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Abstract

Thermal comfort is typically assessed either through
manual surveys or through sensor data. Automating the
manual surveys and the analysis of the sensor data may
reduce the risk of information loss, while entailing more
accurate thermal comfort assessment. This paper presents
the design and implementation of a thermal comfort
monitoring system that uses Internet of Things
technologies to automatically assess thermal comfort. For
validation, thermal comfort indexes are computed and
compared with subjectively perceived thermal sensations
of building occupants, provided through a digital survey.
The results show that the comfort monitoring system
continuously and reliably collects and assesses thermal
comfort.

Introduction

Thermal comfort, i.e. subjective satisfaction with the
thermal environment, affects the health, well-being, and
productivity of building occupants and has become an
important area of research in the buildings and
construction sector (Lamberti et al., 2020). It is well
known that physiological, psychological, and behavioral
aspects directly influence the thermal comfort of building
occupants (Fanger, 1970). Environmental parameters
measured by monitoring systems have been used to
calculate thermal comfort indexes, developed based on
physiological aspects, such as the predicted mean vote
(PMV) or the predicted percentage of dissatisfied (PPD).
As a result, the PMV and PPD indexes have been
incorporated into thermal comfort standards, e.g. into the
ASHRAE Standard 55 (ASHRAE, 2020). However, the
PMYV index calculates the average feeling of comfort of a
group of people sharing an indoor space, but it does not
consider every individual separately. Thus, research in the
field of thermal comfort has shifted towards personalized
thermal comfort, which can only be achieved through
controlling the thermal environment by the building
occupants (Van Hoof, 2008), adapting to the outdoor and
the building conditions (de Dear and Brager, 1998).

Monitoring systems based on the Internet of Things (IoT)
have become cost-efficient and reliable (Tomat et al.,
2020), particularly in smart home and smart building
applications (Peralta Abadia et al., 2022). Due to the
growing availability and quality of sensors and
microcontrollers, cost-efficient sensor nodes have been
used to measure environmental parameters (Kimmling
and Hoffmann, 2019). The environmental parameters
measured by monitoring systems have been used to
calculate thermal comfort indexes, such as the PMV
index, using machine learning (Zang et al., 2019) or by
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comparison with high-quality reference sensors (Mthunzi
etal.,2019). An indoor environmental quality sensor node
has been developed to measure acoustic comfort, air
quality, and light levels in addition to thermal comfort
(Parkinson et al., 2019). In Demanega et al. (2021), the
performance of different indoor air quality hardware
components has been comparatively investigated. In
addition to monitoring of environmental parameters,
personal assessment of thermal comfort has been carried
out using thermal comfort surveys in multiple studies,
obtaining direct feedback from building occupants (Nicol
et al., 2012). Traditionally, thermal comfort surveys are
conducted manually, using paper-based questionnaires
(McCartney and Fergus Nicol, 2002), and often under
controlled conditions (Choi and Yeom, 2017). Although
efforts have been made to develop web-based surveys
(Graham et al., 2021), survey tools are still expensive and
usually not freely available.

Assessing thermal comfort by using either monitoring
systems (i.e., environmental data) or only thermal comfort
surveys (i.e., building occupant feedback) has several
disadvantages. On the one hand, solely collecting
environmental data is not sufficient to assess thermal
comfort accurately for every building occupant in an
indoor space. On the other hand, assessing thermal
comfort only through surveys is time-consuming and
requires a regular and reliable participation of building
occupants. Therefore, a promising solution to solve the
aforementioned drawbacks is to combine both methods,
i.e. environmental data and building occupant feedback.
With advances in sensing, monitoring, and IoT
technologies, tools have been made available to
incorporate building occupant feedback into thermal
comfort assessment (Dragos and Smarsly, 2017). For
example, IoT-based mobile applications and digital
surveys have been implemented to collect feedback on
subjectively perceived thermal sensations and preferences
of building occupants (Sanguinetti et al., 2017). In
Salamone et al. (2015), a web application has been
introduced to record building occupant feedback, while an
IoT device monitors environmental parameters. The
interaction of building occupants with a voting system has
been studied in Sheikh Khan et al. (2021). Despite the
efforts to combine feedback systems with environmental
monitoring, a fully digitized and automated workflow has
not been developed. Integrating both high-quality
environmental data and long-term feedback from building
occupants would significantly reduce data loss, effort, and
cost for thermal comfort assessment.

This paper presents an automated thermal comfort
monitoring system that couples environmental data
collected by low-cost, yet accurate, wireless sensor nodes



with a digital thermal comfort survey obtaining feedback
from building occupants. The system aims to minimize
the efforts required for data collection while maximizing
the amount of feedback obtained from building occupants.
The result is an automated system that continuously
monitors thermal comfort and structures the data for
further analysis. The remainder of the paper is structured
as follows. First, the design and implementation of the
automated thermal comfort monitoring system, i.e. the
system architecture, hardware and software components,
and the digital thermal comfort survey are described.
Then, the thermal comfort monitoring system is validated
through a field test in an office environment by comparing
the PMV index calculated on the sensor nodes with actual
votes, i.e. subjectively perceived thermal sensations,
obtained from the building occupants through the digital
survey. Next, the results of the field test are presented and
the user-friendliness and performance of the thermal
comfort monitoring system are discussed. The paper
concludes with a summary of the study and remarks on
possible new aspects in the research field of thermal
comfort in indoor spaces using automated monitoring
systems.

Design and implementation of an automated
thermal comfort monitoring system

The automated thermal comfort monitoring system
presented in this paper is based on previous work of the
authors, i.e. it utilizes a four-layer IoT architecture
(Peralta Abadia et al., 2022) and takes advantage of
modern concepts of monitoring (Fitz et al., 2019),
embedded systems (Dragos and Smarsly, 2022), and
intelligent sensor technologies (Dragos and Smarsly,
2016). The automated thermal comfort monitoring system
includes

o the digital thermal comfort survey and
e thermal comfort stations.

The digital thermal comfort survey is designed to be
completed by building occupants, while each thermal
comfort station consists of a wireless sensor node built
from low-cost hardware components. The software
applications embedded into the wireless sensor nodes
integrate algorithms for real-time sensing, embedded data
processing, and IoT connectivity. A key objective of the
system is to automate the collection of environmental data
and to complement the data with the digital thermal
comfort survey to provide an accurate assessment of
thermal comfort. In the following subsections, the system
architecture of the automated thermal comfort monitoring
system is elucidated, followed by a hardware and software
description, and the digital thermal comfort survey.

System architecture

The architecture of the automated thermal comfort
monitoring system consists of four layers,

e an application layer,
e a middleware layer,
e a physical layer, and

® a security layer,
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which are outlined below. As shown in Figure 1, the
building occupants interact with the application layer
through a dashboard accessible via a web-based interface.
The dashboard provides real-time visualization of
environmental data and it comprises the digital thermal
comfort survey. The middleware layer contains a mobile
server based on a Raspberry Pi, which handles the
backend services of the system using the Node-RED
development tool, which is a framework that provides
visual, flow-based programming for developing the
backend logic of the system (OpenJS Foundation, 2023).
Node-RED receives feedback from building occupants
through the application layer and stores the survey results
and environmental data collected by the physical layer.

The physical layer of the automated thermal comfort
monitoring system consists of several wireless sensor
nodes that collect indoor environmental data, i.e. air
temperature, relative humidity (RH), air velocity, and
globe temperature. In addition, the wireless sensor nodes
have the computing power to process the raw
environmental data using embedded algorithms; for
example, the PMV and the PPD thermal comfort indexes,
which, are calculated on the wireless sensor nodes. The
data processed on board is sent to the middleware layer
for data storage and visualization using an HTTP
communication protocol. Last but not least, the security
layer is devised transversely to the other layers and
provides authentication services for privacy and security
of all layers.

Thermal comfort monitoring system |
Phvsicall Middl ] Apohcation]
Thermal comfort Rasberry Pi Web-based
station server interface
|Micmcontmllcr} ‘{ Node-RED }\ I Digital survey |
N
g 3 q 3
| Sensors 1 ‘ Database | “| Dashboard |
| ¢ o ¥ |
Security laver

L) A
prn - ] [ Y] —
Building environment He .;‘ Building occupants

Figure 1: Four-layer loT architecture of the automated
thermal comfort monitoring system

Hardware components

Several wireless sensor nodes, or thermal comfort
stations, are part of the automated thermal comfort
monitoring system. The thermal comfort stations include
three sensors, (1) a combined sensor that measures air
temperature and RH, (2) an air velocity sensor, and (3) an
air temperature sensor that is installed in a black-painted
table-tennis ball to form a globe thermometer used to
calculate the MRT.

An ESP32 microcontroller, type WROOM-32 manages
the raw environmental data and sends the data to the
middleware layer at regular intervals via Wi-Fi, using the
HTTP protocol. As shown in Figure 2, a 3D-printed
enclosure protects the hardware components and provides
thermal insulation for each component. All components
are wired and soldered to a printed circuit board. The



components have been selected based on the following
criteria: Low price, low power consumption, accuracy,
size, and operability at 5 V. Table 1 presents the values of
the criteria for each hardware component.

Air velocity sensor Globe thermometer

Microcontroller )L{ Relative humidity sensor |

Figure 2: A thermal comfort monitoring station as part of the
automated thermal comfort monitoring system

Software components

The ESP32 microcontroller of the thermal comfort
stations embeds software applications designed to collect
sensor data, to process it, and to exchange the sensor data
with a server. In addition, the software application
calculates the PMV and PPD indexes to estimate the
average thermal comfort of people in an indoor
environment. The algorithms implemented for calculating
the PMV index and the PPD index are described in
ANSI/ASHRAE (2020). The inputs to calculate the PMV
and PPD indexes are the environmental parameters
measured by the thermal comfort stations as well as two
personal parameters that quantify the clothing and activity
(e.g., sitting and writing) of the building occupants. The
values of the personal parameters are introduced by the
building occupants when filling the digital thermal
comfort survey, which allows the system to update the
clothing and activity parameters and thus the PMV and
PPD indexes. The output of the PMV index corresponds
to a value on a 7-point scale of the ASHRAE-55 standard
(ASHRAE, 2020), where -3 represents “extreme” cold
sensation and +3 represents “extreme” warm sensation,
and an index of 0 expresses “neutral” thermal sensation.
The PPD index is derived from the PMV value and
predicts the percentage of people that would be
dissatisfied with the thermal conditions of the
environment at a specific point in time. For example, a
PPD value of 10 indicates that 10 % of the people are not
satisfied with the thermal conditions.

The Node-RED framework, which runs the backend
services of the system on the Raspberry Pi, receives the
environmental parameters, the PMV index, and the PPD
index, and it displays, in real time, the values on
visualization dashboards of the application layer hosted in
a web interface. At the same time, the building occupants
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fill the digital thermal comfort survey, which is displayed
on a new dashboard, separate from the visualization
dashboards to prevent the current environmental data
from influencing the survey responses. The layout of the
web interface, which includes the real-time charts and the
digital thermal comfort survey, is shown in Figure 3. The
digital thermal comfort survey is presented in the
following subsection.

Digital thermal comfort survey

The digital thermal comfort survey is designed to collect
the data required for a complete thermal comfort
assessment with minimal effort of the building occupants.
To collect data with the digital thermal comfort survey,
the building occupants obtain a personal link to the web
interface (Figure 3). The web interface can be accessed
from personal computers or from mobile devices, as long
as the device is connected to the local network created by
the IoT gateway. Connecting to the IoT gateway requires
authentication rights, which adds a layer of security to the
system.

The digital thermal comfort survey includes three types of
measurements: Personal parameters, subjective measures
and behaviors. First, two personal parameters are taken
from the data provided by the building occupants, i.e.
clothing insulation (CLO) and activity types or metabolic
rate (MET), which are required to calculate the PMV and
PPD indexes. Second, three subjective measures are
integrated, (i) thermal sensation values that describe how
the building occupants would rate their feeling on the 7-
point thermal sensation scale, (ii) values that indicate how
the building occupants rate their own productivity, and
(iii) the thermal preference regarding the environment, i.e.
warmer, cooler, or non-changing environment. Third, the
building occupant behavior is captured in the survey by
four further parameters, (i) the state of windows, (ii) the
state of shades, which can both be opened or closed, (iii)
the use of fans and (iv) the current use of lighting.

The data captured by the survey is merged with the
environmental data, continuously collected by the thermal
comfort stations. All data is automatically stored in a file
on the server, which can only be accessed by entering a
username and password. One file is created for each
thermal comfort station, adding new data in a new line of
the file. A timestamp is added for each new row of data in
the file, creating times series datasets that synchronize the
environmental data with the survey results. The datasets
may be exported and analyzed for further processing and
analysis. In the following section, the field validation test
devised to determine the user-friendliness and
performance of the thermal comfort monitoring system
and the analysis of the data collected during the test are
described.



Welcome: Please, fill in the digital thermal comfort survey from 1 to 10

Personal variables
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Figure 3: Dashboard of the web interface, including real-time charts of thermal comfort parameters and the digital thermal comfort
survey in one window

Field validation test

To validate the user-friendliness and performance of the
automated thermal comfort monitoring system, a field
validation test is conducted in an office environment using
(1) environmental parameters measured by the thermal
comfort stations and (2) feedback received from the
building occupants entered through the digital survey.
First, the results of the field test and the data collection are
statistically analyzed. Next, the PMV index calculated on
the sensor nodes is compared with the actual thermal
sensation votes, or actual votes, of the building occupants,
to assess the suitability of the PMV model. Finally, the
state of the window (opened and closed) in the office
environment is related to the air temperature values, to
validate the capability of capturing the interaction of the
building occupants with the building environment.

Test setup

Five thermal comfort stations are calibrated in a climate
chamber and then placed in five offices to measure
environmental parameters at 5-second intervals. In
addition, each person taking part in the field test is
assigned a dashboard to complete the digital survey. An
IoT gateway establishes a secure local network, in which
the thermal comfort stations and the server are
interconnected. The location of the thermal comfort
stations in the office environment as well as the server and
the IoT gateway are shown in Figure 4.
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Figure 4: Setup of the field test: (1) to (5) comfort stations, (6)
IoT gateway, (7) server

Results and discussion of the field validation test

During the field validation test, a total of 14,880
measurements of the environmental parameters have been
collected over a one-month period, and the building
occupants have voted 260 times. In addition, outdoor
temperature, rainfall, and solar energy have been obtained
from external sources. Using descriptive statistics,
Table 1 summarizes the results of the data collection for
all thermal comfort parameters, including minimum,
mean, and maximum values as well as the standard
deviation (SD). The averages of the PMV index and the
averages of actual vote values, both expressed in the
ASHRAE 7-point scale, are highlighted.



Table 1: Descriptive statistics for the thermal comfort stations

Variable Min. Mean  Max. SD
Air temp (°C) 2395  27.15 2943 1.65
RH (%) 2330  27.82 3325 5.94
MRT (°C) 1084 2682 3513 2.66
Air vel. (m/s) 0.03 0.07 1.21 0.17
MET (met) 1.10 1.12 1.14 0.07
CLO (clo) 0.75 0.76 0.81 0.15
PMYV (-) -1.62 0.72 2.64 0.68
AV (-) 0.41 0.71 0.91 0.60

The actual votes quantify the subjective thermal
sensations on the 7-point-scale that the building occupants
have entered via the digital thermal comfort survey. As
can be seen from Table 1, the mean value of the PMV
index, taken from the sensor node calculations, is 0.72 and
the mean value of the actual votes, taken from the building
occupant feedback, is 0.71. The difference of dyrean = 0.01
indicates that the PMV index, calculated on the wireless
sensor nodes, accurately estimates the actual votes,
entered through the digital survey by the building
occupants. On the other hand, the average of the minimum
values of the PMV index is -1.62 and the average of the
minimum values of the actual votes is 0.41 (S = 2.03);
the average of the maximum values of the PMV index is
2.64 and the average of the maximum values of the actual
votes is 0.91 (Ovar = 1.73). It can be concluded that the
PMV index, for the conditions in this study, serves as a
good model as long as the thermal sensation is close to 0
(i.e. neutral thermal sensation), but the PMV index does
not estimate well at extreme thermal sensations (i.e.
values closer to -3 and +3).

To assess the suitability of the PMV model for each
building occupant, the PMV index and the actual votes are
examined in more detail. Figure 5 shows the daily
averages of the PMV index (blue) and the actual votes
(orange) of one building occupant (here comfort station
CSO01) for a two-week observation period.

®PMV CS01 m Actual vote CS01

122

1

e
2 &

7-point scale

&
o

1 2 3 4 5 6 7 8 9
Days
Figure 5: Comparison of the PMV index (blue) and the actual

votes (orange) of one building occupant for comfort station
CS01

10 11 12 13 14
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In addition to study the suitability of the PMV index, the
data collected from the digital survey is analyzed.
Figure 6 shows the air temperatures measured by the
thermal comfort stations (CSO1 ... CS05) over the course
of a regular working day. By opening the windows in the
room where CS04 is placed, the air temperature drops
significantly. When the windows are closed, the
temperature rises accordingly, which is characterized by
the dips and peaks in Figure 6. Similar dips and peaks,
attributed to opening and closing the windows, are
observed for all thermal comfort stations. In conclusion,
the thermal comfort monitoring system proposed in this
paper serves as a technical basis to collecting and
visualizing environmental data, for screening the
interaction of building occupants with the environment,
and for identifying the personal behavior of each building
occupant. Moreover, knowledge on window, shades, and
light states may be used to further investigate the
efficiency of HVAC systems or to, for example, send
alerts when rooms have not been ventilated for defined
time periods, e.g. to comply with Covid-19 regulations.

—CS01 —CS02 —CS03 - CS04 —CsS05

29

28

27

26

Temperature (°C)

00:00 06:00 12:00

Time (hh:mm)

18:00 00:00

Figure 6: Air temperature recorded during one day with dips
and peaks, attributed to the window states (opened/closed)

Summary and conclusions

This paper has presented an automated thermal comfort
monitoring system, which builds upon a four-layer IoT
architecture, on cost-efficient hardware components, and
on embedded software applications. The system attempts
to minimize the data collection effort while maximizing
the amount of feedback received from building occupants,
continuously  monitoring  thermal comfort and
automatically structuring thermal comfort data for further
analysis. The automated thermal comfort monitoring
system, which includes thermal comfort stations and a
digital survey, has proven to increase data collection over
time. Moreover, automating data collection reduces errors
known from traditional paper-based surveys, caused by
manual data processing and data integration.

A field test has been conducted to validate the user-
friendliness and performance of the automated thermal
comfort monitoring system by looking at the number of
times the building occupants have voted and by testing the



suitability of the PMV index for the studied environment,
respectively. The results of the field test show that the
automated thermal comfort monitoring system
continuously and reliably collects thermal comfort data
over long periods of time. The digital survey has been
filled 260 times by five building occupants, corroborating
the user-friendliness of the system. The system may
support research in the field of thermal comfort by further
exploring the interactions between people and buildings
and the well-being of the building occupants.
Furthermore, the system is able to prove the suitability of
thermal comfort models, such as the PMV model, by
comparing the results of the models with actual votes
provided by building occupants through the digital
thermal comfort survey. The building occupant behavior
is also captured in the survey by means of four parameters,
(1) the state of windows, (ii) the state of shades, (iii) the
current use of fans, and (iv) the current use of lighting.

This paper has exemplarily presented results from a one-
month study of the thermal comfort monitoring system;
however, the system is designed to continuously record
and analyze data over an extended period of time. Further
results obtained from this ongoing study are expected to
be presented in the future. In addition, in future work the
automated thermal comfort monitoring system may be
used in conjunction with control systems, such as
humidifiers, HVAC systems, and automatic shades, via
actuators to expand the potential in building automation.
Furthermore, lightning, noise, and air quality sensors may
be added to monitor the overall comfort of building
occupants in indoor spaces.
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