy 0.986 0.951 

These results demonstrate that PCA and OPTICS 
outperform PCA and k-means in all aspects and that the 
approach presented is valid for mechanical fault detection 
as well as the sensor fault detection previously 
demonstrated by Yan et al (2016). This high accuracy 
supports the use of PCA + OPTICS for automated fault 
detection in terminal air handling units.  

Conclusions 
The series of cases presented has demonstrated that 
OPTICS provides excellent results for fault detection. 
While the current research is limited to manual 
confirmation and diagnosis of the nature of the faults, the 
extent of the fault can be automatically diagnosed by 
comparing fault ranges across FCUs; this is extremely 
valuable to aid root cause analysis. There is also a 
significant level of effort reduction for the manual 
labelling because PCA + OPTICS allows only fault data 
to be reviewed. The availability of maintenance records to 
cross-validate could further reduce using Natural 
Language Processing to automate classification, similar to 
the work presented by McArthur et al. (2018).  
Other limitations of this research are the relatively small 
sample size (three pieces of equipment in one building) 
and limitation to cooling operation only. 
Several areas of future research are identified. First, we 
will expand OPTICS analysis to the full set of FCUs in the 
target building and label detected faults to create a training 
dataset that can be used to train a fault diagnosis classifier; 
this will be repeated for heating operation. The fault range 
comparison across units will then be automated to support 
autonomous detection of system issues, indicated by 
multiple simultaneous equipment faults. To support this, 
we will undertake sensitivity analysis to determine if 
reachability distance thresholds can be improved and 
whether this can be generalized for each equipment type. 
Finally, we will investigate the use of online learning to 
permit autonomous operation, requiring only new faults 
that cannot be classified using learned rules to be 
manually labeled, resulting in an online semi-supervised 
FDD algorithm. 
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