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Abstract 
Current indoor air quality strategies are based on the 
measurement and control of carbon dioxide (CO2) indoor 
concentration. Most educational buildings rely only on 
natural ventilation, making indoor air quality highly 
dependent on weather conditions. Therefore, to ensure the 
safety and well-being of students and teachers, it is 
necessary to determine the factors influencing CO2 
concentration in naturally ventilated spaces. The aim of 
this paper is to estimate the students’ CO2 emission rates 
in naturally ventilated classrooms using grey box models. 

Introduction 
Indoor air quality refers to the air quality within and 
around buildings and structures, especially as it relates to 
the health and comfort of building occupants. Human 
beings spend approximately 90% of their time (more than 
21 hours per day) in indoor environments such as homes, 
schools, offices, and restaurants (Mannan & Al-Ghamdi, 
2021). Staying in a stuffy and poorly ventilated 
environment is harmful for the user in the long term, who 
may develop conditions such as asthma, respiratory 
diseases, or chronic lung diseases (Manisalidis et al., 
2020). Therefore, having good indoor air quality in 
buildings is essential to reduce the negative impact on 
human health (Yang et al., 2022). 
Indoor air quality is critical in educational buildings, 
particularly in schools. Children are the most vulnerable 
group to air contaminants because they breathe more air 
in proportion to their body weight and because their lungs 
are still developing. (Tunga et al., 2022). 
The actual indoor air quality regulation is focused on the 
control of the indoor concentration of carbon dioxide gas 
(CO2). This is one of the intrinsic gases in buildings as it 
is an essential part of the user’s metabolic system. 
Although it is not considered a harmful gas per se, studies 
have suggested that being exposed above 1,000 ppm in 
the short term affects cognitive performance decision-
making, and problem solving of humans (Azuma et al., 
2018). 
In areas with a Mediterranean climate, most schools rely 
on natural ventilation to provide adequate indoor air 
quality. High initial investments and energy savings is 
most likely one of the main reasons why mechanical 
ventilation systems are missing in about 8,000 educational 

institutions in the Mediterranean region's school building 
portfolio (Alonso et al., 2021). However, due to the 
variability of weather conditions, in most cases, natural 
ventilation does not ensure proper air renewal for 
reducing the CO2 concentration to healthy levels. 
Moreover, maintaining natural ventilation under certain 
conditions can negatively affect the thermal comfort of 
users (Heracleous & Michael, 2019) and lead to an 
increase in the energy consumption of heating systems 
(Franco & Leccese, 2020). 
In this context, knowledge of the CO2 generation rates and 
ventilation air change rates in uncontrolled spaces is 
crucial to efficiently monitoring indoor air quality and 
reducing energy consumption related to the thermal 
comfort of the occupants. 
Monitoring indoor air quality is straightforward, low-
order state space models are typically developed using a 
deterministic methodology. However, only a small 
number of studies in the field of indoor CO2 concentration 
use grey box models to address statistical approaches 
(Macarulla et al., 2018). The stochastic approach can be 
used to deal with potential system disturbances that the 
deterministic models have, like the impact of 
unaccounted-for, unmodeled inputs, measurement noise, 
or managing uncertainties that have an impact on the 
system (Macarulla et al., 2017). As a result, statistical 
techniques can be employed to obtain appropriate models. 
Based on the shortcomings exposed, the goal of this paper 
is to determine the children’s CO2 generation rate in 
naturally ventilated educational buildings using grey box 
models. The statistical approach for estimate the CO2 
emission rate provide a more accurate model to predict 
CO2 indoor concentrations that can be implemented on 
ventilation systems. 

Background 
Grey box modelling is in between two well-known 
modelling methodologies, white box and black box 
modelling The grey box fits results using knowledge of 
the physical aspects of the system and empirical statistical 
data observed. It consists of a set of stochastic differential 
equations describing the dynamics of the system in 
continuous time and a set of discrete time measurements. 
For the implementation of grey box modelling, it is 
necessary to define a system of ordinary equations to 
express the physical knowledge, known as drift term, 



defined by the function f(Xt,Ut,θ,t). To introduce the 
variations that are not described by the deterministic 
model, a stochastic term o diffusion term is added. 
Equation (1) expresses the system of stochastic 
differential equations: 

dXt=f Xt,Ut,θ,t dt+G θ,t dwt          (1) 

where Xt is a vector of system states, Ut corresponds to 
experimental data, and θ is the vector of unknown 
parameters of the system. The diffusion term is composed 
of a standard Weiner process, Wt, and a function 
describing the disturbance, G(θ,t), knowns as drag term. 
Secondly, the state-space representation is completed by 
defining the discrete time observation: 

Ytk=h Xt,Ut,θ,t dt+et  (2) 

where the function h(Xt,Ut,θ,t) links the state variables 
with the measurements, and et is a Gaussian distribution 
that represents the noise from the observations. 
The objective of the modelling is to estimate the unknown 
parameters (θ) in the continuous-time model. Generally, 
the maximum likelihood estimation (MLE) method is 
used (Bacher & Madsen, 2011). The MLE is based upon 
the premises that, of all possible parameters, the most 
suitable ones are those that are most consistent with the 
observed data. Finally, with the same data observation 
used for determining θ, the grey box model is validated by 
using the described state equations and the estimated 
parameters. 
The advantages of grey box models (such as being 
straightforward, reliable, quick, and computationally 
effective) have led to their widespread use in a variety of 
applications in the building energy domain (Li et al., 
2021).  
Grey box modelling approach has been also successfully 
used to predict the thermal behaviour of a building 
(Brastein et al., 2018), estimating the thermal properties 

of the walls using indoor temperatures and electrical 
power as discreet observations. 
According to indoor air quality, previous researches have 
used grey box models to estimate the human CO2 
generation rate (Macarulla et al., 2017) and ventilation air 
flows (Macarulla et al., 2018) in offices. These studies 
applied physical knowledge of a carbon dioxide mass 
balance with data observation about occupancy, 
mechanical ventilation, and indoor CO2 concentration. 
Other studies have used the same methodology to predict 
indoor air quality by estimating the occupancy in naturally 
and mechanically ventilated environment (Wolf et al., 
2019). 

Methodology 
This section shows the methodology used to estimate the 
human CO2 generation rate in a classroom that is fully 
naturally ventilated by using grey box modelling. 

Data collection 
Data used to develop the grey box model was collected 
within the IAQ4EDU project (Gaspar et al., 2022). Two 
classrooms were selected (Figure 1) from different 
climatic zones, C2 and D3 (Spanish Government, 2022), 
respectively. 
The first classroom (A1) is located on the first floor and 
accommodates children from 4 to 5 years old. It has an 
area of approximately 48.38 m² and a volume of 145.87 
m³. The ventilation is fully natural, has 4 windows with 
1.74 m² of surface each, and 2 doors, one connected to the 
corridor (1.70 m²) and another that leads to a small 
bathroom (1.68 m²).  

The second classroom (A2) is located on the first floor and 
accommodates children from 9 to 10 years old. It has an 
area of approximately 51.54 m² and a volume of 146.90 
m³. The ventilation is mixed, natural and mechanical, but 
the air flow system was shut down during the whole 
monitoring period. The room has 5 windows of 1.11 m² 
each and 1 door that leads to the corridor of 1.65 m². 

Figure 1: Layout of A1 (left) and A2 (right) classrooms and corresponding sensor location 



Figure 2 presents the data set used to develop the grey box 
model. The first plot shows the CO2 concentration 
observed inside the room by the sensors (S1, S2), the 
second shows the occupancy of the room (P), and the last 
plot presents the process of opening and closing windows 
(W) and doors (D). Occupation and ventilation behaviour 
were registered manually by the researcher. During the 
entire monitoring period, the occupants remained seated 
and relaxed (metabolic activity of 1.2 MET). 

Figure 2: Data set from A1 (top) and A2 (bottom) classrooms

Measurements were carried out in April 2022. Table 1 
shows the monitoring period for each space, which 
corresponds to the scholar schedule of the class period.

Table 1: Monitoring period

Classroom Date 
[dd/mm/yyyy]

Start 
[hh:mm]

End 
[hh:mm]

A1 05/04/2022 09:22 13:05

A2 22/04/2022 08:20 16:12

Two sensors were placed in different locations of the
classroom (Figure 1) in order to observe differences in
CO2 levels. The first sensor (S1) is a Comet sensor model 
U3430, which is designed to record air temperature, 
relative humidity, CO2 concentration levels. The second 
sensor (S2) is a Delta OHM, HD32.3TC, a microclimatic 
thermal station for the measurement of dry bulb 
temperature, natural ventilation, wet bulb temperature, 
globe thermometer temperature, relative humidity, air 
speed, carbon dioxide concentrations, and atmospheric 
pressure.
Both sensors operate without the need for an electrical
connection, and their size makes them easier to place in
rooms without causing disruption.

Model development
In this paper, the deterministic function implemented in 
the grey box model is based on the principle of mass
balance in a designated volume. Indoor CO2 concentration 
change (Cint) in the classroom is expressed as:

dCint
dt

·Vt=Qven· Cven-Cint +P·Kocc           (3)

where V is the volume of the designated classroom, Cven
is the CO2 outdoor concentration, Qven is the ventilation 
rate, P is the occupancy of the room, and Kocc is the CO2
emission rate per occupant.
Equation (3) assumes 4 hypotheses: i) CO2 is chemically 
stable and inert, and there is no absorption process that 
can reduce it; ii) walls, ceilings, and furniture do not 
absorb CO2; iii) the CO2 occupies the entire room; iv) the 
different ventilation air flows are constant.
In naturally ventilated buildings, the air flow is considered 
a form of behavioural adaptation when people are able to 
make the environmental adjustments themselves, for 
example, by opening or closing windows or doors (Yoon 
et al., 2022). Consequently, the air flow is primarily wind 
driven due to pressure, temperature, and humidity 
changes between the outside and the inside (Jiang et al., 
2022).
The conditions of natural ventilation are also influenced 
by occupancy behaviours, i.e., opening and closing
windows and doors (Di Gilio et al., 2021; Yoon et al., 
2022). In order to take these influences into account, the 
air flow rate is calculated using the following equation:

Qven= · W·Qw+D·Qd +x· ·Qx (4)



where W and D refer to the number of opened windows 
and doors, respectively, Qw and Qd represent the single 
sided ventilation, and Qx is the cross-ventilation air flow.
This parameter represents the air flow with the best 
performance of indoor air quality and is controlled by the 
binary variable x, which is 1 when both doors and 
windows (or any other similar element on correspond
opposite sides) are open and 0 on the contrary.
Equation (4) assumes that there is no infiltration into the 
classrooms. Consequently, the reduction of CO2
concentrations is caused only by opening of windows and 
doors. The deterministic system expressed by Equation 
(3), with the clarification of Equation (4), can be 
represented as a RC-network (Figure 3).

Figure 3: RC-network of the used model

A stochastic term is added to complete the equation:

dCint=
Qven

V
Cven-Cint ·dt+ P·Kocc

V
·dt + ·dw     (5)

where dw is the Weiner process, and σ is the incremental 
variance of the process. Finally, the monitored output of 
the system is defined by the Equation (6):

Ytk=Cint,tk+           (6)

where Cint,tk is the observation at tk of the CO2 indoor 
concentration of the classroom, and ek represents the 
measurements’ noise.

Estimation of the unknown parameters
The objective of the presented model is to estimate the 
human emission rate of CO2 (Kocc). For this reason, the 
inputs to the model are the volume of the room (V), the 
occupancy (P), and the behaviour of the windows, and 
doors (W,D,x).
Additionally, the natural ventilation rates (Qd, Qw, and 
Qx), and the outdoor CO2 concentration (Cven) shall be 
determinedIn order to complement the model. Ranges for 
the unknown parameters have to be set, based on the 
physical sense and the existing literature (Table 2).
Measuring the atmospheric value of outdoor CO2
concentrations is a difficult task because CO2 is not 
homogeneous in the atmosphere. Previous studies have 
quantified the outdoor concentration as 420 ppm for urban 
locations according to several data points from South 
European cities (CSIC, 2020).

Table 2: Parameter boundaries

Parameter Initial value Lower bound Upper bound

Cven [ppm] 1000 400 3,000

Qd [m³/h] 900 0 3,600

Qw [m³/h] 900 0 3,600

Qx [m³/h] 900 0 3,600

Kocc [l/h] 9 0 18

σ [-] 1 Exp (-20) Exp (20)

ek [-] 1 Exp (-50) Exp (50)

Various governments have published guides with 
requirements regarding the ventilation air flows needed to 
control the CO2 indoor concentration levels (Lepore et al., 
2021) in educational buildings. According to the 
ASHRAE Standard 62.1, (ASHRAE, 2019), at 
educational buildings and offices, an outdoor fresh air 
renewal of 18 m³/h per person (5 l/s per person) is 
recommended to maintain a good indoor air quality. 
However, the Spanish Regulation of Thermal Installations 
in Buildings (Spanish Government, 2021) establishes a 
ventilation flow rate of 45 m³/h per person (12.5 l/s per 
person) for good indoor air quality. Assuming an 
occupancy of 20 students, the required ventilation flow, 
according to these regulations must be of 900 m³/h.
According to the literature, the human emission rate of 
CO2 (Kocc) for an adult is 18 l/h (Macarulla et al., 2018). 
Table 3 summaries children’s CO2 emission rate (Persily 
& de Jonge, 2017). All values presented refer to controlled 
conditions.

Table 3: CO2 generation rates at 20ºC and 101 kPa based on 
the age range and the level of physical activity

Age 
[years]

CO2 generation rate [l/h]

Level of physical activity [MET]

1.0 1.2 1.4

3 to 6 7.0 8.4 9.8

6 to 11 9.2 11.1 12.9

The CTSM-R version 1.0.0 package for R (CTSM-R 
Development Team, 2021) is used for estimating the 
parameters and validating the grey box model. A 2.60
GHz Intel Core i7 personal computer was used.

Model validation
The first step consists on determining whether the 
estimated parameters are feasible in terms of the system's 
physical sense. For this purpose, the results need to be 
compared to those presented in the literature.
First, a significance test is performed. The parameters 
must have a probability value lower than 0.05; if not, they 



are considered to be non-significant (CTSM-R 
Development Team, 2021). The derivative of the 
objective function with respect to the particular initial 
state or parameter is then calculated. If the value is not 
close to zero, the solution is not likely to be a true 
optimum. The derivative of the penalty function with 
respect to the specific initial state or parameters is then 
calculated. If this value is significant, the parameter may 
be approaching one of its boundaries. As a result, the 
estimation must be repeated with new limits (CTSM-R 
Development Team, 2021).
Secondly, the correlation matrix of the parameter is also 
calculated to ensure that off-diagonal values are far from 
1 or -1, otherwise the model may be overparametrized 
(CTSM-R Development Team, 2021). Then, the 
assumption of white noise and residuals is assessed with 
the autocorrelation function (ACF) and the cumulated 
periodogram (Macarulla et al., 2018).
Finally, a simulation with the obtained parameters is run 
to see if the calculated model can accurately predict the 
system. The CTSM-R package includes all of the 
aforementioned statistical tests (CTSM-R Development 
Team, 2021).

Results and discussion
Table 4 and Table 5 summarise the results obtained during 
the validation process.

Table 4: Summary of the model results for each classroom

A1 A2

Model 
significance

Overparametrized
model?

No No

True optimum? Yes Yes

White noise? Yes Yes

Model accuracy RMSE [ppm] 35 49

Values of the root mean square error of the residuals 
(RMSE) ranged from 35 to 50 (Table 4), values similar to 
the ones reported in other studies based on grey box 
modelling approaches (Macarulla et al., 2017). The 
sensors used to collect the data have an accuracy of ±50 
ppm +3% of the reading. Consequently, the accuracy 
reported by the model can be considered to be acceptable.
All statistical tests performed for the parameters in 
classrooms A1 and A2 are significant. Statistical results 
show that the p-values are below 0.05 for all estimated 
parameters. Additionally, none of the values off-diagonal 
from then autocorrelation matrix is close to 1 or -1 for 
both classrooms. The derivative of the object function 
with respect to each other’s and the derivative penalty 
function with respect to the particular initial state or 
parameters are both close to 0. Therefore, the model is not 
overparametrized, and the solution found might be a true 
optimum and not close to the limits.
As shown in Figure 4, it is reasonable to accept that there 
was no lag dependency in the one-step-ahead prediction 

residuals. The cumulated periodogram of the A2 
classroom fell slightly outside the 95% confidence 
interval. However, the flags of the ACF residuals fell 
mostly inside the 95% confidence interval. Consequently,
we can affirm that all models were detailed enough to 
describe the CO2 dynamics, and the one-step-ahead 
residuals obtained could be considered as white noise.

Figure 4: Autocorrelation function (left) and cumulated 
periodogram (right) of A1 (top) and A2 (bottom) classrooms

All estimated parameters for both classrooms were 
feasible in terms of the physical sense (Table 5).

Table 5: Physical feasibility of the model for each classroom

Parameter A1 A2

Cven [ppm] 499 483

Cven standard error [ppm] 50 11

Cven estimation variability [%] 10 2

Kocc [l/h] 5.6 7.2

Kocc standard error [l/h] 0.3 0.9

Kocc estimation variability [%] 4.5 12.8

Qd [m³/h] - 230

Qd standard error [m³/h] - 82

Qd estimation variability [%] - 36

Qw [m³/h] - 381

Qw standard error [m³/h] - 56

Qw estimation variability [%] - 14

Qx [m³/h] 265 262

Qx standard error [m³/h] 56 34

Qx estimation variability [%] 21 13



The estimation of the CO2 outdoor ventilation (Cven) for 
each classroom is 499 for A1 and 480 ppm for A2, close 
to the literature values (CSIC, 2020).
The CO2 human emission rate (Kocc), was found to be of 
5.6 l/h per person in classroom A1 (4 to 5 years old). 
Checking this value with others reported by previous 
studies (8.4 l/h per person) it can be concluded that, the 
value estimated by this model is 33% lower. For the A2
classroom (9 to 10 years old), the difference between the 
estimated value (7,24 l/h per person) and the one from the 
literature (11,1 l/h per person), is also found to be 34% 
lower. This is in line with the results presented by 
previous studies (Macarulla et al., 2018) which reported 
values 24% lower for adult’s generation rates.
Although the emission rates extracted from the literature 
are for controlled conditions, the modelling calculations
take into account the average activity, gender, body size,
and indoor environmental characteristics over the whole 
period. As a result, the emission rate for the full activity 
period is reduced due to the indoor environment.
Regarding the ventilation flow rates, for the A1
classroom, only the cross-ventilation air flow (Qx), was 
found to be significant, because there was just cross-
ventilation for the whole period. For all the other air 
flows, the variability was high and ranged between 13% 
and 36%. In addition, values were found to be between
57% and 74% lower than the ones established by the 
Spanish regulations (Spanish Government, 2021) and 
27% to 26% lower than the ASHRAE standard 62.1
(ASHRAE, 2019).
As it has been previously exposed, naturally ventilated 
buildings cannot ensure the proper and constant air flow 
required by regulations due to the variability of the 
climatic conditions.
Finally, the observed data of the indoor CO2 and the 
deterministic simulation carried by the model for both 
classrooms are plotted in Figure 5. According to the 
results of the validation, the model is able to follow, with 
acceptable accuracy, the evolution of the indoor CO2 
concentration for each classroom.

Although the Kocc values estimated by the model are lower 
than those presented in the literature, observing the 
simulation (Figure 5), we can assume that the students’ 
CO2 emission rate is influenced by the variable conditions 
of the day, obtaining a lower result with respect to the 
values calculated under controlled conditions. 
On the other hand, as far as natural ventilation is 
concerned, even if it is below the regulations, the indoor 
concentration does not exceed 1,000 ppm. Therefore, we 
can state that, with the opening of doors and windows, 
natural ventilation is able to mitigate the CO2 load in the 
air.
According to the preliminary results of the model, current 
standards regarding airflow requirements for ventilating
educational spaces could be reconsidered, as air renewals 
are based on Kocc obtained under controlled conditions. If
the CO2 generation ratio is lower, the ventilation required 
to ensure healthy CO2 levels might also be reduced. In 
case of naturally ventilated rooms, this would lead to 
lower energy costs for the heating system of the building
(since the temperature drop corresponding to the outside 
air intake would be lower). In case of building with 
mechanical ventilation systems, the energy consumption 
would also diminish since less air renewals should be
required.

Conclusion
This study investigates the use of grey box modelling to 
estimate the children’s’ CO2 emission rate in naturally 
ventilated classrooms. For this, a set of data has been 
selected from the IAQ4EDU project (Gaspar et al., 2022).
The method for simulating the indoor CO2 concentration 
developed in this paper is presented as a set of stochastic 
differential equations. The suggested method allows 
estimating the students’ CO2 emission rate using different 
inputs: average data from two CO2 sensors, windows and 
doors opening behaviour, and the occupancy distribution.
Using the maximum likelihood method, the parameters of 
the room are determined. A variety of statistical 
techniques and a physical interpretation of the estimated 
parameters are used to validate the model. Moreover, the 

Figure 5: Observed data and simulation of the model from A1 (left) and A2 (right) classrooms.



model has been validated by a physical interpretation of 
the estimated parameters. 
The estimated human CO2 emission rate was found to be 
24%, lower than the literature values from controlled 
environments, but in line within the results from previous 
research which had used grey box models for monitoring 
indoor air quality. Additionally, air flows from the natural 
ventilation have been estimated and were also lower than 
the ones established by the standards. 
These standards have been established based on human 
CO2 generation rates calculated by methods in a 
controlled environment (Persily & de Jonge, 2017). 
However, the value found by the model suggests that 
standards need to be modified based on the human CO2 
generation rates estimated found by the presented model. 
The findings of this study can be used to develop a tool to 
analyse the current ventilation levels in an educational 
building. The presented model can be integrated into 
building management systems to optimize the ventilation 
strategies. 
Further research is required to validate the preliminary 
results obtained in this paper, by extending the 
experimental campaign. In order to enlarge, relevant 
statistical data will be collected from educational 
buildings, increasing time, age ranges, and climatic zones. 
However, as studies are carried out in public centres, the 
monitoring process is limited by the scholar's schedule 
and government willingness. 
In addition, this model can be used in the future for 
optimizing ventilation strategies taking into account both 
thermal comfort and energy consumption of mechanical 
system. 
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