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Abstract

With the advent of Artificial Intelligence (AI) powered
classification techniques, data-driven Fault Detection and
Diagnosis (FDD) methods have become increasingly
prominent in smart building implementation. Of these,
cluster analysis is particularly promising for Building
management system (BMS) data. This paper presents an
unsupervised learning-based strategy for detecting faults
in terminal air handling units as well as the systems
serving them. Historical sensor data are pre-processed
with PCA to reduce dimensions, followed by OPTICS
clustering, which is compared with k-means. OPTICS
outperformed the latter, readily identifying noise and had
high accuracy across all seasons.

Introduction

In recent years, many efforts have been made to develop
and apply various strategies for fault detection and
diagnosis (FDD) in HVAC systems, typically at the
individual component level. Early fault detection can
improve the energy efficiency, reliability, and safety of
HVAC systems, while reducing maintenance costs and
downtime (Guo et al., 2018; Rosato et al., 2022). Recent
research has applied physical model-based methods, rule-
based methods, and data-driven methods for HVAC
system FDD; for reviews see (Katipamula & Brambley,
2005; Mirnaghi & Haghighat, 2020). Data-driven
techniques have been gaining popularity in recent years
due to their high accuracy and low level of effort
(Mirnaghi & Haghighat, 2020); however, they are limited
by their dependence on a large volume of high-quality
operational data (Yang et al., 2014). New approaches to
extract such data from building management systems
(BMSs) mitigates this issue.

This paper proposes a fault detection method using cluster
analysis to detect potential faults in fan coil units (FCUs),
terminal units providing heating and cooling to rooms
served by a dedicated outdoor air system. Data are
extracted Time-series data obtained via the BMS is
analysed using the Ordering Points to Identify the
Clustering Structure (OPTICS) algorithm is used in
combination with Principal Component Analysis to
differentiate between normal and faulty operations data
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from time- series data extracted from a BMS. The results
were compared with Principal Component Analysis
(PCA) and k-means and all data traces were reviewed by
a Certified Energy Manager familiar with the building
systems to confirm findings and label faults to inform
learning.

Background

The early detection and diagnosis of faults in HVAC
systems is valuable both to prevent further system or
component damage and to avoid loss of service. Several
challenges exist for such FDD applications. First, HVAC
operation is highly responsive to occupancy and weather,
resulting in variable system operation that can make
‘normal’ vs ‘abnormal’ conditions difficult to distinguish
(Chen et al., 2022a). Second, HVAC systems are highly
interconnected and diverse (Sun et al., 2013). For
example, the FCUs considered in this paper contain both
heating and cooling coils, tying these systems to the
central heating and chilled water plants, respectively.
Further, they are provided with tempered outdoor air by
an energy recovery ventilator (ERV). Third,
interconnections such as these can complicate fault
diagnosis, particularly as some faults may balance others,
obscuring the problem on the larger system, resulting in
complex fault symptoms (Verbert et al., 2017).

As noted previously, data-driven methods are widely
used, and of these, cluster analysis has been identified as
highly promising for FDD effort (Mirnaghi & Haghighat,
2020). Clustering approaches leverage the statistical
differences between ‘normal’ and ‘faulty’ operational
data to detect anomalies and identify operational
behaviour uncaptured by automated FDD rules such as
BMS alarms. Inherent in this strategy is the idea that
faulty data and normal data have different features and can
be distinguished by identifying their spatial and temporal
separation. Cluster analysis is used to separate faulty data
from normal data through this method. In order to
implement this fault detection strategy, a set of reference
data free from errors is needed to identify faults. These
reference data are usually obtained during the thorough
commissioning process of the HVAC system. Algorithms
such as linear discriminant analysis (Li et al., 2016) and
k-means (Luo et al., 2019) have both been used for FDD



in HVAC systems. Cluster analysis has also been used in
semi-supervised learning approaches for FDD (Gunay
and Shi, 2020). Of particular interest to this paper are the
OPTICS, k-means, and PCA algorithms, discussed in
detail in the following sections.

OPTICS cluster analysis

OPTICS (Ankerst et al., 1999) is a variation of the Density
Based Spatial Clustering of Applications with Noise
(DBSCAN; Khan et al., 2014) algorithm that uses density-
based clustering to identify clusters by searching for areas
of'high density separated by areas of low density. The core
concept of density-based clustering is that each data point
in a cluster must have a minimum number of data points
(MinPts) within a specified radius (Eps) around it (Ester
et al., 1996). Unlike traditional clustering, OPTICS orders
data based on reachability-distance (k-distance; the
minimum cluster radius to contain the minimum defined
number of points), making it valuable for fault detection
as it can discover clusters of any shape and are more
resistant to noise (Yan et al., 2016). For point p to be
directly density-reachable from point q, it must meet the
following conditions.
P € Neps(q) & |Nips(q)| > MinPts

where Ng,(q) refers to the set of data points within the
radius Eps of point g. The reachability-distance between
point p and o is expressed as follows.
Reachability- distance =
Undefined, if |Ngps(0) < MinPts|

{max(core — distance(o), distance(o0,p)), otherwise
While,

Core — distance
{ Undefined, if |N5p5(p) < MinPtsl
MinPts — distance(p), otherwise

To tune OPTICS, both a minimum number of cluster
points (MinPts) and the cluster distance (Eps) must be
determined; this balance is critical as too few points can
give false positives for noise in the data while too many
can result in false negatives as significant — albeit
infrequent — faults are missed. OPTICS has been used
with PCA for pre-processing to detect sensor faults (Yan
et al., 2016) but there is no published literature
demonstrating its application to identify equipment faults.

k-means clustering

k-means clustering is a popular unsupervised machine
learning technique that is used to divide an unlabeled data
set into a predefined number of clusters, where k
represents the number of clusters. The algorithm is
centroid-based, meaning that each cluster is associated
with a centroid, which is the center point of the cluster.
The aim of the algorithm is to minimize the sum of
distances between the data points and their respective
cluster centroids. Du et al. (2014) proposed a Fault
Detection and Diagnosis (FDD) algorithm which
combines subtractive clustering analysis and neural
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networks. They used neural networks to detect faults in the
supply air temperature control loop in Heating,
Ventilation, and Air Conditioning (HVAC) systems, and
the subtractive clustering method to diagnose the faults.
This approach has been proven to be effective in
identifying and diagnosing faults in HVAC systems.
While larger equipment such as Air-handling units
(AHUs), chillers, and boilers have been the topic of
significant research, for example (Yu et al, 2014;
Mirnaghi & Haghighat, 2020), there has been limited
research on FDD for terminal units such as fan coil units
(Ranade et al., 2020; Chen et al, 2022b). These units have
additional complexity because they are highly dependent
on the occupancy of the served space as well as the
broader weather impacts on the heating and cooling
systems that serve them. This paper addresses this gap,
presenting a PCA-Clustering method tested across
multiple units, seasons, and occupancy conditions.

Methodology

The approach used for fault detection and labeling of
FCUs is shown in Figure 1.

{ Retrieve BMS Information

}

Pre-Process Data
(Categorize by operating mode)
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| Dimension Reduction using PCA ‘
¥
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—
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g
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Figure 1: Fault detection and diagnosis methodology for
terminal air-handling units, incorporating BMS data,
preprocessing, PCA, and OPTICS clustering



Several time-series datasets, including one with a known
fault for initial testing, were created by extracting one-
week windows for equipment measurement and control
points from the BMS. These included both controls
{heating (HTG-O) and cooling (CLG-O) coil valve open
commands} and sensor measurements {zone temperature
(T), discharge air temperature (DA-T), discharge air
relative humidity, discharge air flow rate, supply water
temperature, and fan speed measurements}. Table 1 lists
the sensor names and their descriptions. The purpose of
this study is to showcase the efficiency of the proposed
fault detection method by analyzing a data set containing
HVAC mechanical cooling operation. To achieve this,
data from the cooling coil control valves within the
interquartile range (IQR), which denotes the range with
the most closely grouped observations, is utilized for the
subsequent fault detection analysis. Because FCUs
typically operate under two normal conditions: cooling
and heating, it was necessary to distinguish between them
to avoid confounding results. Further, only data when the
device was enabled (“ON”) was selected. The existence
of multiple clusters in the data points is thus not due to
different modes of operation, but rather to the presence of
a fault so the number of faults can be calculated as the
number of clusters minus one.

Table 1. Sensor names and their descriptions

Designation Description
HTG-O Heating coil valve
CLG-O Cooling coil valve

OA-T Outside air temperature
DA-T Discharge air temperature
T Zone temperature
INSLAB-T In-slab temperature
SF-S Supply fan status
ST Supply water temperature
Q Zone quality

With the assumption of single and non-simultaneous
faults, it was anticipated that two clusters of data would
be generated, representing normal and faulty system
operation. The thresholds for the OPTICS algorithm were
thus chosen from the k-distance graph to produce two
clusters with MinPts=25. We selected a MinPts value of
25 for the k-distance graph using a trial-and-error
approach, with the goal of striking a balance between
noise sensitivity and effective cluster formation. In order
to verify the robustness of our method, we experimented
with different MinPts values and found that the outcome
was not particularly sensitive to the specific value
selected. As a result, we chose MinPts = 25, which
provided satisfactory fault detection and diagnosis
performance. It is important to note that the suitability of
other values may vary depending on the characteristics of
the dataset and the requirements of the specific
application. Similarly, the number of clusters in k-means
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was determined as two. By analyzing the clustering
results and observing the system operation data traces,
time intervals with faulty operation can be identified as
they are grouped under a label distinct from the normal
operation. However, the possibility of multiple faults can
be explored by using a lower threshold value in the
OPTICS algorithm or by using a larger value for k in k-
means clustering.

To detect faults, clusters were automatically labeled as
‘normal’ and ‘faulty’ operation and non-clusters as
‘noise’. PCA plots were created and examined in detail to
gain a deeper understanding of the data, which were
reviewed by a Certified Energy Manager (CEM) to
diagnose the faults. This review served two purposes: it
provided expert validation of results beyond the k-means
comparison and it allowed for diagnosis of the most likely
fault, which was applied as a label to the faulty data to
permit diagnosis to be learned in future research.

Result and Discussion

This study evaluated the performance of the proposed
fault detection method using data from three FCUs. In this
study, we looked at three FCUs (FCU-XX, FCU-YY, and
FCU-ZZ) located in office spaces in building at Toronto
Metropolitan University. These FCUs were chosen to
provide a proof of concept and to illustrate that our
methodology can be successfully applied to a larger series
of units and the systems that serve them. By choosing
FCUs from different locations representing the extremes
of room sizes and occupancies, we aimed to show that our
approach is versatile and can accommodate varying
operational conditions and environmental factors, thus
increasing its generalizability to a broader range of
installed equipment. Moreover, the scenarios in our study
were selected to cover a diverse set of possible fault
conditions, enabling us to assess the performance of our
method across different fault types and magnitudes. Table
2 outlines the properties of the chosen FCUs, including
their spaces served and their associates thermal zones. All
are served by the same central air handling unit.

Table 2. FCUs' Properties

FCU Feeds Location
FCU-XX  50m; entrance lobby Therrlrgi/l;%nle #3 -
reuvy e o0y

These units are representative of the most common type
used in the building and provide heating and cooling to
different offices located on first and second floors. Data
were sampled from FCU-XX, FCU-YY, and FCU-ZZ
year-round during the peak heating (December 2019) and
peak cooling (June 2020) seasons.



The first test case, FCU-XX, was specifically chosen to
demonstrate the capability of the proposed strategy in
detecting faults in FCUs through cluster analysis and its
sequential steps. A test scenario was selected as it
presented a recognizable fault. The data were initially
categorized as cooling or heating operation, and fault
detection was solely based on data collected from that
specific operation. In this study, the data set that captures
the HVAC mechanical cooling operation is employed for
further analysis to showcase the efficacy of the suggested
fault detection approach. The subsequent step involved
determining the number of principal components using a
scree plot, and ultimately selecting two PCs (Table 3).

Table 3. Principal Components for FCU-XX

Feature PC1 Weight PC2 Weight
T -0.58 -0.08
INSLAB-T -0.44 -0.41
Q 0.22 0.58
DA-T 0.34 -0.57
CLG-O -0.39 -0.02
HTG-O 0.41 -0.43

From this, we note correlations between variables with the
same direction of change (e.g., T, INSLAB-T, CLG- O),
inverse correlations between those with opposite changes
(e.g., T and HTG-O) in one PC, and none when both PCs
show opposite changes (e.g., T and Q).

After PCA, we plotted the k-distance diagram and
determined Eps, which is the inflection point of the curve
(Figure 2); this value was 0.6 for all FCUs considered.
Using Eps in OPTICS, we plotted the reachability
distance graph and selected a threshold reachability
distance that would generate two distinct clusters,
representing the faulty and normal operation of the
system; in this case 0.5 (Figure 3, bottom). Data were
automatically labelled based on this analysis as either
‘faulty’ and ‘normal’ operation. When color-coded on
time-series charts, the fault time(s) became quickly
evident, revealing two distinct periods of faulty operation:
June 3, 2020 11:00-17:15 and from 01:10 on June 12,
2020 through 17:15 on June 18.

Cross-checking with known issues validated by the
facility engineer confirmed this fault. The application of
k-means on the PCA-transformed data showed similar
results for the former, with the fault detected from June 3,
2020 11:00-17:25, but only intermittent detection {from
09:20 on June 12,2020 —05:30 on June 13, 2020 and from

09:10 on June 13, 2020 through 05:15 on June 14 and
from 09:00 on June 14 through 12:50 on June 18} of the
latter, showing a decreased sensitivity.
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Figure 3: OPTICS Clustering Results and Cluster
Identification Using User-Defined Threshold for the
FCU-XX Dataset
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Figure 4 presents the results of both clustering algorithms,
demonstrating the discrepancy between the results of the
OPTICS and k- means methods. This occurred due to
OPTICS’s ability to distinguish noise, while k-means
falsely identified these as faults. According to the CEM,
this indicates a lack of adequate chilled water flow to meet
the cooling requirements, which is further validated by the
time-series data trace illustrated in Figure 5 (top right).
Review by the CEM verified the presence of a fault in the
identified intervals as well and confirmed that OPTICS
was correct in its identification of noise. However,
reviewing the broader dataset, she identified a fault
missed by both algorithms during the heating season
(from approximately 13:00 December 28, 2019 through
0:30 December 29, 2019). This is evident in in the small
negative spike in the DA-T data trace between these times
in Figure 5 (top left data series).

To investigate the fault, PCA plots were color-coded and
analyzed, adding vectors to indicate the direction of
change for each variable. Based on the correlations noted
from Figure 4, DA-T and CLG- O should change along a
diagonal trajectory, thus, the tail of points extending to the
bottom-left indicates an unusual occurrence. While DA-T
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should decrease towards the right; instead, it is increasing,
as illustrated in Figure 6.
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Figure 6: Sample PCA plots with color spectra added

The same process was repeated for the other cases of FCU-
YY and FCU-ZZ, identifying an Eps 0.5 and reachability
distance thresholds at values of 0.4 for each unit to
separate the data into two distinct clusters.

The results of the OPTICS and k-means clustering process
for FCU-YY is presented in Figure 7. As observed in this
figure, both clustering algorithms revealed two instances
of system malfunction during the heating season,
extending beyond the period identified by the CEM.

To better understand these faults, once again a PCA plot
(Figure 8) was consulted, indicating a group of points on
the left revealing an unexpected system behavior. Despite
CLG- O being at 100% open, DA-T is high, once again
indicating a lack of adequate chilled water. Because FCU-
XX and FCU-YY are located on the same level and
hydronic zone, this indicates a system fault at either the
zone or full-building level.

Review by the CEM verified the presence of a fault in the
identified intervals as well and confirmed that OPTICS
was correct in its identification of noise. However,
reviewing the broader dataset, she identified that the same
fault period identified by OPTICS and k-means in June
for FCU-XX was also evident in the FCU-YY data but
missed by both algorithms (box on Figure 5, middle right
data series).
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FCU-ZZ showed similar results. Figure 9 displays the
results of the OPTICS and k-means analysis, revealing the
presence of faults in the time frames of 2019-12-23 13:40
to 2020-01-01 23:50. OPTICS also detected a fault from
2019-12-02 12:55 to 20:05 of the same day. As in
previous cases, OPTICS outperformed k-means both
detecting a fault missed by the latter and by avoiding
misclassifying noise as faults. This was confirmed by the
PCA results, which indicated that DA-T did not respond
correctly to CLG-O at certain times in December. This is
indicated on the figure by the red arrows showing the
actual change in direction for DA-T compared with the
expected (black arrow): despite CLG-O being at 100%,
DA-T was still high. Further input from the CEM noted
that this same issue occurred in FCUs on multiple levels,
suggesting a central plant fault, rather than a local one, as
evidenced in Figure 5. This is was similarly visible in the
PCA plots, which displayed similar fault trends as those
of FCU-YY.

Review by the CEM again verified the presence of a fault
in the identified intervals and confirmed that OPTICS was
correct in its identification of noise. However, reviewing
the broader dataset, she once again identified that the same
fault period identified by OPTICS and k-means in June for
FCU-XX was also evident in the FCU-ZZ data and again
missed by both algorithms (box on Figure 5, bottom right
data series).
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Table 2 presents a summary of the results to compare
the OPTIC and k-means approaches. To contextualize
this, the null accuracy was calculated as 0.751 (1846
actual fault and 5554 normal data points out of 7400
total).

Table 4: Results Summary

Measure PCA + OPTICS PCA + k-means
Sensitivity 0.989 0.869
Specificity 0.986 0.978
Precision 0.959 0.928
Accuracy 0.986 0.951

These results demonstrate that PCA and OPTICS
outperform PCA and k-means in all aspects and that the
approach presented is valid for mechanical fault detection
as well as the sensor fault detection previously
demonstrated by Yan et al (2016). This high accuracy
supports the use of PCA + OPTICS for automated fault
detection in terminal air handling units.

Conclusions

The series of cases presented has demonstrated that
OPTICS provides excellent results for fault detection.
While the current research is limited to manual
confirmation and diagnosis of the nature of the faults, the
extent of the fault can be automatically diagnosed by
comparing fault ranges across FCUs; this is extremely
valuable to aid root cause analysis. There is also a
significant level of effort reduction for the manual
labelling because PCA + OPTICS allows only fault data
to be reviewed. The availability of maintenance records to
cross-validate could further reduce using Natural
Language Processing to automate classification, similar to
the work presented by McArthur et al. (2018).

Other limitations of this research are the relatively small
sample size (three pieces of equipment in one building)
and limitation to cooling operation only.

Several areas of future research are identified. First, we
will expand OPTICS analysis to the full set of FCUs in the
target building and label detected faults to create a training
dataset that can be used to train a fault diagnosis classifier;
this will be repeated for heating operation. The fault range
comparison across units will then be automated to support
autonomous detection of system issues, indicated by
multiple simultaneous equipment faults. To support this,
we will undertake sensitivity analysis to determine if
reachability distance thresholds can be improved and
whether this can be generalized for each equipment type.
Finally, we will investigate the use of online learning to
permit autonomous operation, requiring only new faults
that cannot be classified using learned rules to be
manually labeled, resulting in an online semi-supervised
FDD algorithm.
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