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Abstract

With the emerging application and development of digi-
tal twin technologies in the Architecture, Engineering, and
Construction (AEC) sector, effective monitoring and pre-
diction of the built environment is an important step to-
ward energy transformation. The temporal properties are
always implied in the events, either explicitly or implicitly.
However, if the temporal evolution data between multiple
stakeholders is not properly documented and structured,
this valuable data will not be transformed into meaningful
actions. As a result, the AEC collaborative work requires
a structured model to integrate heterogeneous information
and fully document state changes over the process of mul-
tiple iterations. In this paper, we introduce a workflow
on a Temporal Knowledge Graph (TKG) in order to link
observation data and the building environment context in
a generic inductive framework. The temporal properties
of events are documented in a graph and can be queried
through dedicated SPARQL queries. The main contribu-
tion of this research is an approach to track the temporal
information of linked building data, in order to derive ad-
ditional information for digital twin scenarios.

Introduction

Over the past decades, Semantic Web (SW) has facilitated
data interoperability and cross-domain linking in the Ar-
chitecture, Engineering, and Construction (AEC) sector
(Pauwels et al., 2017). Semantic Web (SW) languages
have shown the ability to link static heterogeneous graphs,
while real-world problems in the AEC industry are con-
stantly evolving and undergoing state changes (Deshpande
et al., 2014). In many cases, from multi-party collabo-
rative architecture design to IoT-assisted facility manage-
ment, these processes are time-sensitive and usually com-
posed of sequences of events. Properly considering these
dynamic insights and how to utilize big data to enable data-
driven building energy retrofits is still a great challenge we
currently face (Hu et al., 2021).

With the support of emerging technologies such as the In-
ternet of Things (IoT) (Boje et al., 2020), the AEC indus-
try is able to implement data-driven monitoring, whether
in construction, building automation systems, and energy
optimization systems (Mishra et al., 2020), where large
amounts of dynamic native data can be captured (Tang
etal., 2019). Without proper integration of heterogeneous
data from different sources, it will be difficult to transform
this big data into meaningful actions that can support the
AEC industry.

The first challenge encountered is how to integrate het-
erogeneous data (Costin and Eastman, 2019). There have
been many attempts in the AEC domain to integrate static
data in the web context by Linked Data method (Zhang and
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Beetz, 2022). As part of our research (Zhang and Beetz,
2021), the integration of IoT monitoring data with build-
ing context data on the web has been implemented, but
the dynamic data is still stored in a time-series database
and called from the web end so there are still limitations
in terms of complex reasoning. If dynamic sensor data
and building context data can be integrated into a uni-
fied graph, and both the time-stamped data and historical
records can be directly accessed through query languages
in the web, this will enable us to fully explore the heteroge-
neous data and infer a considerable amount of new knowl-
edge. The documentation of event streams in the workflow
are another focus, and the BIM model and external infor-
mation can always be kept up to date through a shared plat-
form.

Inspired by the unstructured features of data in the AEC
domain, unified data graphs are essential for effective use
of big data in the AEC domain which requires tasks such as
interoperability, linked data, and dynamic integration. The
ideal workflow is where project information from multiple
sources are shared and managed in a centralized platform,
which includes BIM models, plans, monitoring, tasks, etc.
Performing automated analysis and reasoning based on
existing data is a promising area for future development,
including tasks such as classification and link prediction
from large amounts of dynamic data using graph methods.
A temporal knowledge graph-based data integration
schema is proposed in our study for extracting raw data
from BIM models and observations in building monitor-
ing systems and describing them through the RDF for-
mat, enabling associations between static building context
data and dynamic rich sensor data streams, and performing
complex queries through SPARQL.

In the following section, we review the temporal issues
faced in the AEC domain and the related specifications
and studies on processing linked stream data. We then in-
troduce the concept of Temporal Knowledge Graph and
review its capabilities in data integration, querying and
reasoning. We formally introduce a Temporal Knowledge
Graph for the use in building’s digital twin graphs and
provide examples of cases being described in a Temporal
Knowledge Graph and queried through SPARQL.

Related Work

This section will cover temporal data management in the
linked building data context and the introduction of Tem-
poral knowledge graph (TKG).

Introducing Temporal Data in Linked Building Data

Temporal data in the AEC industry is not just stream of
time-stamped data derived from sensing and monitoring
systems. It can be determined as a sequence of time-
constrained events with traceability records, whether it is



the iteration of events between multiple stakeholders or
the tracing of construction schedules. The management
of Temporal properties in AEC domain mainly covers the
following subjects:

* Building design modification and evolution

 Construction schedules and milestones

* Sensing and monitoring data from Digital Twin sys-
tem (e.g. energy consumption, human behavior, de-
vices status)

* Assets maintenance and repair records

* Authentication and inspection records

A number of regulations and studies have focused on tem-
poral state information in the AEC domain: The BIM Col-
laboration Format (BCF) (buildingSMART, 2017) is an
example of an open standard that allows different stake-
holders to communicate issues in a shared IFC model.
BCF can be used to document the temporal changes of
issues across multiple building lifecycles, such as design
coordination, construction schedules, and notations dur-
ing handovers etc. Although BCF can be utilized in a file-
based or web-based approach (remote APIs), (Schulz et al.,
2021) extends bcf in the context of linked building data to
bcfOWL, further exploring the ability of BCF to link het-
erogeneous building datasets in a semantic web environ-
ment.

The ontology for Property Management (OPM) (Group,
2018) (Rasmussen et al., 2019) is an ontology that de-
scribes the state changes during the architecture design
phase, it documents the iterations and history of the de-
sign process at the ontology level.

The ISO 21597 Information container for linked document
delivery (ICDD) and ISO 19650 Common Data Environ-
ment (CDE) (Preidel et al., 2021) both define a centralized
environment for multi-party data exchange, where autho-
rized access is considered and models and data are fully
captured and used in audit trails during the project. How-
ever, these studies place more emphasis on how heteroge-
neous datasets in the AEC domain can be exchanged in
a vendor-neutral environment, with interoperability issues
being given more consideration. There is some inspiration
for this study, but the purpose of this research is to inves-
tigate how to derive new time-based knowledge from the
temporal changes of these events in Digital Twin enabled
Linked Building Data systems.

Temporal Knowledge Graph (TKG)

As a prevalent paradigm, the Knowledge Graph (KG) can
greatly support applications such as interoperability, nat-
ural language processing, and reasoning (Pauwels et al.,
2018). But as big data expands in modern society, there
are limitations to the ability of knowledge graphs to repre-
sent state changes and entities evolve over time. For exam-
ple, the following set of facts about architect Ludwig Mies
van der Rohe was extracted from DBpedia (see in listing
1), it is known that Mies was once the director of Bauhaus.
However, most of the facts evolve over time (see in listing
2), so suppose a natural language question is asked: “who
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was the director of the Bauhaus?” The answer should be
the director in 1919-1928 was Walter Gropius and the di-
rector in 1930-1933 was Mies, whereas traditional knowl-
edge mapping does not support the expression of informa-
tion that contains temporal constraints.

(Ludwig Mies van der Rohe birthPlace, "Aachen")

(Ludwig Mies van der Rohe, director0f, "Bauhaus
|I)

(Ludwig Mies van der Rohe, citizenship,
""Germany n"mmys)

Listing 1: Facts about Mies van der Rohe

(Ludwig Mies van der Rohe birthPlace, "Aachen")
[1886-3-27]

(Ludwig Mies van der Rohe, director0f, "Bauhaus
") [1930-1933]

(Ludwig Mies van der Rohe, citizenship, "Germany
") [1886-1944]

(Ludwig Mies van der Rohe, citizenship, "US")

[1944-1969]

Listing 2: Facts about Mies van der Rohe with annotations

Temporal Knowledge Graph (TKG) is a type of extended
knowledge graph that can be described as an asynchronous
stream of temporal events. TKG is typically composed of
a set of nodes and edges where nodes represent the entities
of resources and edges represent the relationships between
entities, as well as time-stamped data associated with each
node and edge will be added to the triple.

The concept of TKG first appeared in the computer science
domain (Gutierrez et al., 2005) (Gutierrez et al., 2006)
and has recently been applied in several fields to solve
time-constrained problems in real-life. The current ap-
plications of TKG mainly include temporal data integra-
tion, that is, the integration of heterogeneous data sets in
a common temporal frame including temporal data, which
is significant for dynamic application scenarios such as fi-
nancial transactions, and recommendation systems. Tem-
poral question answering enables complex queries to be
performed on TKG to answer complex temporal questions
(Saxena et al., 2021). With the growth of Graph neural
networks (GNNs) research, the temporal GNN algorithm
is applied on TKG to derive insights about the state of
things. Introducing TKG into the AEC domain will be an
important step towards enhancing the ability to derive new
knowledge from dynamic events. Specific TKG applica-
tion scenarios are listed below:

* Temporal data integration: TKG can be used to ad-
dress interoperability problems and reconcile data
from unstructured datasets, including temporal prop-
erties of entities.

e Temporal question answering: TKG can be queried
to retrieve knowledge over a range of time.

e Temporal reasoning: TKG can be used to learn from
historical data and infer new knowledge, such as pre-
dicting the direction of things or identifying patterns
over time.



In fact, there have been many attempts to add semantics
for temporal information to the knowledge graph in addi-
tion to the TKG approach. The most common one is to
use ontology to create data types for time-dependent nodes
(Neuhaus and Compton, 2009) (Rasmussen et al., 2019).
For example, sosa:resultTime can be used to attach tem-
poral attributes to sosa:Actuation, sosa:Observation, and
sosa:Sampling. Time ontology in OWL proposes a series
of vocabularies to represent temporal concepts and prop-
erties Draft (2022). This approach is feasible for adding
temporal attributes to individual nodes, but there are some
limitations to documenting the complete knowledge evo-
lution process.

Another approach is to extend the syntax of semantic lan-
guages (e.g. OWL and RDF) so as to be able to inter-
pret state information and apply temporal reasoning. TKG
belongs to the method of extending syntax. (Kim et al.,
2008) extended the interpretation and inference capability
of OWL language on temporal evolution, proposed a TL-
OWL language, and a set of inference rules were defined.
When it comes to the RDF annotation syntax, the Stan-
dard RDF reification method is gradually not adopted due
to its limited expressiveness Nguyen et al. (2014). While
RDF-star and SPARQL-star (Report, 2022) are the latest
extention language drafts proposed by W3C, which greatly
extend the interpretation capability of RDF by allowing
statement-level annotations to be added to edges, which in-
creases the tediousness of statements to some extent but it
provides a great flexibility for adding temporal attributes,
authentication information, and authorship to the graph.
This study is concerned with adding temporal attributes to
AEC knowledge, and the next step is able to reason new in-
sights from the dynamic evolution of the knowledge graph,
which is currently supported by more research on TKG
reasoning and is more feasible.

Linked Building Data in Temporal Knowl-
edge Graph

In this section, we outline how to use temporal knowledge
graph to describe digital twin enabled linked building data,
and some listing examples about sensing and observations
are shown.

Describing Static Physical Facts in Knowledge Graphs

To represent and link building-related assets on the web,
heterogeneous data need to be described using Seman-
tic Web formats such as Resource Description Framework
(RDF). Representing building context data in static graphs
have been studied extensively, here we mainly use exist-
ing ontologies to describe physical facts in the AEC sec-
tor. Industry Foundation Classes (IFC) models are used
as the building model source data, besides sensor observa-
tions, external weather information, and other information
complementing the IFC file to describe the building’s dig-
ital twin system. Specifically, ifcOWL is used to describe
building and geometric data, which is the official serial-
ization of the IFC schema in the Web Ontology Language
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(OWL) (Pauwels and Terkaj, 2016) (Beetz et al., 2009). To
represent sensor and actuator configurations in buildings
and their observations, the SSN ontology (Compton et al.,
2012) and its extension SOSA ontology are used here, see
in figure 1.

! sosa:Observation

o rattype

sosaActuation o , “22.4"AAxsd:double
instaactuationtes . rdf:type sosa:hasResult i )
sosazactsOnProperty .ins(.observa|ion4325
sosazobservedProperty
‘ inst:room101
rdf-type
ifcowl:ifcSpace sosa:isObservedBy
inst:sensor_ma?
rdf:type
- .. @ s
@ instance
® ueera

Figure 1: Describe Digital Twin Entities and Properties in
Knowledge Graphs

Describing Temporal Data in Knowledge Graphs

As the prevalence of IoT and Digital Twins technologies
grows, what they offer is a powerful paradigm for the de-
velopment of the AEC sector. For example, real-time
feedback on human behavior, physical observations (loca-
tions, equipment, etc.), external weather data, and other
rich knowledge play a pivotal role in data linkage. In the
previous section, the representation of static physical as-
sets has been achieved, while the description of the tempo-
ral knowledge, which is continuously updated in the dig-
ital twin process, still has certain limitations. The RDF
model is an atemporal snapshot of information. As shown
in figure 2, for example, in a building, different agents cre-
ate different events or relationships at different times. The
creation of events points to the creation of nodes in the
knowledge graph, when a new relationship is updated then
an edge is also updated. Different from the standard RDF
triple < s, p,0 >, the temporal knowledge graph becomes
a four-triples by adding the time factor to the triple. The
W3C has not yet made a standard specification of the tem-
poral knowledge graph, but there have been numerous at-
tempts to interpret temporal data at different granularities
based on RDF model, here we mainly use the RDF model
summarized from the following studies (Gutierrez et al.,
2006) (Leblay and Chekol, 2018) and the temporal RDF
interpretation model can be seen in figure3.

See in equation(l). ¢; and #, are added to the triple
< s,p,o > as time intervals. The time here is the
time when the predicate relation occurs, as an ex-
ample: <Building/reiffMuseum> sosa:hasSample
<Sensor/MQ7>. If time is assigned to the Subject it
is similar to describing the date of completion of the
<reiffMuseum> building, which is clearly inappropriate,
and the same for the sensor <MQ7> is similar to describing
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i 0 " Cip-Pool
Agent 4

Location
:‘, Agent

Event

Figure 2: Event stream iterations in building monitoring
systems

the lifetime of the device. Therefore by using time to de-
scribe the relations, most of the relations in the RDF model
can be instantiated.

< s, pltiytn),0 > (D

,where

—s is the subject and is used to describe the resource.

—p predicate represents the relationship between subject
and object.

—o denotes the object, it can be an entity or a literal.
—I[t1,1,] is the time property to describe the predicate. If
it is represented as a time interval then it is the time from
1] to t,. otherwise, if the relationship occurs at a point in
time, i.e. when #; = t,, it can be considered to occur at a

time point, xsd:date
“2022-11-20" “2022-12-25"
*xsd: date *ysd.date

»
L

[T ][ [ ]
hasStartTime hasEndTime,
Predicate

sosa:isObservedBy

ex:<dc/room101> ex:<sensor/dht11>

Figure 3: Illustration of temporal knowledge graph syntax and
cases

In listing 3 we use Digital Twin enabled Linked Building
Data as a case study to create a knowledge graph instances
with location, observation, sensor and actuator perspec-
tives.

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-
syntax-ns#>

@prefix time: <http://www.w3.org/2006/time#>.

@prefix unit: <http://qudt.org/vocab/unit/>

@prefix xsd: <http://www.w3.org/2001/XMLSchema#>
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@prefix sosa: <http://www.w3.org/ns/sosa/>
@prefix ssn: <http://www.w3.org/ns/ssn/>

#Location
<reiffMuseum/dc/r101> rdf:type sosa:
ObservableProperty ;
sosa:isObservedBy [2022-05-24,2022-12-24] <
sensor/mq3>
#0bservation
<observation/27> rdf:type sosa:(0Observation ;
sosa:hasFeatureOfInterest <reiffMuseum/r102>
5
sosa:observedProperty <reiffMuseum/r102/

airQuality> ;
sosa:madeBySensor <sensor/30> ;
sosa:hasResult [2022-12-01,2022-12-31] [
qudt-1-1:unit qudt-unit-1-1:Kilowatthour ;
qudt-1-1:numericValue "22.4"""xsd:double ]

#Sensor
<sensor/926> rdf:type sosa:Sensor ;
sosa:madeObservation[2022-11-01,2022-11-30] <
Observation/235>, <Observation/236>

# Actuation
<windowCloser/987> rdf:type sosa:Actuator ;
sosa:madeActuation[2022,12,25] <actuation/188>
5
ssn:forProperty[2022-05-01,2023-05-01] <window
/104#state>

Listing 3: Representing temporal properties in SOSA ontology
using the TKG method

Queries Over Temporal Graphs

Knowledge graph question answering (KGQA) is an im-
portant research area for using knowledge graphs to answer
complex questions to solve real-world challenges where in-
formation can be retrieved in a structured way. In the pre-
vious section, an effective method for integrating temporal
data from the AEC domain in temporal knowledge graphs
was introduced. To transform such unstructured data into
insightful actions, in this section we will perform question
answering against temporal knowledge graphs.

SPARQL (Recommendation, 2008) is a query language for
RDF graphs that allows querying heterogeneous data from
multiple sources. It is a specification proposed by W3C.
SPARQL is used in this paper to query temporal graphs,
the standard SPARQL syntax may be restricted in querying
temporal events, but some existing studies has now been
carried out to query Temporal RDF that we can refer to
(Tappolet and Bernstein, 2009).

Here the DC chair in the RWTH Reiff building is used as
a case study, which consists of 6 rooms and some open
spaces with different sensors and actuators located in dif-
ferent rooms and locations to monitor temperature, hu-
midity, air quality, etc. All events, results, and interac-
tions are time-stamped and stored in time-series database.
As shown in Figure4, together with building context data,
sensing context data, and timestamps are interlinked in the
graph and continuously updated, by querying and reason-
ing with such a large temporal knowledge graph we can



Room102_air_quality

— air_quality

waluz

Room102_humidity

— rumidity

Room104_temperature

—— temperature

Figure 4: Usecase: Sensor data stream in Reiff building

better understand how natural relationships are evolved.
The following two listings show examples of temporal
SPARQL-based queries. Different from the standard
SPARQL query syntax, the time attribute was introduced
into the triple, so there will be an additional time factor in
the query. The first query listing is a sample that retrieves
the result of an observation at a given time point, see in
Listing 4.

@prefix sosa: <http://www.w3.org/ns/sosa/> .

SELECT
WHERE {
?0bservation sosa:hasResult[?t] ?Result

?Result

FILTER (70bservation="0Observation/2324" and 7t
="2022-12-24T00:00:00+00:00"~"xsd:
dateTimeStamp)

Listing 4: Query example for retrieve the result of an
observation at a given time point

Listing 5 depicts a sample query about a time interval, sup-
posing the user wants to retrieve the observation result of
the air quality sensor in Room 101 at a certain time period
or time point.

@prefix sosa: <http://www.w3.org/ns/sosa/> .

SELECT

WHERE {
?Room sosa:isObservedBy[?7t1,7tn] 7sensor .
?sensor sosa:hasResult[?t1,?7tn] ?result

?tl 7tn ?result

FILTER(?Room = and ?sensor = "sensor

/mq3" )

"dc/r101"

}

Listing 5: Query example for retrieve the sensor observations
for a time period
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Discussion

In this study, a preliminary study was made to introduce
time constraints into semantic building digital twin graphs,
and some sample queries were performed. However, so
far, since the digital twin system involves high volumes of
throughput data, there may be issues in terms of efficiency
of the temporal knowledge graph in real projects, so the
optimal representation of the knowledge graph needs to be
investigated.

Another problem is that the query syntax of the Tempo-
ral Knowledge Graph is difficult to meet the complexity
of real problems at the practical application level (Zou
et al., 2014). Most existing query methods can only reply
to simple point-to-point problems, i.e. snapshot queries,
and currently have difficulties in complex cluster queries.
Simple questions such as: When did the CO2 sensor start
to observe Room104? Such simple time or entity-specific
queries are currently achievable, but for complex questions
such as: What sensors were installed in Room104 after the
air quality sensor was removed on 2023-1-15? Although
queries over static graphs are well investigated, further re-
search is required on methods for complex queries (e.g.,
cluster queries, event pattern matching over graph streams)
in order to efficiently use Temporal Knowledge Graphs to
trace real-world problems.

Conclusion and Future Work

The building industry is involved with multiple iterations
of events throughout its lifecycle, and the missing docu-
mentation of these processes results in increased complex-
ity and errors (Rasmussen et al., 2019). Most of the previ-
ous studies have focused on the problem of interoperability
between datasets from multiple sources, while event-based
state changes are not fully documented.



Semantic Web technologies have enhanced the develop-
ment of interoperability in the AEC domain, but are lim-
ited in expressing temporal changes. As the prevalence
of sensing devices and systems, the issue of Digital twin-
enabled Linked Building data was addressed here, we in-
troduce a Temporal Knowledge Graph approach to en-
hance the representation of complex sensing and mon-
itoring system changes in buildings. We developed a
reusable structured method to add temporal attributes to
RDF triples.

This research is an important step towards dynamic knowl-
edge graph-based learning. For more accurate learning
and prediction of temporal events, firstly the heteroge-
neous data has to be integrated in a common structured
way so that algorithms such as Temporal Neural Networks
can be applied on the knowledge graph to derive new
knowledge. Reasoning and prediction capabilities are an
important desirable feature of dynamic knowledge graphs,
so the next application of reasoning new insights from big
data in building digital twin systems is also an interesting
challenge. In addition work, we are improving the repre-
sentation of dynamic knowledge graphs, including adding
statement-level annotations to RDF graphs that will not be
limited to temporal attributes but include more complex
information such as authentication, authorship, etc.
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