2023 European Conference on Computing in Construction

40th International CIB W78 Conference
Heraklion, Crete, Greece
July 10-12, 2023

International Council
for Research and Innovation
in Building and Construction

€

FROM STATIC TO DYNAMIC INFORMATION CONTAINERS
Nidhal Al-Sadoon' ®), Raimar J. Scherer' and Karsten Menzel'

nstitute of Construction Informatics, Technische Universitit Dresden, Germany
nidhal.al_sadoon@tu-dresden.de

Abstract

In today's fast-paced construction industry, collaboration
is crucial for success. The Information Container for
Linked Document Delivery (ICDD) is one of the efforts
being made to support collaboration. It is used to store and
exchange semantically linked heterogeneous application
models. However, it is a static information container,
which complicates synchronizing processes in an
advanced digital twin environment. In this paper, we
propose an approach that enhances information container
implementation with dynamic features by automatically
updating the linksets whenever a new document version
is added to the container. This feature is expected to
expand the workability of the ICDD and enhance its
usefulness beyond pure data exchange.

Introduction

The construction industry is characterized as a highly
interdisciplinary industry in which experts from various
domains participate in projects. It is important to consider
that construction has specific characteristics regarding
production compared to other industries, such as
temporality, a bounded location, and a one-off product. It
can be compared to a nexus where parties connect in
temporary "project networks" to bring together numerous
factors that make up a specific project (Vrijhoef and Tong,
2004). Throughout an asset's lifespan in the built
environment, many players are involved at various stages,
and large sets of application models are generated that
need to be shared and exchanged.

To improve these communication processes, many efforts
have been made toward structuring the processes of
collaboration and data sharing. Building Information
Modelling (BIM) stands out as the most notable approach
that brings about improved facilities for information
management in AEC operation projects. The BIM
environment approach is a digital workspace where
multiple stakeholders in a construction project can
collaborate and share data, however, despite the many
improvements BIM environments have brought to the
construction industry, they do not entirely succeed in
addressing interoperability challenges (Pauwels, 2014).
The gap between traditional document-based construction
and data-driven construction cannot be adequately closed
with BIM's enhanced capabilities, especially in the area of
interoperability (Boje, 2020).

320

The built environment contains more information than
just BIM models such as live sensor data, geographic
information systems data (GIS), social systems data,
environmental data, and facility management data. To
meet the requirements of tasks that go beyond traditional
BIM, and without preharmonizing them in one common
huge data model, a suitable solution is still needed to
manage and exchange distributed BIM and non-BIM data
from different sources. Context-capturing driven
approaches, namely, MultiModel (Scherer and Schapke,
2011) and COINS (Van et al., 2010) were developed to
formalize an exchangeable context model without altering
the information resources and without coming up with one
harmonized big data model. Based on these two
approaches, the information container for Data Delivery
(ICDD) was standardized in ISO 21597 (ISO 21597-1
2020). The standard provides specifications to facilitate
the exchange of heterogeneous original data embedded in
a Semantic Web meta-layer that provides metadata and
linking capabilities based on two main ontologies;
container ontology and linkset ontology. It is possible to
link, store, and exchange data from all kinds of sources,
including model data, documents, images, and ontology-
based data.

Utilizing Semantic Web technologies, information
elements within a container can be easily linked with each
other and with external data. In this context, an ICDD
container can be described as a semantically connected
storage folder containing current project information,
which can be used just for storing, exchanging, or sharing
a particular version, or state of the project data among
stakeholders (Werbrouck, 2019).

It is worth mentioning that the standard provides a
specification for versioning by adding versioning
properties to the Container ontology, namely:
ct:versionID to indicate the version of the resource and
ct:versionDescription to describe the version. However,
the versioning functionality is applicable only for
individuals of the classes ct:ContainerDescription,
ct:Document, and ct:Linkset, but, the versioning
properties are not applicable to the links themselves. This
results in an out-of-date linkset whenever any of its
contained documents is versioned. Consequently, to keep
the container up-to-date, a new link set needs to be
created. However, to create each link in a linkset, the
document information and the identifier need to be

identified for all link elements, which will typically
consume considerable time and effort. To overcome the
described limitations, this research proposes an approach
that is aimed at providing up-to-date information
containers by enabling a fully automatic updating of the
linksets to save the time and cost required to create new
linksets whenever a related document is versioned. This
versioning includes identifying the linksets, where these
documents have participated and then automatically
updating the links in the linksets. Hence, accessing the
most up-to-date data can be insured for all participants in
the process.

Current State of Information Containers

While standardized ICDD is a comparatively recent
achievement, the Multimodel approach underlying it has
already been developed, implemented, and verified in the
German Mefisto Project (Scherer and Schapke, 2011) to
support information analysis and the cross-domain
exchange of information in a process-oriented
Management Information System for simulation and
decision-making. In its infancy, XML-based containers
provide a mechanism for describing the models and their
content on an abstract level using ontologies. Thus, the
MultiModel Container (MMC) version 1 represents a
logical envelope for handling distributed, yet inter-
related, application models in combination with
corresponding link models as a single information
resource that is only capable of representing one static
information state (Fuchs et al., 2011). Due to the success
of the Mefisto project, the MultiModel approach was
further extended by buildingSMART introducing MMC
version 2, and the standardization of a BIMLV-Container
in DIN SPEC 91350 to enable a linked, open-source data
exchange under a common application of the existing
BIM standards IFC (ISO 16739) and GAEB-XML
(Scherer and Katranuschkov, 2019). Between 2012 and
2020 the MultiModel method was further developed in
about ten research projects. One of the implementations
for the MultiModel approach was in the European Project
HESMOS to integrate various information resources
thereby extending BIM to an energy-extended
MultiModel framework (eeBIM) aiming to provide a new
methodology for energy and emissions saving using BIM-
based methods of working, and evaluating the developed
methodology in performed real-life pilot projects
(Katranuschkov, 2014; Scherer et al., 2017).

Another approach was made in the same period in the
Netherlands to develop an interdisciplinary container for
the exchange of information in the frames of the COINS
project. Using linked data approaches, the project aims to
standardize a flexible information container for
connecting all building data (Alsem and Willems, 2014).
Consequently, both approaches formed the basis of ISO
21597.

As soon as the information container approach was
standardized, several research studies were conducted to
explore its potential to foster the delivery and exchange of

321

project files, including BIM models, drawings, images,
and other data models. Based on the information
containers ISO standard 21597, Senthilvel et al. (2021)
developed a micro-service approach for delivering project
files. Hagedorn (2018) developed ICDDToolkitCore,
which is a framework that provides functions to open,
create, validate, edit, and export containers according to
the specification of ISO 21597. Utilizing the ICDD and
the Semantic Web technologies, the researcher also
proposed the concept of the” toolchain framework™ which
relies on the idea of a centralized platform for configuring
workflows employing construction-specific applications,
services, and content within a platform in a compatible
and process-oriented manner (Hagedorn et al., 2022). A
BIM-based solution for Infrastructure Asset Management
System (AMS) was proposed by Hagedorn et al. (2023).
Based on stakeholders' requirements across domains, the
proposed approach provides asset managers with a
strategy for the dynamic use of information containers in
the operational phase.

Hamdan et al. (2021) developed an approach in which
they linked an IFC model, representing an existing bridge,
with ontologies that semantically represent the
construction and affecting structural damage as well as
other related data, e.g. photos, protocols, etc. Thereby, the
models and links were stored in an ICDD. Also,
demonstrated in ICDD environment, the Building
Concrete Monitoring Ontology (BCOM) is developed by
Liu et al. (2021) the ontology allows an IFC- based bridge
model to be configured with properties about concrete
works so that they can be processed by predefined queries
in an asset management application. Using Blockchain
technology and the ICDD, Ye and Konig (2020) present a
framework for automated billing by combining the BIM
Contract Container (BCC) with Smart Contracts. In
addition, interesting research recently proposed a Linked
Building Data (LBD) server to link heterogeneous linked
building data in a Federated Common Data Environment
through the combination of the Solid Initiative for Web
decentralization and the ICDD standard (Werbrouck et
al., 2022).

To expand on the existing standardized ICDD schema,
Al-Sadoon and Scherer (2021) proposed an ontology-
based extension that enables the allocation of multiple
values for individual elements within IFC files. The
approach was developed and validated in the BEST
project where the objective was to implement a fire and
crowd co-simulation on a building model with changeable
spaces (Al-Sadoon et al.,, 2022). Finally, it is worth
mentioning that to retrieve the datasets linked as an RDF
in the ICDD, the query language SPARQL is the
recommended RDF query language, however, Werbrouck
et al. (2019) compare the use of SPARQL with Linked
Data querying languages; HyperGraphQL and GraphQL-
LD. He concludes that among these three languages,
SPARQL is the most expressive. In contrast, GraphQL-
based queries are useful for simple queries that involve a
known dataset (such as an ICDD container), because they

hide SPARQL's verbosity behind elegant and concise
syntax.

Finally, based on ICDD standard (ISO 21597), the
concept of decentralized digital twins for self-sovereign
data sharing and cross-organizational information-based
collaboration is researched in iECO (2020) to support a
wide variety of work processes and scenarios and to create
a common data space for the construction industry.

Dynamic Information Containers Approach

The current state of information containers implemented
based on ISO 21597 could be referred to as a "static
information container". A typical ICDD structure is
created based on the container and linkset ontologies.
Documents are added, and then optionally different link
types can be used to create links between these documents
and the elements they contain. In this way, the container
fulfills the basic purpose specified by ISO 21597, namely
delivering, storing, and archiving documents. On the other
hand, it is undeniable that a construction project is
dynamic by nature. Along the life cycle of a facility in the
built environment, information models are subject to be
modified. The building model, for example, evolves not
only during the design phase but also during the

operational phase when the building is maintained and
renovated. Therefore, the conversion of the ICDD status
from static to dynamic is important for maintaining a valid
information container. However, it is worth noting that the
ISO 21597 standard enables versioning functionality by
adding versioning properties to ontologies and restricting
them to specific domains and ranges (ISO 21597-1 2020).
To indicate the version of a resource, the property
ct:versionID shall be used, while the corresponding
property ct:versionDescription can be used for a detailed
description. As an additional feature, the property
ct:priorVersion can be used to track the version history of
resources. Therefore, the versioning functionalities
specified in ISO 21597 are limited to version
identification and version history tracking.

In light of the versioning restriction specified in the
standard, this research presents an approach developed to
extend the versioning functionalities. It is important to
mention that implementing this approach requires one
small change to the ICDD structure, which is changing the
cardinality of the document in the LinkElement class from
"exactly 1 document” to "minimum 1 document” to allow
for the versioned document to be assigned to the related
linkset. The extended functionalities will be performed in

Procedure : Step 1 Automatic naming for document versions

INPUT: New Document.

14 Get last version of the document in the container by filename (without version ID)
2 IF the document exists in the container THEN
// assign the property ct:priorVersion
3: ct:priorVersion < last version property
4: ct:versionID< last document version ID + 1
G: ELSE
// if the document does not exist, create a new version
6: ct:versionID € 1
T END IF
8: filename concatenated with '-Ver' and versionID
9: Add the new document to the container with version ID. assign the property cz:priorVersion.

Procedure : Step 2 Automatic link updating

INPUT: List of the Document Versions (DV List)

// Set the N to Last version ID of the document in the list.

1: N € Last version ID
// Initialize an empty list to store updated link elements.
2: Updated linkElement list € &
2% FOR i € N-1TO 1DO
// Get all link elements from Linkset where document ID = i
4: linkElementset € get all linkElement from Linkset
where DV List (i) € *has document™ AND linkElement ¢ Updated linkElement list
53 FOR each linkElemen IN linkElementset DO
7 ADD linkElemen TO Updated linkElement list
8: Get Identifier of the linkElement
// Check if the identifier exists in the last document version (N).
9: IF identifier IS Exist In DV List (N) THEN
10: | ADD DV List (N) to the linkElement as “has document’
14 END IF
12: END FOR
13: END FOR

Figure 1: Step 1 and 2 of the approach

322

Verl.ifc

hasDocument
Index:

DirectedLink

hasFromiinkEtement '/ hasidentifier C M]

hasTolinkElement

O
b4

| 001.002.002.007.001

DirectedLink

hasDocument

Index : BuildingModel-Ver3.ifc
hasDocument Index : BuildingModel-Ver2.ifc

TN Index : BuildingModel-Verl.ifc

2EelSmdzf1bfjdFMS2EKAX

hasFromlinkElement '/ hasidentifier ~_/

hasTolLi

-

N

Verdxml

O Index : Constructi
hasDocument

001.002.002.007.001
Index : Constructi
hasDacument O

-Verl.xml|

Figure 2: An instance of link element (left) based on ISO 21597 (right) based on the proposed approach

two main steps: automatic name extending for the
documents when added to the container and automatic
updating of the related linkset, as shown in Figure 1. This
could be described as follows:

When creating an ICDD, first the container is created,
then the document is added and finally, the links are
created and saved in linkset. The first step of
implementing the approach starts with adding the
documents. Once a document is uploaded into the
container, it is checked whether it already exists or not
(currently, in the prototype the comparison is made using
the original file name). If the file not exists, it becomes the
first version, and a version number is automatically added
to its name based on the equation in (1). For this purpose,
the property ct:versionID is used, which is specified in the
ICDD standard schema:

File name in the ICDD Original file name +
—Ver(versionID) (@9)

However, if the file is already existing in the container,
the property ct:priorVersion is used to get the last version
of it, then, the subsequent version ID is added to the file
name, and the file is added to the Payload Documents
folder. The second main step begins when the added file
is not the first version. This is done first by searching for
the link elements in the linksets that have the name of the
newly added file as an instance of "has document", then
defining the identifiers of the related linked elements, and
finally searching for the value of each identifier. If the
value exists, the new version of the file is added as an
additional instance of "has Document" to the
corresponding link element. This step is repeated until all
link elements from the first step are checked. In this way,
the linksets are automatically updated whenever a new
version of a document is added to the container as
illustrated in Figure 2. The following points are worth
mentioning:

323

e The approach applies to both linking types: shallow
linking at the document level as well as deep linking
among elements within documents (linking
identifiers across different documents).

e Additionally, it is applicable for all links types
specified in ISO 21597-2.

e The automatic update of the link elements depends
critically on the element’s ID, which is a key aspect
for successful implementation.

e Sensitivity to the element's ID implies that when a
building element is deleted from a building model
and then add it again to the next version of the same
model, it will be considered a new element and
consequently, it will not be updated in the related
linkset.

As this approach is still in its early stages of development,
it is anticipated that more advantages and limitations of its
functionality will become apparent.

Case Study

To verify the approach, an exemplary case study is created
containing two files: a one-story building model with
architectural design as well as the related work progress
schedule file. Additionally, for the implementation of the
ICDD, the Multi-Model Engine (MME) presented by Al-
Sadoon et al. (2022) is enhanced by the proposed
approach. Consequently, the MME provides the following
functions:

e Creating the container, adding documents, and
creating links based on ISO 21597.

e Adding dynamic values based on the ICDD extended
schema (Al-Sadoon et al., 2022).

e Automatic document versioning and
updating based on the proposed approach.

linksets

So, using the MME, the container is created then the two
files BuildingModel.ifc and ConstructionSchedule.mpp
are uploaded to the container as internal documents. Here
the first step of the approach is implemented, and both file
names are extended to include the version number (-verl)
as shown on the left side of Figure 3. A random wall
element is selected from the building model and linked to

&
2

@ Index.rdf

E Ontology resources

Container.rdf

@ Linkset.rdf

Payload documents
@ BuildingModel-Ver1l.ifc

K/LinkElement>

/LinkElement>

2| BuildingModel-Ver2.ifc

@ BuildingModel-Ver3.ifc

<rdfs:label xml:
/DirectedLink>

X

o BuildingModel-Ver4.i

rdf:about="§7083cf9a-7898-11ed-b36e-405bdB8242790"§
<rdf:type rdf:resource="http://www.w3.orq/2002/07/owl
<hasDocument rdf:resource="http:
<hasIdentifier rdf:resource="#7083c£9b-7898-11led-81fb-405bd8242790"/>

StringBasedIdentifier rdf:about
<rdf:type rdf:resource="http://www.w3.0rq/2002/07/owl§iNamedIndividual"/>
<identifier rdf:datatype="http://www.w3.orq/2001/XMLSchemafstring">2EeLSmdzf1bfjdFM52EKY
/StringBasedIdentifier>
‘LinkElement rdf:about="#7083c£9c~-7898-11led-8046-405bd8242790">
<rdf:type rdf:resource="http://www.w3.o0rq/2002/07/owlf§NamedIndividual"/>
<hasIdentifier rdf:resource="#7083cf£9d-7898-1led-b508-405bd8242790" />

<hasDocument rdf:resource="http://DynamicICDDEngine/ContainerffConstructionSchedule-Verl}

StringBasedIdentifier rdf:about="§#7083c£9d-7898-11led-b508-405bd8242790">

<rdf:type rdf:resource="http://www.w3.orq/2002/07/owl§NamedIndividual"/>

<identifier rdf:datatype="http://www.w3.orq/2001/XMLSchema$string">001.002.002.007.001<
/StringBasedIdentifier>
DirectedLink rdf:about="#7083£931-7898-1led-Bec2-405bdB8242790">

<rdf:type rdf:resource="http://www.w3.0rqg/2002/07/owl§NamedIndividual" />
<hasFromLinkElement rdf:resource="#7083cf9%a-7898-1led-b36e-405bd8242790" />
<hasToLinkElement rdf:resource="#7083cf9c-7898-11led-8046-405bd8242790" />

—n

lang="en">DirectedLink</rdfs:label>

NamedIndividual'/>

BuildingModel-Verl.ifc

DynamicICDDEngine/Container:

/>

="#7083c£9b-7898-11ed-81£fb-405bd8242790">

Payload triples

@ Linkset.rdf

_ rdf :about="47083c£9a-7898-11ed-b36e-405bd8242790"§

<hasDocument rdf:resource="httu

DynamicICDDEngine/Container; >

BuildingModel-Ver3.ifc"

Figure 3: Information Container for the case study

its related activity in the work progress schedule file using
Is:DirectedLink type. Hence, an information container is
created that contains two internal documents in the
Payload documents folder. In addition, a deep link is
created between elements from each document that is
saved as an RDF in the Payload Triples folder as
illustrated in the top-right (a) of Figure 3. As it stands, the
created information container complies with ISO 21597,
but when the building model is revised, for instance, a
new version of the Linksets needs to be created from
scratch which is time-consuming. This shortcoming is
addressed by the proposed functionality of automatic
versioning and Linkset updating. These functionalities
could be applied also to the other file in the same link; the
schedule data model, as in the real scenario when the
design model is changed the related schedule and cost
models should be revised.

However, for the demonstration purpose, only one file is
selected in the implementation. So, when the design is
changed a new version of the building model is issued and
uploaded to the container. Existence checking is
performed for this file and the last version number is
defined, then the new model has been given an extended
file name; “BuildingModel.ifc-ver2” and is added to the
Payload documents folder. Then, the function of link
automatic updating took place in three steps; the previous
version of the file was searched in the Linksets, the
element’s ID is defined and the newest version of the file
name is added as an additional instance of
“hasDocument” to the related LinkElement as shown in
the bottom-left (b) of Figure 3. The same steps took place
when the third version of the building model is issued. In
the second and the third versions of the building model
two different design changes took place that did not
include the building element “wall” in the experimented

324

link. However, for verification purposes, this wall was
deleted in the fourth version of the building model. In
such. When it is uploaded to the container, it has been
given a new extended name (-ver4) and added to the
Payload document folder because it differs from the
previous version of the building model but when it comes
to the link element updating, the wall ID was not found
therefore, the newly file name was not added to the
LinkElement.

Conclusion and future work

Even though information containers are developed to
serve as a repository, maintaining their validity is of
utmost importance. Having up-to-date containers,
however, cannot be secured solely by using ISO 21597.
Hence, we proposed an approach in this paper to extend
the information containers' usability from static to
dynamic containers by adding the functionalities of
automatic document versioning and automatic linkset
updating. To verify the approach, an exemplary case study
comprising two files linked on a subdocument level using
DirectedLink type. The future work will involve
validating the approach through the development of Smart
Advanced Service functionalities for the support of
planners in the context of construction planning in
environmental assessment (iECO, 2020). By having an
ICDD that is up-to-date, we can have not only valid
storage containers but also a dynamic information
container that could be used along the building life cycle,
separately on their own or integrated with cloud-based
services, to keep track and provides control over changes
in the linked documents. As such, the dynamic ICDD
aimed at facilitating efficient collaboration among players
in a construction project and providing more valuable

services for

making.

overarching interdisciplinary decision-

Acknowledgments

This research was made possible with the funding support
of the project iIECO (intelligent Empowerment of
Construction Industry). This support is herewith
gratefully acknowledged.

References

Al-Sadoon, N. and Scherer, R.J., (2021). October. IFC
semantic extension for dynamic fire safety evacuation
simulation. In Proc. of the Conference CIB W78 (pp.
11-15).

Al-Sadoon N, Katranuschkov P, Scherer RJ, (2022).
Extending ICDD Implementation to a Dynamic

Multimodel Framework. In Proc. of the Conference
ECPPM (doi.org/10.1201/9781003354222-15).

Al-Sadoon N, Menzel, K., Scherer RJ. (2022).
Multimodel =~ Framework for Digital Twin
Empowerment. In Proc. of the Conference ICCCBE
2022 (submitting).

Alsem, 1.D. and Willems, P.H., (2014). The management
of information over the life-cycle of a construction
project using open-standard BIM.

Boje, C., Guerriero, A., Kubicki, S. and Rezgui, Y.,
(2020). Towards a semantic Construction Digital Twin:
Directions for future research. Automation in
Construction, 114, p.103179.

Fuchs, S., Kadolsky, M. and Scherer, R.J., (2011), June.
Formal description of a generic multi-model. In 2071
IEEE 20th International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (pp. 205-210). IEEE.

Hagedorn, P., (2018). Implementation of a validation
framework for the information container for data drop.
In Tagungsband 30. Forum Bauinformatik (pp. 147-
155).

Hagedorn P, Block M, Zentgraf S, Sigalov K, Kénig M.
(2022). Toolchains for Interoperable BIM Workflows
in a Web-Based Integration Platform. Applied Sciences.
12(12):5959.

Hagedorn, P., Liu, L., Kénig, M., Hajdin, R., Blumenfeld,
T., Stockner, M., Billmaier, M., Grossauer, K. and
Gavin, K., (2023). BIM-Enabled Infrastructure Asset
Management Using Information Containers and
Semantic Web. Journal of Computing in Civil
Engineering, 37(1), p.04022041.

Hamdan, A.H., Taraben, J., Helmrich, M., Mansperger,
T., Morgenthal, G. and Scherer, R.J., 2021. A semantic
modeling approach for the automated detection and
interpretation of structural damage. Automation in
Construction, 128, p.103739.

325

IECO Consortium. 2022. https://ieco-gaiax.de/. Web
Resource (last accessed: April 2023).

ISO 21597-1 (2020). Information Container for linked
document delivery — Exchange Specification — Part 1:
Container. International Organization for
Standardization, Geneva, Switzerland, ICS 35.240.67
IT applications in building and construction industry,
41 p.

Katranuschkov, P., Scherer, R.J., Weise, M. and Liebich,
T., (2014). Extending BIM for energy simulation and
design tasks. In Computing in Civil and Building
Engineering (pp. 625-632).

Liu, L., Hagedorn, P. and Kénig, M., (2021). An ontology
integrating as-built information for infrastructure asset
management using BIM and semantic web. In
Proceedings of the European Conference on
Computing in Construction (pp. 99—106).

Pauwels, P., (2014). Supporting decision-making in the
building life-cycle using linked building
data. Buildings, 4(3), pp.549-579.

Scherer, R.J. and Katranuschkov, P., (2019), July.
Context capturing of multi-information resources for
the data exchange in collaborative project
environments. In Proceedings of the FEuropean
Conference on Computing in Construction.

Scherer, R.J., Katranuschkov, P. and Baumgirtel, K.,
(2017). Open eeBIM platform for energy-efficient
building design. IneWork and eBusiness in
Architecture, Engineering and Construction (pp. 387-
395).

Scherer, R.J. and Schapke, S.E., (2011). A distributed
multi-model-based management information system
for simulation and decision-making on construction
projects. Advanced Engineering Informatics, 25(4),
pp-582-599.

Senthilvel, M., Oraskari, J. and Beetz, J., (2021), August.
Implementing Information Container for linked
Document Delivery (ICDD) as a micro-service. In EG-
ICE 2021 Workshop on Intelligent Computing in
Engineering (p. 66).

Van Nederveen, S., Beheshti, R. and Willems, P., (2010).
Building information modelling in the Netherlands: a
status report. In W078-Special Track 18th CIB World
Building Congress (p. 28).

Vrijhoef, R. and Tong, M.K., (2004). Understanding
constructions as a complex and dynamic system: an
adaptive network approach. In /2 the annual
conference on lean construction. (pp. 61-73).

Werbrouck, J., Senthilvel, M., Beetz, J. and Pauwels, P.,
(2019). Querying heterogeneous linked building
datasets with context-expanded graphql queries. In 7tk

Linked Data in Architecture and Construction
Workshop (Vol. 2389, pp. 21-34).

Werbrouck, J., Pauwels, P., Beetz, J. and van Berlo, L.
(2019). Towards a decentralised common data
environment using linked building data and the solid
ecosystem. In 36th CIB W78 2019 Conference (pp.
113-123).

Werbrouck, J., Pauwels, P., Beetz, J. and Mannens, E.,
2022. Lbdserver-a federated ecosystem for
heterogeneous linked building data. Semantic Web
Journal (submitting).

Ye, X. and Konig, M., 2020. Framework for automated
billing in the construction industry using BIM and
smart contracts. In Proceedings of the 18th
International Conference on Computing in Civil and
Building Engineering: ICCCBE 2020 (pp. 824-838).

326

