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Abstract
Metal additive manufacturing (AM) technologies, such as 
laser direct energy deposition (DED), have attracted
attention in the construction industry. However, the 
current track geometry inaccuracy in the DED process, 
especially at corners with sharp turns, is a key barrier to 
the adoption of this advanced technology. To tackle 
geometry inaccuracy and achieve geometry control in the 
DED process, analytical relationships between geometry 
attributes and printing parameters for single-layer 
deposition have been developed. However, the layer 
height in multi-layer deposition may not be constant 
during the printing process, and the geometry estimation 
for multi-layer deposition is still problematic. Moreover, 
geometry estimation for corners in complex shapes has 
not been studied. In this study, a real-time corner height 
estimation technique for multi-layer track-with-corner 
deposition is proposed. The experimental results show 
that the proposed technique can estimate the corner height 
with an average RMSE of 0.042 mm for corners with 
different angles.

Introduction
Metal additive manufacturing (AM) technologies have 
developed rapidly since their introduction in the early 
1980s because of their powerful manufacturing 
capability. According to the American Society for Testing 
and Materials (ASTM) standard, the two major groups of 
metal additive manufacturing technologies are directed 
energy deposition (DED) and powder bed fusion (PBF) 
(ASTM Committee, 2012), both of which have been 
widely applied in various fields such as the aerospace, 
automobile, and biomedical industries (Milewski, 2017).
In recent years, DED has gained attention as a viable 
manufacturing method in the construction industry in 
which metallic materials are commonly adopted in 
distinctive and complex designs (Buchanan and Gardner, 
2019). Traditional techniques to produce metallic 
components, such as hot rolling, cold forming, and 
extrusion, often lead to regular prismatic elements 
(Fröhlich and Schulenburg, 2003), which limits the 
potential use of metallic materials in construction and 
design. DED can serve as a complementary but 
irreplaceable technique to produce components with 
almost any shape with high accuracy. 
However, geometry quality problems may occur during 
DED process especially when predefined constant 

printing parameters (nominal printing parameters) are 
used in the whole printing process. Recent studies have 
shown that the as-built deposition height is not always 
consistent with the as-designed deposition height when 
using constant printing parameters (Chabot et al., 2019; 
Tyralla et al., 2020; Vandone et al., 2018; Xiong and 
Zhang, 2014). This can be ascribed to three reasons. First, 
the value of nominal printing parameters and the 
corresponding as-designed track height are normally 
determined based on experience, which might not be 
accurate (Shim et al., 2016). Second, the track height is 
related to process parameters such as the heat emission 
conditions, inter layer temperatures, and surface quality of 
previous layers, those parameters might change at 
different layers (Li et al., 2021). Third, since DED process 
is quite sensitive to printing parameters such as laser 
power, powder feed rate, laser traverse speed and gas flow 
rate, a slight change of these parameters might lead to 
track height variation. Moreover, when track height 
deviates from as-designed value, the nozzle to top surface 
distance (NTSD) also deviates from specified value and 
the printing condition changes, result in more and more 
serious height discrepancy (Xiong and Zhang, 2014). In 
practice, if the printing system is a stable system so that 
the variation of printing parameters is within an 
acceptable range and there’s no sudden disturbance on the 
printing parameters, most track height variations occur at 
discontinuities such as corner points, because the traverse 
speed changes at corner points (Pereira et al., 2021; 
Thakkar and Sahasrabudhe, 2020; Woo et al., 2019).
To ensure the performance of the final product, it is 
important to manage the geometry quality of deposited 
components. Towards geometry quality management, one 
important part is to identify the relationship between 
process parameters and geometry attributes, as illustrated 
in Figure 1, a proposed geometry management framework 
in AM process. A common AM task includes four parts, 
AM design, AM input, AM process and AM product. In 
AM design stage, product specifications such as material 
properties, quality characteristics and accuracy 
requirements, are first identified by employer, as 
reference for determining as-designed track geometry and 
toolpath. Afterwards, nominal printing parameters can be 
decided as AM input based on as-designed track 
geometry, toolpath and the relationship between printing 
parameters and geometry attributes. During AM process, 
the process parameters including real printing parameters 
as well as several influencing factors such as melt pool 



size, interlayer temperatures, and previous layer 
conditions, etc., work together to produce the as-built 
track geometry, and finally the AM product is generated 
by combining all as-built tracks and thereby form the 
product geometry. To manage geometry quality, a control 
system should be considered into the common AM task, 
where the relationship between process parameters and 
track geometry attributes will be very important since it 
determines the prediction of control target. When there is 
geometry inconsistency, the nominal printing parameters 
can be adjusted through the established relationship to 
ensure the as-built track geometry.

Figure 1: Geometry quality management in AM process
The relationship between geometry attributes and process 
parameters has been studied in previous literature. 
Empirical models, physics-based models together with 
numerical simulation, and machine learning algorithms 
are used to predict the track geometry from printing 
parameters. In early studies, the geometry estimation 
approaches were limited to empirical models. Afterward, 
to gain a better understanding of the complex laser-
material interaction, physics-based models were 
developed. However, the physics-based models might 
provide worse geometry estimation accuracy compared 
with empirical models. Besides, numerical simulation 
using physics-based models takes a lot of time, making it 
impossible to be applied in online geometry control. 
Recent studies considered machine learning algorithms.
Wang et al established both physics-based modeling and 
Gaussian Process Regression (GPR) model to predict 
track width and height (Wang et al., 2020). The result 
shows that the GPR model achieves much smaller 
prediction errors than physic-based modeling for track 
width and height, however this GPR model was 
established using simulated data from physic-based 
modeling thus the effectiveness was not validated on 
deposition experiments. In addition, although geometry 
problems often occur at corners and some studies were
related to corner problems (Badarinath and Prabhu, 2021; 
Comminal et al., 2019; Kono et al., 2018; Ribeiro et al., 
2020), there has no study focusing on the corner height 
estimation in DED process.
In this paper, the corner height estimation of multi-layer 
track-with-corner deposition has been achieved in real-
time using ANN and measured traverse speed at the 
corner. Compared with current studies of relationship 
establishment methods, several machine learning 

algorithms have been compared and evaluated. Based on 
the evaluation results, an initial model for layer height 
estimation of multi-layer straight-track deposition using 
artificial neural network has been developed, considering 
not only three principal printing parameters (laser power, 
traverse speed, and powder feed rate), but also process 
parameters, such as layer number, previous layer height, 
etc. An optimal model has been constructed by updating 
the initial model in-situ when there has corner data with 
measured traverse speed been obtained. Finally, real-time 
corner height estimation is achieved using optimal model 
and measured corner speed. Through experiment, the 
relationship of corner height increase and corner traverse 
speed decrease in DED process has been quantified. 
Experiment results validated that the developed corner 
height estimation method can be applied to corners with
different angles. The paper is organized as follows. 
Section 2 describes the experiment setup, including DED 
system, measurement using laser line scanner and vision 
camera, and the preliminary data analysis. Section 3 
explains the methodology of developing real-time corner 
height estimation technique, which comprises offline 
model selection, in-situ optimal model construction and 
real-time corner height estimation. Sections 4 provide the 
experimental results and discussions. Section 5 concludes 
the paper by presenting summary, limitations, and future 
work.

Experimental setup 
Description of Directed Energy Deposition System 
and test specimens
In this study, a commercial DED printer MX-400 from 
Insstek Inc. was used with 1070nm Ytterbium fiber laser 
system that can generate a maximum laser power of 1 kW. 
The powder carrier gas and shielding gas were argon gas 
with a flow rate of 2.5 L/min and 5.0 L/min, respectively. 
During deposition, the distance between nozzle and the 
top surface, named as nozzle to top surface distance 
(NTSD), should be 9 mm to achieve optimal focus of 
printing laser and powder distribution, and the focal laser 
beam diameter is 800 μm. Materials used for deposition 
was stainless steel 316L powder with average particle size 
of 100 μm and the substrate used same material with 100 
mm × 50 mm × 10 mm dimension. Based on single-layer 
straight-track deposition trials, nominal printing 
parameters in the ranges of laser power between 300 and 
900 W, traverse speed between 5 mm/s and 15 mm/s, and 
feed rate between 3 g/min and 4 g/min, were all suitable 
to generate layers with smooth appearance. 
Two types of specimens were fabricated, multi-layer 
straight-track deposition and multi-layer track-with-
corner deposition, including multi-layer L-shape 
deposition and multi-layer trapezoid-shape deposition. 
Specimens were manufactured under varying deposition 
conditions as listed in Table 1. Several different values are 
selected for each printing parameter within the acceptable 
range, and the varying deposition conditions were 
different combinations of nominal printing parameter 



values. For multi-layer straight-track deposition, a dataset 
of 360 (4 × 3 × 3 × 10) samples were generated, including
combinations of four laser power values of 300, 500, 700, 
900 W, three traverse speed values of 5, 10, 15 mm/s, 
three feed rate values of 3.2, 3.6, 4 g/min and ten-layer
number values. For multi-layer track-with-corner 
deposition, a specimen of L-shape deposition with 90-
degree corner and a specimen of trapezoid-shape 
deposition with 45-, 90-, and 135-degree corners were 
manufactured.

Vision camera setup and measurement
An artificial target was attached to the nozzle, and a vision 
camera (SONY α6400) was installed 1 m away from the 
target to trace the target movement, which is the 
movement of nozzle (Figure 2). The camera records 
images and a normalized cross-correlation (NCC)-based 
template matching was adopted here for target tracking 
(Ma et al., 2020). The speed of the nozzle was calculated 
using the target movement between two consecutive 
images.

Figure 2: E periment setup

Laser line scanner setup and measurements
To obtain geometry information of the deposited object 
during DED process, a laser line scanner (Micro-Epsilon 
scanCONTROL 3000-25/BL) was attached on the nozzle 
of the DED printer and move along with the nozzle during 
deposition. More details can be found in (Binega et al., 
2022).
The laser line scanner is calibrated so that the projected 
laser line was perpendicular to the printing direction to 
capture the cross-section profiles of the deposited object. 
Figure 3 shows typical cross-section profiles of different 
specimens. For each profile, a region of interest (ROI) 
points is selected as the points of printed part and the 
position of ROI is determined through calibration. The 
height of each profile is defined as the average height of 
the ROI points within the top 90th percentile of the height 
values. For multi-layer straight-track deposition, the 
deposition height (DH) at a specific layer was the average 
height of profiles from this layer. For multi-layer track-
with-corner deposition, the deposition height of straight 

part is defined same as in multi-layer straight track. While 
the deposition height of each corner at a specific layer was 
the average height of the corresponding corner profiles 
from this layer, and the corner profiles were profiles 
within 1mm distance from each corner position.

Figure 3: Typical profiles from lase line scanner

Research Methodology
Overview of proposed method
According to previous literature and experimental 
practice, it is common to experimentally determine the 
relationship between the printing parameters and the layer 
height before printing. Therefore, the general idea of our 
proposed corner height estimation technique is to make 
use of the relationship study from multi-layer straight-
track deposition and expand its application to multi-layer 
track-with-corner deposition. The proposed technique for 
corner geometry measurement consists of three parts as 
shown in Figure 4. First part is offline model selection 
using multi-layer straight-track data, where candidates of 
machine learning algorithms are compared using multi-
layer straight-track data with several candidates of feature 
combinations. An initial model is determined with 
selected algorithm and feature combination and used as a 
base model for corner height estimation. Since the data 
distribution of corner data is different with the data 
distribution of straight-track, the idea of the second part is 
to update the initial model when an amount of the multi-
layer track-with-corner data with speed correction is 
obtained in-situ. Finally, an optimal model is determined, 
and the third part is to estimate corner height during multi-
layer track-with-corner deposition in real-time.

Offline model selection
(1) Input features and output target
The output target is layer heigh, which is defined as the 
increment of deposition height while a new layer is 
deposited. For model training, the layer height as output 
target is obtained from laser line scanner, calculated as the 
difference of deposition height between neighboring 
layers.
The input features include laser power, traverse speed, 
feed rate, layer number, nozzle to top surface distance, 
previous deposition height and previous layer height. 
Since DED is a process of melting and solidifying metal 
powder with energy, the factors directly related to powder 
and energy should have large importance to track 
geometry. Hence, the three main printing parameters that 
determine track geometry are laser power, feed rate and 
traverse speed, proved by a lot of experiments and 



numerical analysis in previous literatures (Lee and 
Farson, 2016). These three printing parameters are 
selected as input features in this study. Apart from the 
three main printing parameters, there are other parameters 
that might provide useful information in layer height 
estimation. A lot of studies do not consider layer number 
and conduct layer height estimation for single track using 
three main printing parameters and the results have been 
used for layer height control. However, the layer height 
might not be constant and have a trend to become smaller 
during multi-layer deposition since the heat cumulates as 
more layer deposited. Besides, nozzle to top surface 
distance has been proved to influence the geometry since 
it changes the printing conditions. Since the role of these 
parameters is uncertain and might be redundant for our 
model, feature selection is conducted. Different input 
feature combinations are generated and compared in the 
next step to select the best feature combination.
(2) Model training and evaluation
Six machine learning algorithms are trained and 
compared in this study, including Linear Regression, 
second order Multivariate Polynomial Regression (MPR), 
ANN, Decision Tree, Random Forest and AdaBoosting. 
Linear regression is the simplest and most commonly used 
algorithm for regression problems. The estimation model 
can be represented in equation (1), where x= [x1, x2… xD]
is the input features and y are the output target. Early 
literatures mostly adopt this approach but suffer from low 
estimation accuracy since the relationship between 
printing parameters and layer height are nonlinear. 
Multivariate Polynomial Regression could represent

nonlinear relationship and thus adopted and compared 
with other algorithms. The estimation model using second 
order MPR is shown in equation (2).

Except traditional regression algorithms, ANN model has 
strong capability to approximate nonlinear relationships 
and has been widely used in system identification in 
intelligent control field (Bavarian, 1988). A typical ANN 
model consists of an input layer, an output layer and one 
or more hidden layers, each hidden layer contains several 
hidden neurons (Bishop, 2006). The adjustment of 
hyperparameters is an essential part in the training of 
machine learning models and significantly influences the 
model performance. The main hyperparameters of ANN 
model include number of layers, number of neurons, L2 
penalty parameter, learning rate, solver, and activation 
function. Selection of the number of layers has been 
discussed in (Haykin, 2009). An ANN model with one 
hidden layer is capable to approximate any nonlinear 
relationship, but model with deeper hidden layers could 
have better ability to fit the function, although at the 
expenses of introducing overfitting problem and 
increasing training difficulties. Similarly, small number of 
neurons may lead to underfitting while too many neurons 
will create overfitting problem and increase training time. 
Another class of algorithms for solving regression 
problems is the tree algorithm which is based on decision 
tree. Regression tree from Classification and Regression 

Figure 4: Overview of proposed method



Trees (CART) is adopted as d ecision tree algorithm in 
this study, in which the optimal split point is selected by 
least square method. The hyperparameters considered to 
be tuned are the maximum depth of tree (max_depth) and 
the minimum number of samples required to split an 
internal node (min_samples_split). Random forest is an 
algorithm based on decision tree, which uses bootstrap to 
select samples from dataset and randomly selects multiple 
features from all features to determine the best splitting 
point when build one CART decision tree. Several CART 
trees are built to form a forest and finally determine the 
prediction by voting. The hyperparameters considered to 
be tuned in our study include the two hypermeters of 
decision tree, maximum depth of tree (max_depth) and 
the minimum number of samples required to split an 
internal node (min_samples_split), and the number of 
trees in the forest (n_estimators). Adaboost is an iterative 
algorithm whose main idea is to train different classifiers 
(weak classifiers) for the same training set, and then to 
aggregate these weak classifiers to form a stronger final 
classifier (strong classifier). The hyperparameters 
considered to be tuned include the aforementioned two 
decision tree parameters and the weight applied to each 
classifier at each boosting iteration (learning_rate).
For each machine learning algorithm and each feature 
combination, the multi-layer straight-track data is divided 
into train set and test set. Hyperparameter optimization is 
conducted using the train set by k-fold cross-validation, 
where the train set is further divided into train and 
validation set. After determining the hyperparameters of 
each machine learning algorithm under each feature 
combination, the test set is used to evaluate the 
performance by calculating the Root Mean Square Error 
(RMSE) between estimated layer height and measured 
layer height.

In-situ construction of optimal model and Real-time 
corner height estimation during multi-layer track-
with-corner deposition
When it comes to corner height estimation, our test data 
set becomes corner data. First, a speed correction should 
be conducted for corner data since the actual traverse 
speed at corner is not same as the nominal traverse speed. 
Second, considering the distribution of straight track data 
and corner track data might be different, directly applying 
the initial model to corner height estimation result in bad 
performance. Therefore, the initial model is updated when 
there is a batch of corner data obtained in-situ. In practice, 
the in-situ construction of optimal model can be 
conducted regularly when a certain amount of new corner 
data was acquired, so that the performance of our model 
will continue to improve.
After obtaining the optimal model, the real-time corner 
height estimation can be conducted. The real-time 
measured traverse speed is used in speed correction and 
the geometry estimation is conducted using optimal 
model.

Experiment results
Results of offline model selection
An initial model should be selected with the smallest 
RMSE by comparing different algorithms with different 
feature combinations. The three principal printing 
parameters are determined to be the input features while 
the other four process parameters are to be determined, 
thus there are in total 16 feature combinations considering 
all possible cases. Figure 5 shows the RMSE of six 
algorithms with representative feature combinations. For 
all six algorithms, considering only three principal 
printing parameters will give the worst estimation 
performance compared with considering more features. 
For all feature combinations, linear regression algorithm 
performs notably worse than the other five algorithms that 
can represent non-linear relationship. In addition, the best 
feature combination for all algorithms is hard to determine 
since different algorithms may achieve its best 
performance with different feature combinations.

Figure 5: RMSE of layer height estimation of multi-layer 
straight-track deposition with different algorithms and feature 

combinations
Finally, the model with smallest RMSE (0.019mm) is 
selected as the initial model, which is ANN model with 
three principal printing parameters (laser power, feed rate 
and traverse speed) and three other parameters (preLH, 
layer number and preDH). Figure 6 shows the layer 
estimation performance of the initial model on test 
samples, which achieves RMSE of 0.019mm.

Figure 6: Layer height estimation of multi-layer straight-track 
deposition using optimal model

Results of in-situ construction of optimal model
The in-situ construction of optimal model is validated on 
18-layer L-shape deposition. The collected data from 18-
layer L-shape deposition is divided into validation set and 
test set. The optimal model is determined by adjusting 
hyperparameters of the initial model using validation set 
by Bayesian optimization. The performance of optimal 
model is validated on test set. Figure 7 (a) shows the 
performance of the initial model and Figure 7 (b) shows 



the performance of optimal model, where the optimal 
model has lower RMSE.

Figure 7: Example of comparing (a) Corner height estimation 
using initial model and (b) Corner height estimation using 

optimal model

Results of real-time corner height estimation results
After determining the optimal model, real-time corner 
height estimation has been conducted on five specimens 
with different printing parameters as listed in Table 1. The 
performance of speed correction has been validated by 
comparing the estimated corner height with real-time 
measured traverse speed and the estimated corner height 
with designed traverse speed at different corners. The 
improvement of integrating speed correction is defined in 
equation (3), where is the RMSE of corner 
height estimation using measure traverse speed and 

is the RMSE of corner height estimation 
using as-designed traverse speed. 

-

Table 1: Specimens for real-time corner height estimation

Power 
(W)

Speed 
(mm/s) 

Feed rate 
(g/min) 

Number of 
Layer

Trapezoid-shape

1 700 10 3.6 18

2 500 10 3.6 18

3 600 15 4 18

4 500 10 3.2 18

5 700 15 3.6 18

Table 2 shows the corner height estimation results using 
optimal model and the improvement of integrating speed 
correction. As can be seen from Table 2, the improvement 
of speed correction was validated since RMSE(Vreal) is 
always smaller than RMSE(Vdesign). For corners with 
sharper angles, the speed decease and the layer height 
increase are more serious and thus the improvement of 
speed correction is more remarkable.

Table 2: Corner height estimation using optimal model

Trapezoid-shape
RMSE (mm)

Improvement
Vreal Vdesign

Corner 135°

1 0.036 0.042 2.7%

2 0.047 0.051 2.3%

3 0.040 0.109 32.3%

4 0.052 0.058 3.1%

5 0.039 0.046 3.4%

Corner 90°

1 0.028 0.044 8.1%

2 0.035 0.053 9.5%

3 0.024 0.111 40.1%

4 0.032 0.056 12.7%

5 0.030 0.051 10.1%

Corner 45°

1 0.056 0.104 24.9%

2 0.075 0.112 18.8%

3 0.049 0.181 61.4%

4 0.040 0.110 36.2%

5 0.048 0.113 32.2%

Average RMSE 0.042

Figure 8: Example of corner height estimation of corner 45° on 
trapezoid-shape deposition using optimal model. (a) reference 
and estimated corner height with measured traverse speed, (b) 

reference and estimated corner height with as-designed 
traverse speed, and (c) reference and estimated deposition 

height at corner
Figure 8 shows an example of corner height estimation on 
trapezoid-shape deposition using the optimal model 
(corner 45°, sample 4). The blue line is reference height 
measured by laser line scanner, the orange line is the 
estimation using as-designed speed, and the green line is 
estimation using as-designed speed. It is evident that the 
corner layer height estimation result using measured 
traverse speed is much better than using as-designed 
speed as presented in Figure 8 (a) and (b). Furthermore, 
Figure 8(c) shows the estimated and reference deposition 
height, which is cumulation of estimated and reference 
layer height, respectively. It can be seen that the estimated 
deposition height using measured speed is quite close to 
the reference deposition height. This indicates that 
although there still has a RMSE of 0.042 mm on layer 



height estimation at corner using measured speed, the 
error did not cumulate as more layers deposited.

Conclusions
In this study, a real-time corner height estimation 
technique for multi-layer track-with-corner deposition has 
been developed using laser line scanner, vision camera 
and artificial neural network. Reference layer height can 
be obtained using laser line scanner and traverse speed at 
corners can be measured by vision camera with templated 
matching-based computer vison algorithm. The corner 
traverse speed decrease and corner height increase has 
been observed and quantitively analyzed. An initial model 
has been constructed using multi-layer straight-track data 
by evaluating different machine learning algorithms with 
different feature combinations. An optimal model for 
corner height estimation has been constructed in-situ by 
updating the initial model using corner data with 
measured traverse speed. Real-time corner height 
estimation is conducted through trapezoid-shape 
deposition with five samples and the experimental result 
validated the effectiveness of our proposed technique.
There are some limitations and future work of this study. 
First, only three different angles (45°, 90° and 135°) are 
validated using the proposed method, a more general
analysis of all angles should be considered in future study. 
Besides, this study only considered deposition using 
SS316L, and the adaptability of the proposed method to 
other materials and validation experiments might be 
needed. 
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