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Abstract

Current fault diagnosis concepts in structural health
monitoring (SHM) are limited by the sole consideration
of single sensor faults, which does not fully capture the
complexity of real-world faults in SHM systems. This
work presents an adaptive fault diagnosis approach for
SHM systems that addresses multiple sensor faults
occurring simultaneously. The proposed approach, based
on analytical redundancy, includes fault detection,
isolation, and accommodation, and has been validated
using real-world sensor data recorded from a railway
bridge. The results show the high accuracy, reliability,
and performance of the proposed approach regarding
multiple sensor faults that occur simultaneously in real-
world SHM systems.

Introduction

In recent years, structural maintenance of civil
infrastructure has increasingly relied on structural health
monitoring (SHM), which builds upon the acquisition and
analysis of monitoring data using sensors (Law et al.,
2014). Motivated by safety and cost efficiency, SHM
systems reduce maintenance costs and provide continuous
information on the structural condition (Liu & Nayak,
2012). Assisting maintenance activities by filling the gaps
of periodic visual inspections, SHM systems can help
prevent complete failures of civil infrastructure.
However, reliability, performance, and synchronization
of sensors in SHM systems depend on the accurate
operation of the sensing equipment (Dragos et al., 2018).

Caused by hardware or software malfunctions, power
outage, environmental impacts, or signal interferences (Li
et al., 2019), sensor faults may compromise the reliability
and performance of a monitoring system. The most
common sensor faults include bias, complete failure,
complete failure with noise, gain, drift, and outliers
(Zhang et al., 2018). Based on either physical or analytical
redundancy, sensor fault diagnosis (FD) approaches for
monitoring systems, including SHM systems, have been
proposed to detect, isolate, identify, and accommodate
sensor faults (Patton, 1990).

To mitigate maintenance, power consumption, and high
costs required by physical redundancy, analytical
redundancy approaches have been proposed. Analytical
redundancy uses mathematical models to describe a
system and takes advantage of redundant information
inherent in the sensor data to perform FD (Smarsly &
Law, 2014). In general, fault detection in analytical
redundancy approaches relies on residuals between sensor
data and “virtual outputs” estimated by the mathematical

457

models. Then, a threshold logic or a hypothesis testing is
used to detect faults (Esserman & Bale, 1997).

Motivated by the complex and — sometimes — nonlinear
relationships within the sensor data, artificial intelligence
(AI), a special class of mathematical models, is frequently
used for sensor FD. In this context, neural networks have
extensively been used in FD for SHM. Multilayer neural
networks have been used to detect faults in mechanical
components of wind turbines (Zaher et al., 2009).
Artificial neural network (ANN) models have been
embedded into wireless sensor nodes for autonomously
detecting and isolating sensor faults in a decentralized
manner (Smarsly & Law, 2014). Furthermore, the
approach proposed in Smarsly & Law (2014) has been
extended from the time-domain to the frequency-domain
for FD (Dragos & Smarsly, 2016). A combination of
ANN models and convolutional neural network models
also has been introduced for full FD, using ANN models
for sensor fault detection, isolation, and accommodation
and convolutional neural networks for fault identification
(Fritz et al., 2022). However, analytical redundancy
approaches for SHM have been limited to the diagnosis of
sensor faults occurring in individual sensors at different
times, thus hampering the application to real-world SHM
systems where faults in multiple sensors may occur at the
same time (“simultaneous sensor faults”).

SHM systems for civil infrastructure have traditionally
focused on individual sensor faults without considering
the occurrence of simultaneous faults in multiple sensors.
Nonetheless, simultaneous faults have been a matter of
interest in other disciplines. In the chemical industry, for
example, simultaneous sensor and actuator faults have
been addressed using a descriptor fuzzy sliding-model
observer (Liu et al., 2013). In the domain of aviation and
flight-control systems, signals in a finite-frequency
domain and simultaneous actuator faults of quadrotor
unmanned aerial vehicles have been detected using
adaptive fuzzy state estimators and integral terminal
sliding-model control (Malayali & Fakir, 2020).
Moreover, an analytical redundancy approach has been
proposed to detect and isolate faults of multiple sensors in
heating, ventilation, and air conditioning (HVAC)
systems (Repay et al., 2013), for which robustness and
scalability also have been investigated (Papadopoulos et
al., 2020).

In summary, despite the large body of research conducted
on FD in SHM of civil infrastructure, most approaches
address sensor faults occurring in individual sensors
(Samee et al., 2011), where only one sensor is faulty
(Zhang et al., 2018), and do not consider sensor faults
occurring in multiple sensors simultaneously. To extend



FD in SHM towards simultaneous sensor faults in
multiple sensors, this paper presents an adaptive FD
approach based on analytical redundancy (AFDAR). The
AFDAR approach builds upon previous work, in which
artificial neural networks and signal processing have been
proposed for FD in SHM systems (Smarsly & Law, 2014;
Fritz et al., 2022; Al-Zuriqat et al., 2023). Therein, the
sensor data of individual sensors has been estimated using
artificial neural networks, to which correlated sensor data
from other — typically neighboring — sensors have been
used as input data, addressing single-fault occurrence
under the premise that the input data to each ANN is non-
faulty. Nevertheless, when several sensors in real-world
SHM systems encounter faults simultaneously, the input
data for ANN models will include data from the faulty
sensors, resulting in contaminated predictions. By
contrast, the AFDAR approach proposed in this study
combines ANN models with moving averages of
individual sensor data to detect, isolate, and accommodate
sensor faults in multiple sensors that occur
simultaneously. This work does not incorporate fault
identification because it is independent of single-fault or
multiple-fault occurrences and has been effectively
addressed in prior research (Fritz et al., 2022).

This paper is organized as follows: First, the design and
implementation of the AFDAR approach are introduced.
Then, the validation of the AFDAR approach is described
and the results are discussed. Finally, the work presented
in this paper is summarized, and an outlook on future
work and improvements of the AFDAR approach is
proposed.

Design and implementation of the AFDAR
approach

In this section, the design and implementation of the
AFDAR approach are introduced, comprising four steps,
(1) initialization, (ii) fault detection, (iii) fault isolation,
and (iv) fault accommodation. A flowchart depicting the
workflow of the AFDAR approach is shown in Figure 1.
The four steps of the AFDAR approach are briefly
discussed in what follows.

Initialization

1. The initialization step starts with exploring
correlations inherent in the sensor data to find a set
of correlated sensors. Data recorded by sensors in
the SHM system undergo a correlation analysis to
identify correlated sensors. The result of the
correlation analysis determines the number of
correlated sensors k. Then, data recorded by
correlated sensors fi_(?) is “cleaned”, i.e. if sensor
data from an individual sensor is missing at a
specific time window, the same time window is
neglected in all correlated sensors.

Data from the set of correlated sensors is normalized
to have a common scale in the data values during the
training process. A minimum-maximum
normalization is used for the data recorded by
correlated sensors fi—.i(7).

Initialization

Collect data

v
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data from sensors f,_,,(¢)
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Change ANN
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i Replace £(7) with £(?)

Figure 1: Flowchart of the AFDAR approach.
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The formula of the minimum-maximum
normalization is depicted in Equation 1, in which x
denotes an arbitrary measurement in the sensor data,
Xmin and Xmqr are the minimum and maximum
measurements in the sensor data, respectively, and
Xnormalized 18 the normalized value. The same
normalization parameters are applied to newly
recorded sensor data fed to the ANN models after
training.

X—X

min

Xpormalized =

€y

Xmax ™ Xmin

3. Normalized data is used to train ANN models, with
each ANN model “learning” from existing
relationships between known input data and known
output data. As a result, one ANN model M; for each
correlated sensor i (i = 1...k) is designed and trained
using sensor data from the SHM system. During the
training of M;, sensor data from the correlated
sensors (1, 2, ..., i—1, i+1, ...k) is used as input data,
and sensor data fi(¢) from sensor i is used as output
data. As a result of the training, model M; estimates
virtual outputs of sensor i, denoted by f(#). The
training phase of each ANN model involves
selecting the ANN architecture, in terms of the
number of hidden layers and the number of neurons
per hidden layer. An acceptable ANN architecture is
based on the prediction accuracy of the model M;,
lying below the fault detection threshold 7,
determined by the root mean squared error (RMSE)
value & between the virtual outputs £i(r) and the
sensor data fi(f), as described in Equation 2. Upon
completing the training of the ANN models, the
models are deployed on a central computer of the
SHM system to automatically detect, isolate, and
accommodate sensor faults.

e=Jii[ﬁ<r>—ﬁ(r>T

n i

)
Fault detection

In this step, newly recorded sensor data is fed into all
ANN models. In the event of faults occurring in » sensors
(1 <r < k), the residuals between the actual sensor data
and the virtual outputs in models M, (n=2...r) are
expected to exceed y, which, on the one hand, issues a
fault detection alert only for the » sensors. The time ¢,
marking the violation of the fault detection threshold y
serves as the fault time stamp. On the other hand, the
faulty sensor data f,(7) is also used as input for the s
models M, (v = 1...s, r + s = k) of the unfaulty sensors,
which results in contaminating the virtual outputs of the
M, models and in yielding residual values that also exceed
y. Despite the design and training of ANN models
dedicated for each correlated sensor, fault isolation
requires further analysis of the sensor data on an
individual sensor level. However, conducting the analysis
on an individual sensor level requires considering the fault
time stamp #,, which represents the knowledge transferred
to the next step.
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Fault isolation

Following fault detection, the fault time stamp is utilized
to specify a time window N, for which the moving average
(MA) values u; of p data points u; (j = 1...p, p < N) are
computed for sensor i, as described in Equation 3. The
time window should have an adequate length N (¢, — N)
before the fault time stamp, to ensure reliable tracking of
the moving average. Gradual or abrupt changes in the u;
values are indicative of sensor faults. As a result,
discrepancies between MA values u; and the fault
isolation threshold ¢ from time #, forward indicate the
presence of faulty sensor data in sensor 7.
u, :l y u

i i
=1

3)

Fault accommodation

Once the fault isolation has been completed and the r
faulty sensors have been specified, the ANN models adapt
to the new conditions of the SHM system as follows:

1. Adapting the ANN models essentially entails
removing sensor data of the r correlated sensors that
have been diagnosed as faulty from the ANN input
layers of all models. Consequently, the architectures
of the ANN models are modified, and retraining the
ANN models is necessary for producing virtual
outputs for the faulty sensors.

2. Retraining is achieved using sensor data prior to
time #. Upon completing the retraining, the virtual
outputs of the M, (n = 2...r) models are used as
substitutes for the faulty sensor data, thus
accommodating the sensor faults.

The thresholds y and d depend on the type of data recorded
by the SHM system and are, therefore, application-
specific. The validation of the AFDAR approach, which
uses sensor data from a real-world SHM system, is
presented in the next section.

Validation of the AFDAR approach

In this section, the validation test of the AFDAR approach
is presented. Data from a real-world SHM system
installed at a railway bridge is used to validate the
proposed approach, ensuring the accuracy, reliability, and
performance of real-world SHM systems where
simultaneous faults in multiple sensors may occur.

Description of the railway bridge and of the SHM
system

The validation test is carried out using data from an SHM
system installed on a composite double-track railway
bridge located in Germany. The bridge consists of two
parallel steel truss girders that support a 45 cm thick
reinforced concrete (RC) slab. The bridge comprises 15
spans, each of 58 m in length, except for the edge spans,
which are 57 m in length, and has a total length of 868 m.
The deck width is 14.1 m, and the distance between the
centroids of the steel truss girders is 6.2 m. Figure 2
illustrates the cross-section of an inner span and the
location of embedded temperature sensors in the bridge
deck.
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Figure 2: Bridge cross-section and location of temperature
Sensors.

In this study, sensor data from 10 temperature sensors
(S1...S10) embedded in the RC slab is used. The
temperature sensors are of type Pt100, measuring at a
range from -35 °C to 105 °C with a sensitivity of + 0.5 °C.
Data recorded by the temperature sensors is transferred to
a central computer of the monitoring system, where it is
stored and processed.

Description of the validation test

The temperature measurements used for validation have
been recorded over almost five years with a sampling rate
of 1.7 mHz, i.e. one temperature measurement has been
recorded every 10 minutes, with a total of 256,000
measurements recorded by each sensor. In the
initialization step, correlations between the temperature
measurements recorded over a period of two years are
investigated via correlation analysis. A strong positive
correlation is unveiled by the Pearson correlation
coefficient among all 10 temperature sensors belonging to
the SHM system; hence, the number of correlated sensors
is set to k= 10. The lowest correlation coefficient is 0.994
between the sensors S2 and S5. Next, the temperature
measurements from the correlated sensors in the SHM
system are cleaned and normalized to train the ANN
models.

A total of 10 ANN models, equal to the number of
correlated sensors (k= 10), are trained. Each model
predicts the virtual outputs of one sensor, using
temperature measurements from the other nine correlated
sensors in the SHM system as input data. As a result, each
ANN model has nine input neurons and one output
neuron; the number of hidden layers and neurons per
hidden layer is determined with different ANN
architectures. Before training the ANN models for FD, the
temperature measurements are split into training and
testing sets. An ANN with a 9-32-64-256-256-1
architecture is determined for all ANN models, based on
the lowest RMSE values ¢, which lie between 0.09 and
0.15, with a total training time of approximately 680 s for
each ANN model. The fault detection threshold is set to
y = 0.15, based upon engineering judgment. Exemplarily,
Figure 3 illustrates the architecture of the ANN model
Mo, which predicts the virtual outputs fio(r) for sensor
S10 using temperature measurements from correlated
sensors fi—o(?) as input data. With the training of the 10
ANN models, the initialization phase is completed, and
the remaining steps of the AFDAR approach, i.e. fault
detection, fault isolation, and fault accommodation, are
executed separately.

In the validation test, the AFDAR approach is applied to
temperature measurements recorded by the SHM system,
without prior knowledge of the correct or incorrect
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operation of the sensors that record the data. The results
of the validation test are presented and discussed in the
next section.
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Results and discussion

This section discusses the results of applying the AFDAR
approach with temperature measurements newly recorded
by the SHM system. The temperature measurements used
in the validation test correspond to a period of one year.
Specifically, 52,560 temperature measurements are
recorded by each sensor. Table 1 introduces the number
of faults diagnosed by the AFDAR approach in the newly
recorded data.

Table 1: Real-world sensor faults of the SHM system, detected
by the AFDA approach

Sensor Number of
faults
S1 0
S2 18
S3 274
S4 0
S5 1
S6 0
S7 0
S8 4,339
S9 0
S10 0
Total 4,632

As presented in Table 1, the AFDAR approach has
diagnosed 4,632 faults in the sensor data recorded over
one year. To ensure that the proposed AFDAR approach
correctly detects real-world sensor faults, and since data
is recorded by the same type of sensors (temperature
sensors), the data recorded by all temperature sensors is
visualized side-by-side. By visualizing and comparing the
data, deviations in the faulty sensor data can be observed.
Figure 4 shows the data recorded by the correlated sensors
in the SHM system, illustratively focusing on faults



detected in sensor S3 and sensor S8. In the figure, the
continuous red line represents the data recorded by sensor
S3, the continuous green line represents data recorded by
sensor S8, and the dotted lines show data recorded by the
correlated sensors in the SHM system.

As shown in Figure 4, data recorded by sensor S8 has
started deviating from data recorded by the other sensors
from December 5. The deviation in the data recorded by
sensor S8 may be attributed to a drift. Moreover, no data
was recorded by sensor S3 between December 19 and
December 20, which may be attributed to a complete
failure of the sensor.
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Figure 4: Comparison of the temperature measurements
recorded by the SHM system.

Simultaneous faults occurring in sensors S3 and S8 are
detected by the AFDAR approach, as the recorded
temperature measurements exceed the fault detection
threshold, shown in Figure 5. The figure shows data
recorded by sensor S3 (top, continuous red line) and by
sensor S8 (bottom, continuous green line). The dashed
green line shows the virtual outputs of the ANN models,
and the dotted black lines represent the fault detection
thresholds. It should be noted that a total of 274
simultaneous faults occurred in sensors S3 and S8
between December 19 and December 20; thereupon, the
focus is drawn only on simultaneous faults that occurred
in the aforementioned period, which fall within the scope
of this paper.
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Figure 5: Comparison of temperature measurements and
virtual outputs with the fault threshold.

To describe the results of the fault detection, isolation, and
accommodation for simultaneous real-world sensor
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faults, sensors S3 and S8 between December 19 and
December 20 are analyzed in more detail. Fault detection
is performed when residuals between the temperature
measurements from sensors S3 and S8, and the virtual
outputs of models M3 and My, exceed the fault detection
threshold y = 0.15. Then, fault isolation is conducted using
the fault time stamp #, of simultaneous fault occurrence in
both sensors S3 and S8, which is determined at #, = 01:20,
on December 19. The fault isolation threshold is set to the
accuracy of the temperature sensors 0 =+ 0.5 °C. Next,
observing that residuals between the MA values of
sensors S3 and S8 and the respective temperature
measurements at 7, exceed the fault isolation threshold o,
the faulty sensors are isolated. Finally, fault
accommodation is performed: Since both sensors S3 and
S8 are faulty, the models M3 and Mz are adapted by
modifying the architecture of the ANN models. The ANN
architecture is modified by shifting sensors S3 and S8
from the input layer to the output layer, and data prior to
1, 1s used to train the adapted ANN model Mss. Figure 6
illustrates the architecture of the adapted ANN model
Mg, predicting the virtual outputs f(t) and ﬁ;(t) for both
sensors S3 and S8.
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Summary and conclusions

Sensor faults in monitoring systems, including SHM
systems, may affect the quality of monitoring. The SHM
community has been showing an increasing interest in
adopting sensor FD concepts to ensure the accuracy,
reliability, and performance of SHM systems. However,
most FD approaches for SHM have been commonly
focused on single-fault occurrence without considering
simultaneous sensor faults in multiple sensors, which are
likely to occur in real-world SHM systems.

This paper has presented an adaptive FD approach based
on analytical redundancy (AFDAR), in which
simultaneous sensor faults in multiple sensors of SHM
systems can be reliably diagnosed. The approach
combines ANN models with moving averages of
individual sensor data to detect, isolate, and accommodate
multiple sensor faults occurring simultaneously. The
ANN models are used to predict virtual outputs for each
sensor of an SHM system. If residuals between virtual
outputs predicted by the ANN models and actual
measurements recorded by the sensors exceed a fault
detection threshold, a fault detection alert is issued and a



fault time stamp is acquired. To isolate faulty sensors, the
moving average of individual sensor data is analyzed and
compared with the individual sensor data, recorded
around the fault time stamp, with a fault isolation
threshold. Finally, faulty data from faulty sensors is
replaced with the virtual outputs predicted by the ANN
models upon adapting the models by removing faulty
sensor data from the input layer during the fault
accommodation step. Different from other analytical
redundancy approaches reported for fault diagnosis in
SHM systems, the AFDAR approach considers multiple
sensor faults occurring simultaneously.

To validate the proposed approach, data collected by a
real-world SHM system have been used to confirm the
accuracy, reliability, and performance of the FD approach
to detect, isolate, and accommodate sensor faults.
Moreover, the AFDAR approach has been proven capable
of adapting to the condition of the SHM system regardless
of the number of faulty sensors. In summary, the AFDAR
approach can be used to ensure the accuracy of sensors
and therefore ensure the reliability and performance of
SHM systems.

Future work may focus on extending the AFDAR
approach to distinguish between sensor faults and
structural damage as well as on improving computational
efficiency.

Acknowledgments

The authors gratefully acknowledge the support offered
by the German Research Foundation (DFG) under grants
SM 281/15-1 and SM 281/20-1, by the German Federal
Ministry for Digital and Transport (BMDV) within the
mFUND program under grant 19FS2013B, and by the
German Federal Ministry of Education and Research
(BMBF) under grant 02P20E201. Any opinions, findings,
conclusions, or recommendations expressed in this paper
are those of the authors and do not necessarily reflect
those of DFG, BMDV, or BMBF. The authors gratefully
acknowledge the support offered by MKP GmbH in
providing sensor data used for validation purposes.

References

Al-Zurigat, T., Chillon Geck, C., Dragos, K., & Smarsly,
K. (2023). Adaptive fault diagnosis for simultaneous
sensor faults in structural health monitoring systems.
Infrastructures, 8(3), 39.

Dragos, K. & Smarsly K. (2016). Distributed adaptive
diagnosis of sensor faults using structural response
data. Smart Materials and Structures, 25(10), 105019.

Dragos, K., Theiler, M., Magalhaes, F., Moutinho, C. &
Smarsly, K. (2018). On-board data synchronization in
wireless structural health monitoring systems based on
phase locking. Structural Control and Health
Monitoring, 25(11), 2248.

Fritz, H., Peralta Abadia, J. J., Legatiuk, D., Steiner, M.,
Dragos, K. & Smarsly, K. (2022). Fault Diagnosis in
Structural Health Monitoring Systems Using Signal
Processing and Machine Learning Techniques.
Structural Health Monitoring Based on Data Science

462

Techniques, Cury, A., Ribeiro, D., Ubertini, F. & Todd,
M. D., Eds. Cham: Springer International Publishing,
pp. 143-164.

Isermann, R. & Ball¢, P. (1997). Trends in the application
of model-based fault detection and diagnosis of
technical processes. Control Engineering Practice,
5(5), pp- 709-719.

Law, K. H., Smarsly, K & Wang, Y. (2014). Sensor data
management technologies for infrastructure asset
management. Sensor Technologies for Civil
Infrastructures. Wang, M. L., Lynch, J. P. & Sohn, H.
Eds. Woodhead Publishing, pp. 3-32.

Li, L., Liu, G., Zhang, L. & Li, Q. (2019). Sensor fault
detection with generalized likelihood ratio and
correlation coefficient for bridge SHM. Journal of
Sound and Vibration, 442, pp. 445-458.

Liu, M., Cao, X. & Shi, P. (2013). Fuzzy-Model-Based
Fault-Tolerant Design for Nonlinear Stochastic
Systems Against Simultaneous Sensor and Actuator
Faults. IEEE Transactions on Fuzzy Systems, 21(5),
pp- 789-799.

Liu, Y. and Nayak, S. (2012). Structural Health
Monitoring: State of the Art and Perspectives. The
Journal of The Minerals, Metals & Materials Society,
64(7), pp. 789-792.

Mallavalli S. & Fekih, A. (2020). A fault tolerant tracking
control for a quadrotor UAV subject to simultaneous
actuator faults and exogenous disturbances.
International Journal of Control, 93(3), pp. 655-668.

Papadopoulos, P. M., Reppa, V., Polycarpou, M. M. &
Panayiotou, C. G. (2020). Scalable distributed sensor
fault diagnosis for smart buildings. IEEE/CAA Journal
of Automatica Sinica, 7(3), pp. 638-655.

Patton, R. J. (1990). Fault detection and diagnosis in
aerospace systems using analytical redundancy. In: IEE
Colloquium on Condition Monitoring and Fault
Tolerance. London, UK, 11/06/1990.

Reppa, V., Papadopoulos, P., Polycarpou, M. M. &
Panayiotou, C. G. (2013). Distributed detection and
isolation of sensor faults in HVAC systems. In: The
21st Mediterranean Conference on Control and
Automation, Crete, Greece, 06/25/2013.

Samy, 1., Postlethwaite, I. & Gu, D.-W. (2011). Survey
and application of sensor fault detection and isolation
schemes. Control Engineering Practice, 19(7), pp. 658-
674.

Smarsly, K. & Law, K. H. (2014). Decentralized fault
detection and isolation in wireless structural health
monitoring systems using analytical redundancy.
Advances in Engineering Software, 73, pp. 1-10.

Zaher, A., McArthur, S. D. J., Infield, D. G. & Patel, Y.
(2009). Online wind turbine fault detection through
automated SCADA data analysis. Wind Energy, 12(6),
pp- 574-593.



Zhang, Z., Mehmood, A., Shu, L., Huo, Z., Zhang, Y. &
Mukherjee, M. (2018). A Survey on Fault Diagnosis in
Wireless Sensor Networks. IEEE Access, 6, pp. 11349-
11364.

463



