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Abstract
Current fault diagnosis concepts in structural health 
monitoring (SHM) are limited by the sole consideration 
of single sensor faults, which does not fully capture the 
complexity of real-world faults in SHM systems. This 
work presents an adaptive fault diagnosis approach for 
SHM systems that addresses multiple sensor faults 
occurring simultaneously. The proposed approach, based 
on analytical redundancy, includes fault detection, 
isolation, and accommodation, and has been validated 
using real-world sensor data recorded from a railway 
bridge. The results show the high accuracy, reliability, 
and performance of the proposed approach regarding 
multiple sensor faults that occur simultaneously in real-
world SHM systems.

Introduction
In recent years, structural maintenance of civil 
infrastructure has increasingly relied on structural health 
monitoring (SHM), which builds upon the acquisition and 
analysis of monitoring data using sensors (Law et al.,
2014). Motivated by safety and cost efficiency, SHM 
systems reduce maintenance costs and provide continuous 
information on the structural condition (Liu & Nayak, 
2012). Assisting maintenance activities by filling the gaps 
of periodic visual inspections, SHM systems can help 
prevent complete failures of civil infrastructure. 
However, reliability, performance, and synchronization
of sensors in SHM systems depend on the accurate 
operation of the sensing equipment (Dragos et al., 2018).
Caused by hardware or software malfunctions, power 
outage, environmental impacts, or signal interferences (Li 
et al., 2019), sensor faults may compromise the reliability 
and performance of a monitoring system. The most 
common sensor faults include bias, complete failure, 
complete failure with noise, gain, drift, and outliers 
(Zhang et al., 2018). Based on either physical or analytical 
redundancy, sensor fault diagnosis (FD) approaches for 
monitoring systems, including SHM systems, have been 
proposed to detect, isolate, identify, and accommodate 
sensor faults (Patton, 1990).
To mitigate maintenance, power consumption, and high 
costs required by physical redundancy, analytical 
redundancy approaches have been proposed. Analytical 
redundancy uses mathematical models to describe a 
system and takes advantage of redundant information 
inherent in the sensor data to perform FD (Smarsly & 
Law, 2014). In general, fault detection in analytical 
redundancy approaches relies on residuals between sensor 
data and “virtual outputs” estimated by the mathematical 

models. Then, a threshold logic or a hypothesis testing is 
used to detect faults (Esserman & Bale, 1997).
Motivated by the complex and – sometimes – nonlinear 
relationships within the sensor data, artificial intelligence 
(AI), a special class of mathematical models, is frequently 
used for sensor FD. In this context, neural networks have 
extensively been used in FD for SHM. Multilayer neural 
networks have been used to detect faults in mechanical 
components of wind turbines (Zaher et al., 2009).
Artificial neural network (ANN) models have been 
embedded into wireless sensor nodes for autonomously 
detecting and isolating sensor faults in a decentralized 
manner (Smarsly & Law, 2014). Furthermore, the 
approach proposed in Smarsly & Law (2014) has been 
extended from the time-domain to the frequency-domain 
for FD (Dragos & Smarsly, 2016). A combination of 
ANN models and convolutional neural network models
also has been introduced for full FD, using ANN models 
for sensor fault detection, isolation, and accommodation
and convolutional neural networks for fault identification
(Fritz et al., 2022). However, analytical redundancy 
approaches for SHM have been limited to the diagnosis of 
sensor faults occurring in individual sensors at different 
times, thus hampering the application to real-world SHM 
systems where faults in multiple sensors may occur at the 
same time (“simultaneous sensor faults”).
SHM systems for civil infrastructure have traditionally 
focused on individual sensor faults without considering
the occurrence of simultaneous faults in multiple sensors.
Nonetheless, simultaneous faults have been a matter of 
interest in other disciplines. In the chemical industry, for 
example, simultaneous sensor and actuator faults have 
been addressed using a descriptor fuzzy sliding-model 
observer (Liu et al., 2013). In the domain of aviation and 
flight-control systems, signals in a finite-frequency 
domain and simultaneous actuator faults of quadrotor 
unmanned aerial vehicles have been detected using 
adaptive fuzzy state estimators and integral terminal 
sliding-model control (Malayali & Fakir, 2020).
Moreover, an analytical redundancy approach has been 
proposed to detect and isolate faults of multiple sensors in 
heating, ventilation, and air conditioning (HVAC) 
systems (Repay et al., 2013), for which robustness and 
scalability also have been investigated (Papadopoulos et 
al., 2020).
In summary, despite the large body of research conducted 
on FD in SHM of civil infrastructure, most approaches 
address sensor faults occurring in individual sensors 
(Samee et al., 2011), where only one sensor is faulty 
(Zhang et al., 2018), and do not consider sensor faults 
occurring in multiple sensors simultaneously. To extend 



FD in SHM towards simultaneous sensor faults in 
multiple sensors, this paper presents an adaptive FD 
approach based on analytical redundancy (AFDAR). The 
AFDAR approach builds upon previous work, in which 
artificial neural networks and signal processing have been 
proposed for FD in SHM systems (Smarsly & Law, 2014;
Fritz et al., 2022; Al-Zuriqat et al., 2023). Therein, the 
sensor data of individual sensors has been estimated using 
artificial neural networks, to which correlated sensor data 
from other – typically neighboring – sensors have been 
used as input data, addressing single-fault occurrence 
under the premise that the input data to each ANN is non-
faulty. Nevertheless, when several sensors in real-world 
SHM systems encounter faults simultaneously, the input 
data for ANN models will include data from the faulty 
sensors, resulting in contaminated predictions. By 
contrast, the AFDAR approach proposed in this study 
combines ANN models with moving averages of 
individual sensor data to detect, isolate, and accommodate 
sensor faults in multiple sensors that occur 
simultaneously. This work does not incorporate fault 
identification because it is independent of single-fault or
multiple-fault occurrences and has been effectively 
addressed in prior research (Fritz et al., 2022).
This paper is organized as follows: First, the design and 
implementation of the AFDAR approach are introduced.
Then, the validation of the AFDAR approach is described
and the results are discussed. Finally, the work presented 
in this paper is summarized, and an outlook on future 
work and improvements of the AFDAR approach is
proposed.

Design and implementation of the AFDAR 
approach
In this section, the design and implementation of the 
AFDAR approach are introduced, comprising four steps, 
(i) initialization, (ii) fault detection, (iii) fault isolation, 
and (iv) fault accommodation. A flowchart depicting the 
workflow of the AFDAR approach is shown in Figure 1.
The four steps of the AFDAR approach are briefly 
discussed in what follows.

Initialization
1. The initialization step starts with exploring

correlations inherent in the sensor data to find a set 
of correlated sensors. Data recorded by sensors in 
the SHM system undergo a correlation analysis to 
identify correlated sensors. The result of the 
correlation analysis determines the number of 
correlated sensors k. Then, data recorded by 
correlated sensors f1→k(t) is “cleaned”, i.e. if sensor 
data from an individual sensor is missing at a 
specific time window, the same time window is 
neglected in all correlated sensors.

2. Data from the set of correlated sensors is normalized 
to have a common scale in the data values during the 
training process. A minimum-maximum 
normalization is used for the data recorded by 
correlated sensors f1→k(t).

Figure 1: Flowchart of the AFDAR approach.
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The formula of the minimum-maximum 
normalization is depicted in Equation 1, in which x
denotes an arbitrary measurement in the sensor data, 
xmin and xmax are the minimum and maximum 
measurements in the sensor data, respectively, and 
xnormalized is the normalized value. The same 
normalization parameters are applied to newly 
recorded sensor data fed to the ANN models after 
training.

min

max min
normalized

x xx
x x

3. Normalized data is used to train ANN models, with 
each ANN model “learning” from existing 
relationships between known input data and known 
output data. As a result, one ANN model Mi for each 
correlated sensor i (i = 1…k) is designed and trained 
using sensor data from the SHM system. During the 
training of Mi, sensor data from the correlated 
sensors (1, 2, …, i–1, i+1, …k) is used as input data, 
and sensor data fi(t) from sensor i is used as output 
data. As a result of the training, model Mi estimates 
virtual outputs of sensor i, denoted by fî(t). The 
training phase of each ANN model involves 
selecting the ANN architecture, in terms of the 
number of hidden layers and the number of neurons 
per hidden layer. An acceptable ANN architecture is 
based on the prediction accuracy of the model Mi,
lying below the fault detection threshold γ,
determined by the root mean squared error (RMSE) 
value ε between the virtual outputs fî(t) and the 
sensor data fi(t), as described in Equation 2. Upon 
completing the training of the ANN models, the 
models are deployed on a central computer of the 
SHM system to automatically detect, isolate, and 
accommodate sensor faults.
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Fault detection
In this step, newly recorded sensor data is fed into all 
ANN models. In the event of faults occurring in r sensors 
(1 < r < k), the residuals between the actual sensor data 
and the virtual outputs in models Mn (n = 2…r) are 
expected to exceed γ, which, on the one hand, issues a 
fault detection alert only for the r sensors. The time to
marking the violation of the fault detection threshold γ
serves as the fault time stamp. On the other hand, the 
faulty sensor data fn(t) is also used as input for the s
models Mv (v = 1…s, r + s = k) of the unfaulty sensors, 
which results in contaminating the virtual outputs of the 
Mv models and in yielding residual values that also exceed 
γ. Despite the design and training of ANN models 
dedicated for each correlated sensor, fault isolation 
requires further analysis of the sensor data on an 
individual sensor level. However, conducting the analysis 
on an individual sensor level requires considering the fault 
time stamp to, which represents the knowledge transferred 
to the next step.

Fault isolation
Following fault detection, the fault time stamp is utilized 
to specify a time window N, for which the moving average
(MA) values u̅i of p data points uij (j = 1…p, p < N) are 
computed for sensor i, as described in Equation 3. The 
time window should have an adequate length N (to – N)
before the fault time stamp, to ensure reliable tracking of 
the moving average. Gradual or abrupt changes in the u̅i
values are indicative of sensor faults. As a result, 
discrepancies between MA values u̅i and the fault 
isolation threshold δ from time to forward indicate the 
presence of faulty sensor data in sensor i.
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Fault accommodation
Once the fault isolation has been completed and the r
faulty sensors have been specified, the ANN models adapt 
to the new conditions of the SHM system as follows:

1. Adapting the ANN models essentially entails 
removing sensor data of the r correlated sensors that 
have been diagnosed as faulty from the ANN input 
layers of all models. Consequently, the architectures 
of the ANN models are modified, and retraining the 
ANN models is necessary for producing virtual 
outputs for the faulty sensors.

2. Retraining is achieved using sensor data prior to 
time to. Upon completing the retraining, the virtual 
outputs of the Mn (n = 2…r) models are used as 
substitutes for the faulty sensor data, thus 
accommodating the sensor faults.

The thresholds γ and δ depend on the type of data recorded 
by the SHM system and are, therefore, application-
specific. The validation of the AFDAR approach, which 
uses sensor data from a real-world SHM system, is 
presented in the next section.

Validation of the AFDAR approach
In this section, the validation test of the AFDAR approach
is presented. Data from a real-world SHM system 
installed at a railway bridge is used to validate the 
proposed approach, ensuring the accuracy, reliability, and 
performance of real-world SHM systems where
simultaneous faults in multiple sensors may occur.

Description of the railway bridge and of the SHM 
system
The validation test is carried out using data from an SHM 
system installed on a composite double-track railway 
bridge located in Germany. The bridge consists of two 
parallel steel truss girders that support a 45 cm thick 
reinforced concrete (RC) slab. The bridge comprises 15 
spans, each of 58 m in length, except for the edge spans, 
which are 57 m in length, and has a total length of 868 m. 
The deck width is 14.1 m, and the distance between the 
centroids of the steel truss girders is 6.2 m. Figure 2 
illustrates the cross-section of an inner span and the 
location of embedded temperature sensors in the bridge 
deck.



Figure 2: Bridge cross-section and location of temperature 
sensors.

In this study, sensor data from 10 temperature sensors
(S1…S10) embedded in the RC slab is used. The 
temperature sensors are of type Pt100, measuring at a 
range from -35 °C to 105 °C with a sensitivity of ± 0.5 °C.
Data recorded by the temperature sensors is transferred to 
a central computer of the monitoring system, where it is 
stored and processed.

Description of the validation test
The temperature measurements used for validation have 
been recorded over almost five years with a sampling rate 
of 1.7 mHz, i.e. one temperature measurement has been 
recorded every 10 minutes, with a total of 256,000 
measurements recorded by each sensor. In the 
initialization step, correlations between the temperature 
measurements recorded over a period of two years are 
investigated via correlation analysis. A strong positive 
correlation is unveiled by the Pearson correlation 
coefficient among all 10 temperature sensors belonging to 
the SHM system; hence, the number of correlated sensors 
is set to k = 10. The lowest correlation coefficient is 0.994 
between the sensors S2 and S5. Next, the temperature 
measurements from the correlated sensors in the SHM 
system are cleaned and normalized to train the ANN 
models. 
A total of 10 ANN models, equal to the number of 
correlated sensors (k = 10), are trained. Each model 
predicts the virtual outputs of one sensor, using 
temperature measurements from the other nine correlated 
sensors in the SHM system as input data. As a result, each 
ANN model has nine input neurons and one output 
neuron; the number of hidden layers and neurons per 
hidden layer is determined with different ANN 
architectures. Before training the ANN models for FD, the 
temperature measurements are split into training and 
testing sets. An ANN with a 9-32-64-256-256-1
architecture is determined for all ANN models, based on 
the lowest RMSE values ε, which lie between 0.09 and 
0.15, with a total training time of approximately 680 s for 
each ANN model. The fault detection threshold is set to 
γ = 0.15, based upon engineering judgment. Exemplarily, 
Figure 3 illustrates the architecture of the ANN model 
M10, which predicts the virtual outputs f1̂0(t) for sensor 
S10 using temperature measurements from correlated 
sensors f1→9(t) as input data. With the training of the 10 
ANN models, the initialization phase is completed, and 
the remaining steps of the AFDAR approach, i.e. fault 
detection, fault isolation, and fault accommodation, are 
executed separately.
In the validation test, the AFDAR approach is applied to 
temperature measurements recorded by the SHM system, 
without prior knowledge of the correct or incorrect 

operation of the sensors that record the data. The results
of the validation test are presented and discussed in the 
next section.

Figure 3: Architecture of the ANN model for sensor S10.

Results and discussion
This section discusses the results of applying the AFDAR 
approach with temperature measurements newly recorded 
by the SHM system. The temperature measurements used 
in the validation test correspond to a period of one year.
Specifically, 52,560 temperature measurements are 
recorded by each sensor. Table 1 introduces the number 
of faults diagnosed by the AFDAR approach in the newly 
recorded data.
Table 1: Real-world sensor faults of the SHM system, detected 

by the AFDA approach

Sensor Number of 
faults

S1 0

S2 18

S3 274

S4 0

S5 1

S6 0

S7 0

S8 4,339

S9 0

S10 0

Total 4,632

As presented in Table 1, the AFDAR approach has 
diagnosed 4,632 faults in the sensor data recorded over 
one year. To ensure that the proposed AFDAR approach 
correctly detects real-world sensor faults, and since data 
is recorded by the same type of sensors (temperature 
sensors), the data recorded by all temperature sensors is 
visualized side-by-side. By visualizing and comparing the 
data, deviations in the faulty sensor data can be observed. 
Figure 4 shows the data recorded by the correlated sensors 
in the SHM system, illustratively focusing on faults 
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detected in sensor S3 and sensor S8. In the figure, the 
continuous red line represents the data recorded by sensor 
S3, the continuous green line represents data recorded by 
sensor S8, and the dotted lines show data recorded by the 
correlated sensors in the SHM system.
As shown in Figure 4, data recorded by sensor S8 has 
started deviating from data recorded by the other sensors 
from December 5. The deviation in the data recorded by 
sensor S8 may be attributed to a drift. Moreover, no data 
was recorded by sensor S3 between December 19 and 
December 20, which may be attributed to a complete 
failure of the sensor. 

Figure 4: Comparison of the temperature measurements 
recorded by the SHM system.

Simultaneous faults occurring in sensors S3 and S8 are 
detected by the AFDAR approach, as the recorded 
temperature measurements exceed the fault detection 
threshold, shown in Figure 5. The figure shows data 
recorded by sensor S3 (top, continuous red line) and by 
sensor S8 (bottom, continuous green line). The dashed 
green line shows the virtual outputs of the ANN models, 
and the dotted black lines represent the fault detection 
thresholds. It should be noted that a total of 274 
simultaneous faults occurred in sensors S3 and S8 
between December 19 and December 20; thereupon, the 
focus is drawn only on simultaneous faults that occurred 
in the aforementioned period, which fall within the scope 
of this paper.

Figure 5: Comparison of temperature measurements and 
virtual outputs with the fault threshold.

To describe the results of the fault detection, isolation, and 
accommodation for simultaneous real-world sensor 

faults, sensors S3 and S8 between December 19 and 
December 20 are analyzed in more detail. Fault detection 
is performed when residuals between the temperature 
measurements from sensors S3 and S8, and the virtual 
outputs of models M3 and M8, exceed the fault detection 
threshold γ = 0.15. Then, fault isolation is conducted using 
the fault time stamp to of simultaneous fault occurrence in 
both sensors S3 and S8, which is determined at to = 01:20, 
on December 19. The fault isolation threshold is set to the 
accuracy of the temperature sensors δ = ± 0.5 °C. Next,
observing that residuals between the MA values of 
sensors S3 and S8 and the respective temperature 
measurements at to exceed the fault isolation threshold δ,
the faulty sensors are isolated. Finally, fault 
accommodation is performed: Since both sensors S3 and 
S8 are faulty, the models M3 and M8 are adapted by 
modifying the architecture of the ANN models. The ANN 
architecture is modified by shifting sensors S3 and S8 
from the input layer to the output layer, and data prior to 
to is used to train the adapted ANN model M3,8. Figure 6
illustrates the architecture of the adapted ANN model 
M3,8, predicting the virtual outputs f3̂(t) and f8̂(t) for both 
sensors S3 and S8.

Figure 6: Adapted model M3,8 for the sensors S3 and S8.

Summary and conclusions
Sensor faults in monitoring systems, including SHM 
systems, may affect the quality of monitoring. The SHM 
community has been showing an increasing interest in 
adopting sensor FD concepts to ensure the accuracy,
reliability, and performance of SHM systems. However, 
most FD approaches for SHM have been commonly 
focused on single-fault occurrence without considering 
simultaneous sensor faults in multiple sensors, which are 
likely to occur in real-world SHM systems. 
This paper has presented an adaptive FD approach based 
on analytical redundancy (AFDAR), in which 
simultaneous sensor faults in multiple sensors of SHM 
systems can be reliably diagnosed. The approach 
combines ANN models with moving averages of 
individual sensor data to detect, isolate, and accommodate 
multiple sensor faults occurring simultaneously. The 
ANN models are used to predict virtual outputs for each 
sensor of an SHM system. If residuals between virtual 
outputs predicted by the ANN models and actual 
measurements recorded by the sensors exceed a fault 
detection threshold, a fault detection alert is issued and a 
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fault time stamp is acquired. To isolate faulty sensors, the 
moving average of individual sensor data is analyzed and 
compared with the individual sensor data, recorded
around the fault time stamp, with a fault isolation 
threshold. Finally, faulty data from faulty sensors is 
replaced with the virtual outputs predicted by the ANN 
models upon adapting the models by removing faulty 
sensor data from the input layer during the fault 
accommodation step. Different from other analytical 
redundancy approaches reported for fault diagnosis in 
SHM systems, the AFDAR approach considers multiple 
sensor faults occurring simultaneously.
To validate the proposed approach, data collected by a 
real-world SHM system have been used to confirm the 
accuracy, reliability, and performance of the FD approach 
to detect, isolate, and accommodate sensor faults. 
Moreover, the AFDAR approach has been proven capable 
of adapting to the condition of the SHM system regardless 
of the number of faulty sensors. In summary, the AFDAR 
approach can be used to ensure the accuracy of sensors 
and therefore ensure the reliability and performance of 
SHM systems.
Future work may focus on extending the AFDAR 
approach to distinguish between sensor faults and 
structural damage as well as on improving computational 
efficiency.
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