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Abstract

Metal additive manufacturing (AM) technologies, such as
laser direct energy deposition (DED), have attracted
attention in the construction industry. However, the
current track geometry inaccuracy in the DED process,
especially at corners with sharp turns, is a key barrier to
the adoption of this advanced technology. To tackle
geometry inaccuracy and achieve geometry control in the
DED process, analytical relationships between geometry
attributes and printing parameters for single-layer
deposition have been developed. However, the layer
height in multi-layer deposition may not be constant
during the printing process, and the geometry estimation
for multi-layer deposition is still problematic. Moreover,
geometry estimation for corners in complex shapes has
not been studied. In this study, a real-time corner height
estimation technique for multi-layer track-with-corner
deposition is proposed. The experimental results show
that the proposed technique can estimate the corner height
with an average RMSE of 0.042 mm for corners with
different angles.

Introduction

Metal additive manufacturing (AM) technologies have
developed rapidly since their introduction in the early
1980s because of their powerful manufacturing
capability. According to the American Society for Testing
and Materials (ASTM) standard, the two major groups of
metal additive manufacturing technologies are directed
energy deposition (DED) and powder bed fusion (PBF)
(ASTM Committee, 2012), both of which have been
widely applied in various fields such as the aerospace,
automobile, and biomedical industries (Milewski, 2017).
In recent years, DED has gained attention as a viable
manufacturing method in the construction industry in
which metallic materials are commonly adopted in
distinctive and complex designs (Buchanan and Gardner,
2019). Traditional techniques to produce metallic
components, such as hot rolling, cold forming, and
extrusion, often lead to regular prismatic elements
(Frohlich and Schulenburg, 2003), which limits the
potential use of metallic materials in construction and
design. DED can serve as a complementary but
irreplaceable technique to produce components with
almost any shape with high accuracy.

However, geometry quality problems may occur during
DED process especially when predefined constant
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printing parameters (nominal printing parameters) are
used in the whole printing process. Recent studies have
shown that the as-built deposition height is not always
consistent with the as-designed deposition height when
using constant printing parameters (Chabot et al., 2019;
Tyralla et al., 2020; Vandone et al., 2018; Xiong and
Zhang, 2014). This can be ascribed to three reasons. First,
the value of nominal printing parameters and the
corresponding as-designed track height are normally
determined based on experience, which might not be
accurate (Shim et al., 2016). Second, the track height is
related to process parameters such as the heat emission
conditions, inter layer temperatures, and surface quality of
previous layers, those parameters might change at
different layers (Li et al., 2021). Third, since DED process
is quite sensitive to printing parameters such as laser
power, powder feed rate, laser traverse speed and gas flow
rate, a slight change of these parameters might lead to
track height variation. Moreover, when track height
deviates from as-designed value, the nozzle to top surface
distance (NTSD) also deviates from specified value and
the printing condition changes, result in more and more
serious height discrepancy (Xiong and Zhang, 2014). In
practice, if the printing system is a stable system so that
the variation of printing parameters is within an
acceptable range and there’s no sudden disturbance on the
printing parameters, most track height variations occur at
discontinuities such as corner points, because the traverse
speed changes at corner points (Pereira et al., 2021;
Thakkar and Sahasrabudhe, 2020; Woo et al., 2019).

To ensure the performance of the final product, it is
important to manage the geometry quality of deposited
components. Towards geometry quality management, one
important part is to identify the relationship between
process parameters and geometry attributes, as illustrated
in Figure 1, a proposed geometry management framework
in AM process. A common AM task includes four parts,
AM design, AM input, AM process and AM product. In
AM design stage, product specifications such as material
properties, quality characteristics and accuracy
requirements, are first identified by employer, as
reference for determining as-designed track geometry and
toolpath. Afterwards, nominal printing parameters can be
decided as AM input based on as-designed track
geometry, toolpath and the relationship between printing
parameters and geometry attributes. During AM process,
the process parameters including real printing parameters
as well as several influencing factors such as melt pool



size, interlayer temperatures, and previous layer
conditions, etc., work together to produce the as-built
track geometry, and finally the AM product is generated
by combining all as-built tracks and thereby form the
product geometry. To manage geometry quality, a control
system should be considered into the common AM task,
where the relationship between process parameters and
track geometry attributes will be very important since it
determines the prediction of control target. When there is
geometry inconsistency, the nominal printing parameters
can be adjusted through the established relationship to
ensure the as-built track geometry.
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Figure 1: Geometry quality management in AM process

The relationship between geometry attributes and process
parameters has been studied in previous literature.
Empirical models, physics-based models together with
numerical simulation, and machine learning algorithms
are used to predict the track geometry from printing
parameters. In early studies, the geometry estimation
approaches were limited to empirical models. Afterward,
to gain a better understanding of the complex laser-
material interaction, physics-based models were
developed. However, the physics-based models might
provide worse geometry estimation accuracy compared
with empirical models. Besides, numerical simulation
using physics-based models takes a lot of time, making it
impossible to be applied in online geometry control.
Recent studies considered machine learning algorithms.
Wang et al established both physics-based modeling and
Gaussian Process Regression (GPR) model to predict
track width and height (Wang et al., 2020). The result
shows that the GPR model achieves much smaller
prediction errors than physic-based modeling for track
width and height, however this GPR model was
established using simulated data from physic-based
modeling thus the effectiveness was not validated on
deposition experiments. In addition, although geometry
problems often occur at corners and some studies were
related to corner problems (Badarinath and Prabhu, 2021;
Comminal et al., 2019; Kono et al., 2018; Ribeiro et al.,
2020), there has no study focusing on the corner height
estimation in DED process.

In this paper, the corner height estimation of multi-layer
track-with-corner deposition has been achieved in real-
time using ANN and measured traverse speed at the
corner. Compared with current studies of relationship
establishment methods, several machine learning
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algorithms have been compared and evaluated. Based on
the evaluation results, an initial model for layer height
estimation of multi-layer straight-track deposition using
artificial neural network has been developed, considering
not only three principal printing parameters (laser power,
traverse speed, and powder feed rate), but also process
parameters, such as layer number, previous layer height,
etc. An optimal model has been constructed by updating
the initial model in-situ when there has corner data with
measured traverse speed been obtained. Finally, real-time
corner height estimation is achieved using optimal model
and measured corner speed. Through experiment, the
relationship of corner height increase and corner traverse
speed decrease in DED process has been quantified.
Experiment results validated that the developed corner
height estimation method can be applied to corners with
different angles. The paper is organized as follows.
Section 2 describes the experiment setup, including DED
system, measurement using laser line scanner and vision
camera, and the preliminary data analysis. Section 3
explains the methodology of developing real-time corner
height estimation technique, which comprises offline
model selection, in-situ optimal model construction and
real-time corner height estimation. Sections 4 provide the
experimental results and discussions. Section 5 concludes
the paper by presenting summary, limitations, and future
work.

Experimental setup

Description of Directed Energy Deposition System
and test specimens

In this study, a commercial DED printer MX-400 from
Insstek Inc. was used with 1070nm Ytterbium fiber laser
system that can generate a maximum laser power of 1 kW.
The powder carrier gas and shielding gas were argon gas
with a flow rate of 2.5 L/min and 5.0 L/min, respectively.
During deposition, the distance between nozzle and the
top surface, named as nozzle to top surface distance
(NTSD), should be 9 mm to achieve optimal focus of
printing laser and powder distribution, and the focal laser
beam diameter is 800 pm. Materials used for deposition
was stainless steel 316L powder with average particle size
of 100 um and the substrate used same material with 100
mm x 50 mm X 10 mm dimension. Based on single-layer
straight-track ~ deposition trials, nominal printing
parameters in the ranges of laser power between 300 and
900 W, traverse speed between 5 mm/s and 15 mm/s, and
feed rate between 3 g/min and 4 g/min, were all suitable
to generate layers with smooth appearance.

Two types of specimens were fabricated, multi-layer
straight-track deposition and multi-layer track-with-
corner deposition, including multi-layer L-shape
deposition and multi-layer trapezoid-shape deposition.
Specimens were manufactured under varying deposition
conditions as listed in Table 1. Several different values are
selected for each printing parameter within the acceptable
range, and the varying deposition conditions were
different combinations of nominal printing parameter



values. For multi-layer straight-track deposition, a dataset
of 360 (4 x 3 x 3 x 10) samples were generated, including
combinations of four laser power values of 300, 500, 700,
900 W, three traverse speed values of 5, 10, 15 mm/s,
three feed rate values of 3.2, 3.6, 4 g/min and ten-layer
number values. For multi-layer track-with-corner
deposition, a specimen of L-shape deposition with 90-
degree cormner and a specimen of trapezoid-shape
deposition with 45-; 90-, and 135-degree corners were
manufactured.

Vision camera setup and measurement

An artificial target was attached to the nozzle, and a vision
camera (SONY a6400) was installed 1 m away from the
target to trace the target movement, which is the
movement of nozzle (Figure 2). The camera records
images and a normalized cross-correlation (NCC)-based
template matching was adopted here for target tracking
(Ma et al., 2020). The speed of the nozzle was calculated
using the target movement between two consecutive
images.

Laser line
scanner

i
Camera

Figure 2: Experiment setup

Laser line scanner setup and measurements

To obtain geometry information of the deposited object
during DED process, a laser line scanner (Micro-Epsilon
scanCONTROL 3000-25/BL) was attached on the nozzle
of the DED printer and move along with the nozzle during
deposition. More details can be found in (Binega et al.,
2022).

The laser line scanner is calibrated so that the projected
laser line was perpendicular to the printing direction to
capture the cross-section profiles of the deposited object.
Figure 3 shows typical cross-section profiles of different
specimens. For each profile, a region of interest (ROI)
points is selected as the points of printed part and the
position of ROI is determined through calibration. The
height of each profile is defined as the average height of
the ROI points within the top 90th percentile of the height
values. For multi-layer straight-track deposition, the
deposition height (DH) at a specific layer was the average
height of profiles from this layer. For multi-layer track-
with-corner deposition, the deposition height of straight
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part is defined same as in multi-layer straight track. While
the deposition height of each corner at a specific layer was
the average height of the corresponding corner profiles
from this layer, and the corner profiles were profiles
within Imm distance from each corner position.
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Figure 3: Typical profiles from lase line scanner
Research Methodology

Overview of proposed method

According to previous literature and experimental
practice, it is common to experimentally determine the
relationship between the printing parameters and the layer
height before printing. Therefore, the general idea of our
proposed corner height estimation technique is to make
use of the relationship study from multi-layer straight-
track deposition and expand its application to multi-layer
track-with-corner deposition. The proposed technique for
corner geometry measurement consists of three parts as
shown in Figure 4. First part is offline model selection
using multi-layer straight-track data, where candidates of
machine learning algorithms are compared using multi-
layer straight-track data with several candidates of feature
combinations. An initial model is determined with
selected algorithm and feature combination and used as a
base model for corner height estimation. Since the data
distribution of corner data is different with the data
distribution of straight-track, the idea of the second part is
to update the initial model when an amount of the multi-
layer track-with-corner data with speed correction is
obtained in-situ. Finally, an optimal model is determined,
and the third part is to estimate corner height during multi-
layer track-with-corner deposition in real-time.

Offline model selection

(1) Input features and output target

The output target is layer heigh, which is defined as the
increment of deposition height while a new layer is
deposited. For model training, the layer height as output
target is obtained from laser line scanner, calculated as the
difference of deposition height between neighboring
layers.

The input features include laser power, traverse speed,
feed rate, layer number, nozzle to top surface distance,
previous deposition height and previous layer height.
Since DED is a process of melting and solidifying metal
powder with energy, the factors directly related to powder
and energy should have large importance to track
geometry. Hence, the three main printing parameters that
determine track geometry are laser power, feed rate and
traverse speed, proved by a lot of experiments and
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Figure 4: Overview of proposed method

numerical analysis in previous literatures (Lee and
Farson, 2016). These three printing parameters are
selected as input features in this study. Apart from the
three main printing parameters, there are other parameters
that might provide useful information in layer height
estimation. A lot of studies do not consider layer number
and conduct layer height estimation for single track using
three main printing parameters and the results have been
used for layer height control. However, the layer height
might not be constant and have a trend to become smaller
during multi-layer deposition since the heat cumulates as
more layer deposited. Besides, nozzle to top surface
distance has been proved to influence the geometry since
it changes the printing conditions. Since the role of these
parameters is uncertain and might be redundant for our
model, feature selection is conducted. Different input
feature combinations are generated and compared in the
next step to select the best feature combination.

(2) Model training and evaluation

Six machine learning algorithms are trained and
compared in this study, including Linear Regression,
second order Multivariate Polynomial Regression (MPR),
ANN, Decision Tree, Random Forest and AdaBoosting.
Linear regression is the simplest and most commonly used
algorithm for regression problems. The estimation model
can be represented in equation (1), where x= [X1, X2... Xp]
is the input features and y are the output target. Early
literatures mostly adopt this approach but suffer from low
estimation accuracy since the relationship between
printing parameters and layer height are nonlinear.
Multivariate Polynomial Regression could represent
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nonlinear relationship and thus adopted and compared
with other algorithms. The estimation model using second
order MPR is shown in equation (2).

vy, w) = wy + wixy + -+ wpxp D
y(x,w) = wo + XRoy WXy + X P X wijxix;

()

Except traditional regression algorithms, ANN model has
strong capability to approximate nonlinear relationships
and has been widely used in system identification in
intelligent control field (Bavarian, 1988). A typical ANN
model consists of an input layer, an output layer and one
or more hidden layers, each hidden layer contains several
hidden neurons (Bishop, 2006). The adjustment of
hyperparameters is an essential part in the training of
machine learning models and significantly influences the
model performance. The main hyperparameters of ANN
model include number of layers, number of neurons, L2
penalty parameter, learning rate, solver, and activation
function. Selection of the number of layers has been
discussed in (Haykin, 2009). An ANN model with one
hidden layer is capable to approximate any nonlinear
relationship, but model with deeper hidden layers could
have better ability to fit the function, although at the
expenses of introducing overfitting problem and
increasing training difficulties. Similarly, small number of
neurons may lead to underfitting while too many neurons
will create overfitting problem and increase training time.

Another class of algorithms for solving regression
problems is the tree algorithm which is based on decision
tree. Regression tree from Classification and Regression



Trees (CART) is adopted as d ecision tree algorithm in
this study, in which the optimal split point is selected by
least square method. The hyperparameters considered to
be tuned are the maximum depth of tree (max_depth) and
the minimum number of samples required to split an
internal node (min_samples_split). Random forest is an
algorithm based on decision tree, which uses bootstrap to
select samples from dataset and randomly selects multiple
features from all features to determine the best splitting
point when build one CART decision tree. Several CART
trees are built to form a forest and finally determine the
prediction by voting. The hyperparameters considered to
be tuned in our study include the two hypermeters of
decision tree, maximum depth of tree (max_depth) and
the minimum number of samples required to split an
internal node (min_samples_split), and the number of
trees in the forest (n_estimators). Adaboost is an iterative
algorithm whose main idea is to train different classifiers
(weak classifiers) for the same training set, and then to
aggregate these weak classifiers to form a stronger final
classifier (strong classifier). The hyperparameters
considered to be tuned include the aforementioned two
decision tree parameters and the weight applied to each
classifier at each boosting iteration (learning_rate).

For each machine learning algorithm and each feature
combination, the multi-layer straight-track data is divided
into train set and test set. Hyperparameter optimization is
conducted using the train set by k-fold cross-validation,
where the train set is further divided into train and
validation set. After determining the hyperparameters of
each machine learning algorithm under each feature
combination, the test set is used to evaluate the
performance by calculating the Root Mean Square Error
(RMSE) between estimated layer height and measured
layer height.

In-situ construction of optimal model and Real-time
corner height estimation during multi-layer track-
with-corner deposition

When it comes to corner height estimation, our test data
set becomes corner data. First, a speed correction should
be conducted for corner data since the actual traverse
speed at corner is not same as the nominal traverse speed.
Second, considering the distribution of straight track data
and corner track data might be different, directly applying
the initial model to corner height estimation result in bad
performance. Therefore, the initial model is updated when
there is a batch of corner data obtained in-situ. In practice,
the in-situ construction of optimal model can be
conducted regularly when a certain amount of new corner
data was acquired, so that the performance of our model
will continue to improve.

After obtaining the optimal model, the real-time corner
height estimation can be conducted. The real-time
measured traverse speed is used in speed correction and
the geometry estimation is conducted using optimal
model.
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Experiment results

Results of offline model selection

An initial model should be selected with the smallest
RMSE by comparing different algorithms with different
feature combinations. The three principal printing
parameters are determined to be the input features while
the other four process parameters are to be determined,
thus there are in total 16 feature combinations considering
all possible cases. Figure 5 shows the RMSE of six
algorithms with representative feature combinations. For
all six algorithms, considering only three principal
printing parameters will give the worst estimation
performance compared with considering more features.
For all feature combinations, linear regression algorithm
performs notably worse than the other five algorithms that
can represent non-linear relationship. In addition, the best
feature combination for all algorithms is hard to determine
since different algorithms may achieve its best
performance with different feature combinations.
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Figure 5: RMSE of layer height estimation of multi-layer
straight-track deposition with different algorithms and feature

combinations

Finally, the model with smallest RMSE (0.019mm) is
selected as the initial model, which is ANN model with
three principal printing parameters (laser power, feed rate
and traverse speed) and three other parameters (preLH,
layer number and preDH). Figure 6 shows the layer
estimation performance of the initial model on test
samples, which achieves RMSE of 0.019mm.
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Figure 6: Layer height estimation of multi-layer straight-track
deposition using optimal model

Results of in-situ construction of optimal model

The in-situ construction of optimal model is validated on
18-layer L-shape deposition. The collected data from 18-
layer L-shape deposition is divided into validation set and
test set. The optimal model is determined by adjusting
hyperparameters of the initial model using validation set
by Bayesian optimization. The performance of optimal
model is validated on test set. Figure 7 (a) shows the
performance of the initial model and Figure 7 (b) shows



the performance of optimal model, where the optimal
model has lower RMSE.
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Results of real-time corner height estimation results

After determining the optimal model, real-time corner
height estimation has been conducted on five specimens
with different printing parameters as listed in Table 1. The
performance of speed correction has been validated by
comparing the estimated corner height with real-time
measured traverse speed and the estimated corner height
with designed traverse speed at different corners. The
improvement of integrating speed correction is defined in
equation (3), where RMSE (yyay) is the RMSE of corner
height estimation using measure traverse speed and
RMSE (vgesign) 18 the RMSE of corner height estimation
using as-designed traverse speed.

RMSE(Vreal)'RlvlS]E:(Vlsit-‘.*sign)
Average layer height

Improvement =

3)

Table 1: Specimens for real-time corner height estimation

Power Speed Feedrate Number of

(W) (mm/s) (g/min) Layer

1 700 10 3.6 18

2500 10 3.6 18
Trapezoid-shape 3 600 15 4 18

4 500 10 3.2 13

5700 15 3.6 18

Table 2 shows the corner height estimation results using
optimal model and the improvement of integrating speed
correction. As can be seen from Table 2, the improvement
of speed correction was validated since RMSE (vrea is
always smaller than RMSE(vdesign. For corners with
sharper angles, the speed decease and the layer height
increase are more serious and thus the improvement of
speed correction is more remarkable.
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Table 2: Corner height estimation using optimal model

RMSE (mm)
Trapezoid-shape Improvement
Vreal Vdesign
1 0.036 0.042 2.7%
2 0.047 0.051 2.3%
Corner 135° 3 0.040 0.109 32.3%
4 0.052 0.058 3.1%
5 0.039 0.046 3.4%
1 0.028 0.044 8.1%
2 0.035 0.053 9.5%
Corner 90° 3 0.024 0.111 40.1%
4 0.032 0.056 12.7%
5 0.030 0.051 10.1%
1 0.056 0.104 24.9%
2 0.075 0.112 18.8%
Corner 45° 3 0.049 0.181 61.4%
4 0.040 0.110 36.2%
5 0.048 0.113 322%
Average RMSE 0.042
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carner depositian height {mm)
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Figure 8: Example of corner height estimation of corner 45° on
trapezoid-shape deposition using optimal model. (a) reference
and estimated corner height with measured traverse speed, (b)

reference and estimated corner height with as-designed
traverse speed, and (c) reference and estimated deposition
height at corner

Figure 8 shows an example of corner height estimation on
trapezoid-shape deposition using the optimal model
(corner 45°, sample 4). The blue line is reference height
measured by laser line scanner, the orange line is the
estimation using as-designed speed, and the green line is
estimation using as-designed speed. It is evident that the
corner layer height estimation result using measured
traverse speed is much better than using as-designed
speed as presented in Figure 8 (a) and (b). Furthermore,
Figure 8(c) shows the estimated and reference deposition
height, which is cumulation of estimated and reference
layer height, respectively. It can be seen that the estimated
deposition height using measured speed is quite close to
the reference deposition height. This indicates that
although there still has a RMSE of 0.042 mm on layer



height estimation at corner using measured speed, the
error did not cumulate as more layers deposited.

Conclusions

In this study, a real-time corner height estimation
technique for multi-layer track-with-corner deposition has
been developed using laser line scanner, vision camera
and artificial neural network. Reference layer height can
be obtained using laser line scanner and traverse speed at
corners can be measured by vision camera with templated
matching-based computer vison algorithm. The corner
traverse speed decrease and corner height increase has
been observed and quantitively analyzed. An initial model
has been constructed using multi-layer straight-track data
by evaluating different machine learning algorithms with
different feature combinations. An optimal model for
corner height estimation has been constructed in-situ by
updating the initial model using corner data with
measured traverse speed. Real-time corner height
estimation is conducted through trapezoid-shape
deposition with five samples and the experimental result
validated the effectiveness of our proposed technique.

There are some limitations and future work of this study.
First, only three different angles (45°, 90° and 135°) are
validated using the proposed method, a more general
analysis of all angles should be considered in future study.
Besides, this study only considered deposition using
SS316L, and the adaptability of the proposed method to
other materials and validation experiments might be
needed.
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