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Abstract

Automated layout generation can improve interior de-
signs by suggesting constraint-compliant design alterna-
tives. Persistent issues relate to intuitive and explainable
constraint formulation and efficiency of layout search that
result in highly compliant, diverse alternatives. This pa-
per proposes a domain-specific language for rule repre-
sentation and evaluation, along with a continuous layout-
configuration search, Jump Search. The proposed method
is compared against a previous grid-based layout search
method and a Simulated Annealing approach, under rule-
based evaluation budgets for different room-type scenar-
ios. Our experimental results demonstrate that Jump
Search is able to generate higher-quality layouts more ef-
ficiently, while also exploring a larger variety of layouts.

Introduction

Automation offers the potential for significant improve-
ments in building design and construction, from eliminat-
ing repetitive routine tasks, such as stud placement, to au-
tomatically generating high-quality building designs. The
last stage in design is the arrangement of furnishings in
the available interior spaces of the building, a task that ar-
guably has the largest impact on the occupants, as a poor
arrangement can lead to inaccessible objects, have nega-
tive ergonomic effects on occupants, and generally make
a space unpleasant that could otherwise be better utilized.
Because of the variety of furnishing types and the com-
plexity of the relevant ergonomic constraints and aesthetic
preferences, the potential placement options and arrange-
ment configurations are vast. Therefore, automatic layout
design could greatly benefit individuals who might lack
the skills and know-how to design practical and function-
ally efficient layouts.

3D digital representations of layouts can provide visual-
izations of design options prior to design commitment;
in fact, it is a tool often used by vendors and decora-
tors. Building Information Modeling (BIM), an emerg-
ing tool for building digitization, integrates specifications
of the building architecture with 3D object models an-
notated with conceptual type, property, and relationship
data. In this work, we adopt a BIM-based methodol-
ogy to ensure that our layout representations fit in the
broader building design life cycle and evaluate our algo-
rithms by implementing and evaluating them in the context
of BIMKit (Sydora and Stroulia (2021)), a toolkit that sup-
ports a broad range of BIM management use cases, includ-

304

ing model storage, model checking against design rules,
visual representation and editing, and automated design
generation.

Design rules are computational representations of the er-
gonomic and aesthetic constraints and guidelines as well
as user preferences applicable to the placement of the ob-
jects inside a space. The evaluation of these rules supports
the assessment of the quality of an existing layout, and,
embedded in a design-space search algorithm, it enables
the automatic generation of valid layouts. An important
question then arises regarding the language in which these
rules should be represented. Earlier work, Merrell et al.
(2011); Yu et al. (2011), proposed rules as geometric for-
mulas, based on shapes, angles, and distance, and many
subsequent approaches since have followed suit (Akase
and Okada (2013); Kan and Kaufmann (2018); Li et al.
(2020); Zhang et al. (2021)). Such representations are not
easy to explain to occupants who tend to think in terms of
furnishings, and, for the same reason, they are also difficult
for interior design experts to express. This is why, in pre-
vious work, a domain-specific language (DSL) for rules
was designed, that includes furnishing types, properties,
and relationships as elements.

Automated design generation is typically formulated as a
systematic search through a design space, toward a high-
quality design. Numerous such algorithms have been pro-
posed (Zhang et al. (2019)), reporting different metrics on
their performance; however, comparing them against each
other is quite challenging. Run-time metrics are difficult
to standardize since they depend on the underlying hard-
ware, and the design-generation problem is formulated dif-
ferently across different algorithms, that rely on different
representations of layouts and rules. A possible metric that
could serve as a standard for comparison is the number of
rule evaluations during the search.

In their previous work, Sydora and Stroulia (2020) de-
signed a simple generate-and-test design method, where
the list of possible locations and orientations for object
placement was pre-generated based on a grid defined rel-
ative to the walls of the space. At each iteration, one ob-
ject was placed at the location and orientation producing
the current highest evaluation score, then repeated with
the remaining objects. Furnishing object placements were
evaluated based on the rule-language evaluation score (as
a proof of concept of the rule language as a viable evalu-
ation method). From their experiments, they were able to
show that the approach was able to re-create input kitchen



layouts by removing all objects and placing them back in
following the input design rules for kitchens (although the
input kitchens were not implicitly created with the same
rules). Then, interpreting the rules from Merrell et al.
(2011) into their rule language and running living room
experiments, they demonstrated that their algorithm could
successfully create functional (relative to the design rules)
room designs.

In this paper, we propose a continuous space search
method, the Jump Search method. At a high level, the new
method places one object at a time, starting with objects
subject to more dependency based on the rules. The fur-
nishing object potential next placements are sampled from
an incrementally decreasing probability distribution, each
evaluated against the rule language evaluator, then greed-
ily selects the highest scoring location and orientation for
the movement and repeats until the number of moves is
exhausted.

We have evaluated the two methods and a simple
simulated-annealing method in terms of, first, how effi-
ciently they find layouts of desired quality, and second,
how good the layouts they produce are, given the same
“budget” of rule checks. Furthermore, we have evalu-
ated their relative performance under different room types,
which have different layout rules and furnishing types.
The contribution of this paper is a new continuous space
search algorithm, Jump Search (JS). We have demon-
strated the good performance of this novel algorithm, and
its effectiveness in delivering high-quality layouts in many
different problem scenarios, by comparing it against a pre-
vious grid-based method, Grid Search (GS), and a ba-
sic continuous space search algorithm based on Simulated
Annealing (SA).

The remainder of the paper is organized as follows. First,
we review relevant research on interior design and furnish-
ing layout and summarize previous work, including the
rule language, layout evaluation, and Grid Search gener-
ative design algorithm. Next, we describe our new Jump
Search generative design algorithm and report on our com-
parative evaluation of this algorithm against previous work
and a Simulated Annealing generative design method. Fi-
nally, we conclude with a summary of our contributions
and our future plans.

Related Work

In this section, we will first describe rule constraint for-
mulation methods, that result in evaluation scores. Then,
we will outline layout optimization methods, specifically
the layout modification and action selection methods. A
more in-depth survey of automated layout generation (or
sometimes Scene Synthesis) can be found in Zhang et al.
(2019).

Configuration Evaluation Methods A common ap-
proach is to define rules in terms of geometrical formu-
las as in Merrell et al. (2011); Yu et al. (2011); Akase and
Okada (2013); Kan and Kaufmann (2018); Li et al. (2020);
Zhang et al. (2021). The most prominent criticism of this
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rule definition approach is the difficulty in defining and
testing new rules, specifically for domain experts lacking
the skills to formulate the rules. These approaches are also
not able to be data-driven, i.e. cannot be directly derived
from examples.

Relational graphs have been proposed in Yeh et al. (2012);
Xu et al. (2015); Liang et al. (2018); Wang et al. (2019);
Zhou et al. (2019); Li et al. (2019); Keshavarzi et al.
(2020). Typical graphs will pre-define a set of possible
relational occurrences, such as “next to” or “facing”, with
nodes in the graph representing the objects placed in the
layout and edges as the relations. A similar approach is
based on statistical likelihoods of relational occurrences
as in Fisher et al. (2012); Chang et al. (2014); Zhang et al.
(2021). Both graph and probabilistic models are typically
example-dataset dependent.

To make the rule creation more accessible to domain ex-
perts, some methods initially use text-based input (Liang
et al. (2018)), before being converted to graphical rela-
tion models as rules. Other approaches have defined the
rules in terms of actions or activities, rather than classical
geometric rules such as in Fisher et al. (2015); Ma et al.
(2016); Qi et al. (2018); Fu et al. (2020). Thus, the evalua-
tion scores are determined by simulation or path planning.
Finally, Machine Learning (ML) methods using Neural
Networks have been proposed that determine location or
location probabilistic mapping based on scene feature (Li
et al. (2019); Wang et al. (2019); Zhou et al. (2019); Yang
et al. (2021)).

The rule language described in this paper supports a user-
friendly process for specifying design rules, in a repre-
sentation format that reminds textual descriptions rather
than geometrical formulas and with support for more com-
plex relations than graph representations. In the future, we
plan to demonstrate how machine-learning methods can be
used to learn design rules from examples so that users’ lay-
out knowledge and preferences can be extracted and used
by our methods.

Configuration Variation and Selection Methods
There are two broad categories of approaches for placing
objects. Either all objects are placed and then simultane-
ously moved around in a single action, or a single object
is moved per action.

Methods for moving all objects include Genetic Algo-
rithms (Akase and Okada (2013)), Particle Swarm Op-
timization (Li et al. (2020)), or Simulated Annealing
with Markov Chain Monte Carlo (MCMC) sampling such
as Metropolis-Hastings (Merrell et al. (2011); Yu et al.
(2011); Yeh et al. (2012); Qi et al. (2018)). The benefit
of moving all objects simultaneously is that objects inher-
ently have arrangement relations to other objects and mov-
ing more objects provides a more drastic alteration that
could improve evaluation scores. On the other hand, find-
ing more optimal evaluation scores becomes more chal-
lenging due to the number of moving pieces.

Placing objects incrementally in the scene has the bene-
fit of finding locally optimal locations for a single object



at a time. The main drawback, however, is that the ear-
lier placements have no concept of the later object place-
ments and their evaluations. Some methods that place
objects incrementally in the scene are using probabilis-
tic sampling (Fisher et al. (2012); Chang et al. (2014); Xu
et al. (2015); Fisher et al. (2015); Ma et al. (2016); Liang
etal. (2018); Zhang et al. (2021)) or procedural placement
(Germer and Schwarz (2009); Kdn and Kaufmann (2018);
Keshavarzi et al. (2020); Kan et al. (2021)). Procedu-
ral placement generally relies on prior layout knowledge,
while probabilistic sampling methods are paired with data-
driven methods requiring example models.

The proposed Jump Search method explores possible
placements for individual objects one at a time, which re-
sults in converging to a valid layout faster. In order to de-
cide which object to place first, it relies on the dependen-
cies between object types and chooses to place first these
objects that depend on objects that are already part of the
layout.

Background

In this Section, we briefly discuss a rule DSL structure,
layout evaluation details, and furnishing placement order-
ing relevant to the generation methods being compared.
An extensive overview of the rule language and layout
evaluation (or model-checking) is available in the work
by Sydora and Stroulia (2020). Furthermore, the work
is placed in the context of BIMKkit, a toolkit of BIM-
based services for reasoning about buildings, including the
domain-specific rule language for describing design rules
and the model-checking algorithm for evaluating the com-
pliance of a building design against a set of design rules,
which can be found in more detail in Sydora and Stroulia
(2021).

Rule Language Structure The rule language is a Do-
main Specific Language (DSL) for interior design rules
that compiles to an executable format (in their case C#).
Rules are created using one of three syntax-directed editors
available in BIMKit. The structure of an individual rule can
be broken down into three components: (1) The relevant
filters and quantifiers that define the objects to which the
rule applies (or Existential Clauses), (2) the relation checks
between these objects, and (3) the logical expression that
ties each of the relation checks by logical operators.

First, the Existential Clause (EC), is a filter on the relevant
object types and the number of those object types that must
pass the checks for the rule to be satisfied, such as, for ex-
ample, ALL chairs or ANY couch. In the case of ALL,
each of the objects of that type in the layout must pass the
checks, while for the ANY case, a single object of the type
passing the check is sufficient.

The relation checks evaluate constraints on a variety of
spatial relationships between two (or more) objects. For
example, a check such as HDistance(A,B) < 10ft com-
putes the Horizontal Distance between objects A and B and
evaluates whether it meets the constraint of being lessthan
10ft. Furthermore, the larger the distance (and closer
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to the 10f7 limit) the lower the quality of the layout is.
BIMKkit’s Application Programmable Interface (API) in-
cludes a broad range of implementations of functions that
compute such relationships in the context of the space and
object geometry that can be invoked when the rules are
evaluated. These implementations represent various sim-
ple, intuitive relationships that are meaningful to occu-
pants and interior designers alike.

The final element of the rule language is the composition
of a set of checks through logical AND or OR operators.
For example, if we want to check that the distance be-
tween object type instance A and B is less than 5/t and
that object B is facing object A, it would be written as
“Distance(A,B) < 10ft AND Facing(B,A) == TRUE”.
Rather than returning boolean True/False values, the val-
ues of the relation checks, and therefore the whole logical
expression, are scaled, such that values returned are in the
range [0, 1]. This is achieved by swapping out the check
operator in the relation checks and logical operators in
the logical expression with corresponding numerical func-
tions. For instance, the OR operator is replaced with the
maximum value function of each of its contained relation
check values. The result is that a final expression result of
1 is a pass and any other value is a degree of failure, with
higher values being favoured over lower, implying they are
closer to a pass.

Layout Evaluation Layout evaluation (or more gener-
ally model-checking) is the process of evaluating the lay-
out design against the design rules. This process takes
the rules in the form of the aforementioned rule language,
compiles them to executable code, and runs the code on
the layout model.

Rules have different levels of importance; they can either
be principles (hard constraints), or guidelines or prefer-
ences (soft constraints). Layouts are compared first against
principle-level rules. Ties are broken by guideline-level
rules, and if those are again tied, the layouts are compared
against preference-level rules. The final quality of a lay-
out is represented as a percentage of the number of rules
that the layout passes over the total number of applicable
rules. In calculating this score, only soft constraints are
considered since a design is not valid if it fails to pass the
principle-level rules.

Ordering of Furnishing Type Placement Through the
dependencies among the various object types as captured
in the design rules, a hierarchy of object types is implied.
The least constrained object type (i.e., the object type that
is placed without consideration for the placement of other
object types) is at the root of the hierarchy. The object
types that depend on the root type through rules are chil-
dren of the root, and so on, until the leaves of the hierarchy
that correspond to the object types with the most depen-
dencies to other object types that must have already been
placed. This hierarchy guides the order in which the var-
ious objects are placed in the space, similar to Kan et al.
(2021).



The Search Algorithms

Grid Search (GS) A generative design method that re-
lies on a grid, defined based on the space walls. For the
grid creation, lines are created outward parallel to each of
the wall lines at regular intervals; the intersections between
the grid lines define the possible locations where objects
can be placed. This allows control of the spacing between
furnishing objects and between the furnishing and wall ob-
jects, at the expense of more limited control of the number
of points.

In this algorithm, for which the pseudocode is provided in
Sydora and Stroulia (2020), objects can only be placed on
the grid-intersection points, in four (at most) possible ori-
entations. The object, location, and orientation combina-
tion with the highest resulting evaluation score is selected
as the decision action for that iteration. For subsequent ob-
ject placements, possible locations are removed if they are
under an existing object. The process repeated with the
remaining objects until either all objects have been placed
or the highest possible evaluation score was reached. In
this paper, object placement ordering is introduced based
on the rules, something that was omitted in the previous
work.

Jump Search (JS) The intuition behind the new layout-
generation algorithm is to shift one furnishing object at a
time into a position that adheres to the relevant layout de-
sign rules. Each object begins near the center of the floor
and, through iteratively smaller moves, reaches its final lo-
cation either when a valid location is found or when a max-
imum number of moves has occurred. The process repeats
until each of the selected objects has been placed in the
layout.

The Jump Search (JS) algorithm is shown in pseudo-code
in Algorithm 1. It takes as input the empty room, the ap-
plicable ruleset, the list of to-be-placed furnishing objects,
and the following parameters: fy4x: the number of iter-
ations exploring different placements, before an object is
placed in its final position; N: the number of moves in a
single iteration; M: the number of orientations attempted
for each object placement attempt. (The orientations are
in the order of /M Radians); and s¢: the initial standard
deviation for sampling movements in the first iteration.
Looking at the rule dependencies, the process deter-
mines the order of object types that must be placed in
the room, given the existing types already in the room
(Wall/Floors/etc) (Line 2). All possible orientations are
calculated based on the input M value (Line 3). This ini-
tialization phase is the same for all three algorithms com-
pared in this paper.

Starting with the first object in the queue, the object is
placed in the center of the room, with a slight offset ran-
domly generated from a normal distribution with a mean
value of 0 and standard deviation of 1m (Line 5). Then, N
move locations are sampled in each iteration, each with an
X and Y move value sampled from a normal distribution
of mean = 0 and iteratively decreasing standard deviation
= s (Line 12), initially set to so (Line 9). If the locations
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Algorithm 1: The Jump Search Algorithm.

1 Function GenerateSampleLayout (Layout,Objects,Rules):

Input: Layout, Objects, Rules, tyax, N, M, sq

Output: Layout

Ob jects <ReorderByRuleTypes(Ob jects, Layout, Rules)

Orientations < GetOrientations(M)

foreach obj € Ob jects do

Moves <GetMoves(1, Layout .Center, 1)

XYTop,0Top — Moves|0], Orientations|0]

scorerop <Eval(0b j,xyrop,010p, Layout, Rules)

t+0

§ <50

while 7 < 1);4x do

XYPre;OPre,SCOT€pre <— XYTop,O0Top,SCOT€Top

Moves <GetMoves(N, xyrop, 5)

foreach xy € Moves do

foreach o € Orientations do
score <Eval(obj,xy,o, Layout,Rules)
if score > scorer,, then

XYTop,OTop,SCOFe€Top 4— XY,0,SCOre

end

-

o= o= =
=3 2 m B o0 RS

end

-
e

end
if SA == TRUE AND scorer,, > scorep,, then
P = 1 — elscorepre=scorerop)/ (1=t /tyax)) jf
P < Random.Sample(0,1) then
XYTopsOTop,SCOFeTop <—
XYPre;OPre,SCOT€pre
end

SRS
[ SIS

23

2
25
26
27
28
29 |
30 end
31 end

32 Layout < PutObject(Layout,0b j,xyrop,0Top)
33

end

tt+1

§ 4= 50 — 1 %S0 /tpax

if scorer,p == Rules.Count then
break

end

generated are outside the room floor, re-sampling occurs.

The potential object placements in each of the N moves and
M orientations and compared against each other (Lines 13-
20). Because only one object moves at a time, the layout
evaluation process is only required to re-evaluate the sub-
set of rules that relate to the moving object, and not the
full ruleset, which contributes to the JS algorithm’s per-
formance.

The move with the best layout score is selected for the next
placement (using the layout evaluation described earlier)
(Line 16-18). ¢ is then increased which reduces the next
iteration move amount variation, s (Lines 26-27).

Once the object has been placed at a location with a score
equal to the maximum possible score for that object (which
is equal to the number of rules relating to that object, i.e.,
all rules passed) or the maximum number of moves is com-
pleted (tp74x has been reached), the current object is locked
into its final location (Line 32). The next object in the
queue is selected and the process repeats until the object
queue is empty.

Simulated Annealing (SA) A simpler variant of the
above algorithm, based on an implementation of the well-
known Simulated Annealing (SA) algorithm (Kirkpatrick



et al. (1983)), was implemented as a competitor. It uses
nearly the same sequence as the above, however, rather
than testing N moves (Line 12), it only attempts one move
at each iteration (taking the best of the M orientations). It
evaluates the move and if the move has a higher evaluation
score, it uses the following formula to determine the move
acceptance probability (Lines 21-25):
P = 1 — e Qorevious=Qeurrent)/ (1=t /1a14x )

As the iteration count increases, t — fy4x, the likely hood
of accepting the move increases, while earlier on, explo-
ration is favoured if the move does not drastically improve
the current evaluation score.

Experimental Design

To comparatively evaluate the three above algorithms, we
focus on three questions of interest.

1. How long does it take each algorithm to deliver a lay-
out of a desired quality?

2. How does each algorithm perform in different types
of rooms, with different functionalities, different sets
of layout rules, and different types of furnishings?

3. How does each algorithm perform at different levels
of scenario complexity, i.e., layout density?

Performance and Quality Measures To comparatively
evaluate the performance of the three algorithms, we run
all our experimental scenarios, described in detail below,
with the same “budget” of rule checks and we compare
the quality of the solutions produced by each of the three
algorithms for the same number of checks. For this work,
we adopt the percentage of rules that the design complies
with as a measure of layout quality or:

n
Score = ZRule[i].eval/n * 100%

where 7 is the total nﬁ?rllber of rules (soft constraints only).
The intuition is that the algorithm that produces layouts
that meet all the applicable rules with the smallest number
of rule checks is best. Thus, embedded in each algorithm
implementation is a counter for the number of times a rule-
evaluation check is invoked and all algorithms are invoked
with a check budget as a parameter.

Because the number of evaluation checks is dependent on
the room shape for GS, the evaluation check budget is cal-
culated for the GS method first. The parameters that result
in closely matching evaluation check counts for the JS and
SA methods are then calculated. For the JS the fy4x and
N are both set to the square root of the number of location
points, while for the SA method, #3;4x is set to the number
of location points as N is set to 1.

Room Types Different room types present different lay-
out challenges since each room type is associated with dif-
ferent types of objects, with dimensions that may vary to a
greater or lesser degree, and with different rules governing
their placements. This is why we evaluated the three algo-
rithms in four room types: living rooms, kitchens, bed-
rooms, and bathrooms. While there are many other cate-
gories of room types (offices, game rooms, etc.), we be-
lieve these three also represent a range of features such as
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dependency amount on movable objects (furnishing) ver-
sus dependency amount on static objects (walls) and room
layout density.

Rulesets Different publications consider different sets of
rules for the above room types. In our work, the three rule
sets have been developed based on our examination of nu-
merous example layouts we collected from design web-
sites. Multiple rules can be related to the same object types
and there is no guarantee that rules do not conflict with one
another. Therefore, a perfect evaluation score may not be
achievable in all cases.

Layout Scenarios Intuitively, given the type of a room,
two parameters influence the complexity of the layout
problem: (a) the shape of the room, and (b) the number
and types of objects to be placed in the room. Therefore,
we experiment with two different shapes of living rooms:
rectangular or L-shaped. L-shaped rooms are less likely
to fit objects in the way the rules intended them as in the
standard rectangular rooms, making full rule compliance
more challenging.

All layout generations start with one of the empty rooms,
defined by their walls, floors, doors, and windows, and a
list of furnishing objects to be placed in the layout. All fur-
nishing objects are described in terms of their 3D shapes
(or mesh representations) and various associated metadata,
including type and facing orientation. Without the rules,
furnishing objects have no inherent restriction on how and
where they can be placed in the layout model (i.e. no lo-
cation “snapping”). For this study, the furnishing list for
each is based on common objects tested in prior research
(see Related Work Section) and commonly found in each
room type.

Finally, in order to evaluate method adaptability to higher
constrained layout problems, we conducted easy and hard
living room and kitchen experiments. The difference be-
tween the two is the hard living room problem has addi-
tional objects, namely one extra side table and two extra
armchairs; the hard kitchen consists of an additional two
chairs and a table with rules for both.

Based on the above rationale, we evaluated the three algo-
rithms in eight design scenarios: Standard Living Room
Easy, Standard Living Room Hard, L-Shape Living Room
Easy, L-Shape Living Room Hard, Kitchen Easy, Kitchen
Hard, Bedroom, and Bathroom.

Results and Discussion

Table 1 reports the performance of the three algorithms
on the eight evaluation scenarios described above. Each
experiment was run 10 times for each generation method
and each rule check budget. Figure 1 shows outputs from
the JS method.

For a runtime benchmark: on an Intel(R) Core(TM) i7-
7700HQ CPU @ 2.80GHz processor with 16.0 GB RAM,
10 iterations with 5 moves and 4 orientations for the rect-
angular living room scenario (14 object total: 6 initial ob-
jects and 8 added furnishing objects) resulted in a com-
pliance score of 96.78%, required 1616 evaluation checks



Table 1: Comparison of generation methods over different room types and complexities.
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(not all rules checked each evaluation), and a runtime of
23.3083559 seconds.

Let us now revisit the three evaluation questions above, in
light of the experimental results.

How long does it take each algorithm to deliver a lay-
out of a desired quality? The answer to this is largely
dependent on the room size, type, objects, and rules, how-
ever, our experiments show some general benchmarks for
different room scenarios. The most prominent difference
between the GS and JS methods is notable consistency in
the correlation between the check budget and final evalua-
tion score. As evident by the jagged lines, the GS method
suffers from heavy reliance on the grid spacing parameter,
thus making the final evaluation less predictable and more

309

Rectangular Living Room Method Compare (Hard)
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dependent on parameter tuning.

How does each algorithm perform in different types of
rooms, with different functionalities, different sets of
layout rules, and different types of furnishings? The
strength of the GS method is the ability to place objects
directly against a wall, as typically found in many rooms.
Therefore, GS performed comparably well in kitchens and
bathrooms where nearly all objects are against the wall but
performed poorly in living rooms where objects were less
wall dependent. Conversely, SA suffers due to the lack of
motion of the objects because of the probability of reject-
ing potential better movements, making moving towards
the walls of the rooms less likely.



How does each algorithm perform at different levels of
scenario complexity, i.e., layout density? On the com-
parison of layout complexity, when more of the same ob-
jects are added to the layout, as in the living room case, all
methods perform consistently poorer than their less com-
plex counterpart, meaning complexity inherently makes
the search for high-quality layouts more difficult. Evi-
dently, adding additional objects and rules that do not over-
lap in the kitchen complexity scenario does not have an
effect on final quality, only that more check iterations are
required due to the addition of objects.

When looking at result variance, the GS method can ran-
domly select over tie breaks, however, these are less fre-
quent given the rule score quantification. Thus, the same
result (usually scoring moderately high) is often repro-
duced. JS and SA, on the other hand, produce more variety
in results, although some early selections result in lower lo-
cal optima. When looking at strictly the maximum of all
produced layouts from each of the 10 runs for each exper-
iment, one variant of the JS always produced the highest
result.

One area where the JS could have been improved, and
more prominently in the SA, would have been a more
intelligent sampling method. ~SA for instance is of-
ten paired with sampling methods such as Metropolis—
Hastings (Metropolis et al. (1953)), which samples from
unknown sampling distributions. In this case, sampling
could be prioritized closer to higher evaluation scoring
locations, making the location sampling more efficient.
However, the JS does this to a minor extent by sampling
nearer to the current location, which is also the highest-
scoring location. Finally, adjusting the SA to more greed-
ily accept the next location may have improved its results.
Overall, the JS method should be considered the stronger
of the compared algorithms as it:

1. produces equal or better results on average, given a
reasonable check budget;

2. has minimal reliance on the input room shape and size
as the only impact is on the initial move amount, thus
making the quality more predictable based on bud-
getary check requirements;

3. is more flexible when more challenging layout exper-
iments are presented; and

4. gives more variation in the final layouts, as the loca-
tions explored are more random.

Some of the limitations of the JS algorithm include the fact
that objects start near the center of the room, making move-
ment closer to walls more challenging than the GS. Making
no assumptions about any object relationships makes the
solution general and fully customizable to the rules. How-
ever, intuitively some objects are usually placed relative to
each other, such as for example couches relative to walls
or nightstands relative to beds. In its current form, JS does
not take advantage of this domain knowledge. Thus, while
JS supports generality, having some procedural placement,
like “snapping” would improve runtime in practice if ap-
plicable.

310

Figure 1: Rooms generated from new Jump Search method.
Living room (top left), Living room (top right), Kitchen (bottom
left), bathroom (bottom center), bedroom (bottom right).

Conclusion

Automation offers the potential for significant improve-
ments in building design and construction. More specifi-
cally, configuration of the layout of furnishings and appli-
ances in the available interior spaces of the building can
have a significant impact on the comfort of the occupants,
as a poor arrangement can lead to inaccessible objects,
have negative ergonomic effects on occupants, and gen-
erally make a space unpleasant when it could have been
better utilized otherwise. Automated interior layout gen-
eration has been a highly researched problem over the last
10 years. However, previous algorithms suffer from two
important shortcomings. First, they tend to rely on non-
intuitive and difficult-to-explain formulation of the rules
that drive the generation of the candidate layouts, and sec-
ond, they are difficult to compare against each other to an-
alyze their relative merits and shortcomings.

In this paper, we propose a novel layout-configuration al-
gorithm, Jump Search, that searches through a continuous
design space. Jump Search relies on a domain-specific lan-
guage for rule representation and a corresponding method
for rule evaluation, which was first embedded in a simple
grid-based search algorithm. Relying on the “number of
rule evaluations” as a metric, we have conducted a com-
parative evaluation of Jump Search against a Grid Search
algorithm and a simple Simulated Annealing search algo-
rithm, in eight different design scenarios of varied diffi-
culty. Our results demonstrate that Jump Search outper-
forms both other algorithms in terms of layout quality rel-
ative to computational complexity, while also exploring a
bigger variety of layouts.
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