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Abstract

Energy modeling is a crucial tool at the city level for city
managers to take decisions related to the building stock.
To achieve this, urban models need additional building
information to ensure good-quality simulations.
Automated image analysis has shown potential in many
fields but has lacked to appear in works aiming to improve
urban energy analysis. Thus, the objective of this study is
to provide a methodology for the extraction of the
window-to-wall ratio from building facade images. The
methodology proposed in this study includes training a
semantic segmentation model. Results of this study have
shown that image segmentation models have great
potential in extracting the window-to-wall ratio from
fagade images.

Introduction

While working towards being a North American leader in
the fight against climate change, the Québec government
has adopted demanding targets to be achieved by the year
2030 (Gouvernement de Quebec, 2016). Such targets
include the reduction of non-renewable energy, as well as
the enhancement of energy efficiency by 15%. Building
energy modeling (BEM) — a process of creating computer
simulations, with the help of software tools, to analyze the
energy performance of a building - is a very important tool
in the battle towards decreasing energy demand. In
addition, BEM is also a great player in decreasing energy
demand because of its capacity to help in achieving
energy compliance, as well as assist in the decision-
making of design parameters during building design (Nik-
Bakht et al., 2020; Allam et al., 2022; Panizza and Nik-
Bakht, 2022).

Since being major contributors to climate change, cities
require a rapid adaptation towards more sustainable
practices to become more energy efficient. In this context,
energy modeling at a city level can be a crucial tool. With
the help of city energy models, city managers and energy
planners can perform more informed diagnostics on the
existing building stock, as well as plan for future energy
strategies to be implemented. To achieve this, however,
urban-scale 3D models need to include enough building
information to ensure good-quality predictions.
CityGML, for instance, is an open standard data model
that is used for storing digital models of cities (CityGML
OGC, no date). Providing enough building data,
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CityGML models can be used for the modeling of energy
performance at a neighborhood or city level (Nouvel et
al., 2013).

The energy performance of buildings is highly dependent
on building parameters such as their geometry, material,
existence, and size of windows, among many other
parameters (Allam et al., 2020; Rafaela Orenga Panizza,
2020). The CityGML models currently available for many
cities (including the city of Montréal) typically include
data related to the building geometries as well as the form
of their roofs (Level of Detail 2 - LoD2), excluding all
information related to building fagades (Nouvel et al.,
2013). Though the area and volume of a building are of
extreme importance when it comes to calculating energy
demand, existing research has shown that, in the cold
climate of Québec, the window-to-wall ratio (WWR)
parameter (i.e. the size of the windows relative to the size
of the building facade) is one of the most significant
parameters when modeling the energy performance of
buildings (Panizza and Nik-bakht, 2020; Panizza and Nik-
Bakht, 2022). CityGML models, however, do include this
kind of information. So, the objective of this study is to
propose a workflow method for the extraction of the
window-to-wall ratio value of building facades for large-
scale implementation.

The remainder of this paper is organized as follows.
Section 2 is presenting an overview of the existing
literature. In section 3, a brief overview of the dataset used
throughout this study will be presented. In section 4, the
proposed methodology will be explained, followed by an
overview of the results and discussion, and finally, the
concluding remarks.

Literature Review

In today’s world, an incredibly large amount of data is
already being collected in endless areas. Thus, with that,
the potential of automating image analysis has been
recognized in a variety of fields (Koch et al, 2019).
Building images, for instance, are a very rich source of
building data. In the 3D urban modeling field, there is a
significant amount of work utilizing laser scans and street
view images for geo-localization, model reconstruction,
etc. (Wang, 2013; Adegun et al., 2018; Koch et al., 2019).
Laser scan-generated point-cloud images can simplify the
detection of building facade elements but at the same
time, are very expensive and time-consuming to obtain.
Street view images, on the other hand, are mostly publicly



available and can be easily gathered (Neuhausen, Koch
and Konig, 2016).

The existing literature in the field of urban image analysis
is vast. A significant portion covers the use of image
analysis for detecting street objects and/or building fagade
elements (Fathalla and Vogiatzis, 2017; Kang et al.,
2018). In the real estate field, for instance, works have
been done to derive sociodemographic information from
existing neighborhoods and residences (Gebru et al.,
2017). Works have also focused on the processing of
street view images for the purpose of land-use
classification (Adegun et al., 2018), geo-localization
purposes (Babahajiani et al., 2017), as well as for 3D
model reconstruction purposes (Wang et al., 2017). The
applications are endless and have shown great potential.
Though, since the objective of this study is to
automatically calculate the ratio between window and
wall of building fagades with the help of images, greater
focus was put into image segmentation methods.

The pixel-wise feature of image segmentation techniques
is what makes this method ideal for the calculation of
window-to-wall ratio (Van Ackere et al., 2019). Image
segmentation, however, can be performed in two different
ways: semantic and instance segmentation. Semantic
segmentation is when the objects within the same class are
treated as one entity, while instance segmentation
identifies the different objects within the different classes.
The extraction of the window-to-wall ratio parameter
relies on the total area of windows in comparison to the
area of the building fagade. Therefore, in this study
focused attention was given to semantic image
segmentation methods.

While analyzing the existing literature with a focus on
semantic segmentation methods, it has been noticed that a
variety of deep learning models can be used to perform
semantic segmentation tasks. To be able to perform
semantic segmentation tasks, the convolutional neural
network (CNN) models need to use an encoder-decoder
architecture. Differently from a CNN architecture used for
classification, the architecture used for segmentation has
three main parts: the encoder, which is responsible for
reading the input image and converting it into the
appropriate format; the hidden state, which is the output
of the encoder, or the coded message; and the decoder,
which is where the coded message is converted into
comprehensible language. Some encoder-decoder
architectures used in the field include U-Net (Dai et al.,
2021), SegNet (Femiani et al., 2018), PSPNet (Zhang,
Pan and Zhang, 2022), and DeepLabv3 (Ali, Verstockt
and Van De Weghe, 2021).

The different architectures found in the analyzed literature
have shown to be successful in segmenting building
facades for a variety of purposes. Dai et al., for instance,
have used a U-Net architecture to train a building fagade
segmentation model for surveying purposes (Dai et al.,
2021). Other works have used PSPNet and DeepLabv3 for
detecting defects and analyzing social changes,
respectively (Ali, Verstockt and Van De Weghe, 2021,
Zhang, Pan and Zhang, 2022). Though multiple works
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have been done to segment images of building fagades,
the existing literature has not yet used the help of image
segmentation for collecting building parameters that are
relevant to the energy performance analysis of buildings.
Thus, the collection of building-related data at a large
scale is a significant step towards the overarching goal of
this research: to improve the quality of the existing city
models by integrating building information details and
therefore their ability to model energy demand.

Proposed Methodology

In order to accomplish the objective of this study, four
main steps have been accomplished. During the first step
(‘Data preparation’ phase), the labels from the selected
dataset are manipulated to preserve only the classes of
interest. Then, together with the original images, they
form the final dataset that will be used during the next
steps. The second step (‘Model architecture testing’
phase) is where the selected architecture is tested with
different pre-trained layers to reach the best model
architecture. Then, during the third step (‘Training
phase’), the final dataset goes through an augmentation
process to then be fed as input to deep learning
architecture (selected in the previous step) for training.
The trained model is then tested and evaluated during the
last step (‘Evaluation phase’) to validate the workability
of this model with widely available images from Google
Street View (GSV) as well as evaluate its performance.
An overview of the methodology being proposed in this
study can be found in Figure 1.

Dataset preparation

Two different datasets were used throughout this study: a
training dataset and an evaluation dataset. The dataset
used for training is also known as CMP dataset (Fritz,
2020). This manually labeled dataset contains 606 fagade
images of different architectural styles from different
countries around the world, such as the Czech Republic,
Slovakia, Argentina, Germany, Austria, England, Italy,
Switzerland, Spain, Hungary, Greece, and the United
States. The CMP dataset has labels for twelve different
classes of objects and all object annotations have a
rectangular shape. Classes of objects included in this
dataset are the following: background, fagade, window,
blind, cornice, sill, door, balcony, deco, molding, pillar,
and shop. The evaluation dataset consists of a sample of
facade images of Montreal (Quebec, Canada) buildings
extracted from GSV. The images include a wide variety
of building types from different neighborhoods to enable
the evaluation of the applicability of the proposed
methodology at a large scale.

The CMP dataset contains 12 different classes, of which
9 of them are subclasses of either the ‘fagcade’ or the
‘window’ class. Thus, to know the ratio between window
and wall and to facilitate the training and prediction
processes of the deep learning model, the subclasses of
‘facade’ and ‘window’ were simplified at the pixel level.
The ‘window’ and ‘blind’ classes from the original
annotations are combined forming the new ‘window’



class. And the remaining fagade elements (e.g., ‘doors’,
‘molding’, ‘sill’) are combined forming the new ‘facade’
class. The pixels labeled with the ‘background’ class are
kept the same. The processed annotations were then left
with 3 classes: ‘background’, ‘fagade’, and ‘window’. An
example image with its respective annotations (before and
after processing) is showcased in Figure 1.

Different from the training dataset, the evaluation dataset
was created specifically to be used in this project. This
dataset is meant to be used for validating the workability
of the model trained during this study, thus a wide variety
of building fagade types have been extracted to form the
evaluation dataset. To be able to help in the evaluation of
the model, this dataset needs to contain pixel-wise
annotations that include the 3 relevant classes (just like
the training dataset). The gathered images included ten
different categories of buildings from the city of
Montreal, Canada, i.e., low-, medium- and high-rise
residential buildings, small and large office buildings,
commercial, institutional/public, religious, industrial, and
mixed-use buildings. These images were then manually
annotated with the help of LabelMe (LabelMe. The Open
annotation tool, no date). Lastly, the actual values for
WWR of the fagcade shown in the photo were calculated
manually by analyzing the 360° view of the fagade from
GSV.
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Model
architecture
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Figure 1. High-level methodology being followed by this study.

Model architecture

The architecture selected to be used for training of the
image segmentation model in this study was the U-Net

architecture (Ronneberger, Olaf; Fischer, Philipp; Brox,
2021). The U-Net architecture is built upon an
architecture named “fully convolutional network”
(Zhuang et al., 2019) to be able to take fewer labeled
images for training. The network architecture includes
two paths: encoder and decoder. The encoder works like
a convolutional network where the input images are
downsampled into a compact and summarized
representation of the input images based on the features
recognized throughout the images (feature map). This
compact representation is then the input to the decoder.
The decoder path includes the upsampling of the feature
map back to its original format. The most important part
of this model is the process of encoding the input to
provide a compact representation that is also complete and
meaningful. Thus, in this study, pre-trained models have
been used as the encoder to try to optimize the
performance of the model.

Pre-trained models are layers of a network that have been
previously trained with a large dataset. They can be used
as is or they can be customized for a specific task, a
practice known as transfer learning. The idea behind the
use of pre-trained models is that, if they are trained with a
large enough dataset (e.g. ImageNet (Jia Deng et al.,
2009)), this model can then be used as a generic model of
the visual world. New models can then take advantage of
the feature maps learned during the training of these
models without having to start from scratch. The practice
of using transfer learning is often favored over starting a
model from scratch since it makes it so the model can be
trained faster, generally provides better accuracies, and is
an effective way to handle the challenge of training a
model when the available dataset is not very large
(Zhuang et al., 2021).

There is a variety of existing pre-trained networks that can
be customized for use in the training of an image
segmentation model. These networks can take various
architectures. They can differ on the depth of the network
(i.e., the number of layers) which directly influences the
number of features, the number of convolutional layers,
the number of fully connected layers, the filter sizes for
the convolutional layers, etc. Throughout this study, 32
different pre-trained models have been tested to select the
most appropriate model architecture to achieve the
objective of this work. The analyzed pre-trained networks
included variations of the following convolutional neural
networks: VGG (Vedaldi and Zisserman, 2015), ResNet
(He et al., 2016), Inception (Szegedy et al., 2015),
InceptionResNet (Szegedy et al., 2017), SeResNet (Hu et
al., 2020), ResNext (Xie et al., 2017), DenseNet (Huang
et al.,2017), EfficientNet (Tan and Le, 2019), SeResNext
(Xieetal.,2017; Hu et al., 2020), SeNet (Hu et al., 2020),
and MoobileNet (Howard et al., 2017).

Model training and evaluation

Based on the best-performing architecture selected in the
previous section, the semantic segmentation model was
trained. To avoid overfitting and ensure the best possible
accuracy of the semantic segmentation model, the training



dataset was augmented before being fed into the model for
training. Data augmentation is a great strategy to be
applied to overcome the limitation of not having a large
enough training dataset available (Laupheimer et al,
2018) and improve the quality of the image segmentation
model. Augmentation techniques utilized include random
brightness contrasts, random rotations, grid distortion,
and horizontal and vertical flips. Given the nature of the
problem, the semantic segmentation model was trained
with 50 epochs, SoftMax as its activation function, and
Adam optimizer.

The output of this model is a pixel-wise prediction of the
three classes: background, window, and wall. The quality
of the produced output is then measured based on the
intersection over union (IoU) metric. IoU is the primary
accuracy measure for image segmentation. IoU for each
class is calculated based on their true positives (TP), false
positives (FP), and false negatives (FN) (Equation 1).
With this predicted output (generated annotations), a
pixel-wise analysis is performed in order to calculate the
WWR of the fagade. To do that, the size of both, the
windows, and the walls of each building are collected by
counting the pixels classified as ‘window’ and ‘wall’, the
WWR of that fagade can be calculated with Equation 2.
Where pyindow and pwau are the numbers of pixels classified
as window and the number of pixels classified as wall,

respectively.
_TP
IoU ="%/1p 4 FP 4+ FN) )
WWR = Pwindow 2
/(pwindow + pwall) ( )

Results and Discussion

After going through all the steps of the above-explained
methodology, the results are presented and discussed in
two parts: the ‘model architecture’ and the ‘model training
and evaluation’. The first is focusing on the performance
of the different architectures that have been tested for
selecting the best-performing one to be selected for the
following steps. And then the second part is focusing on
the performance of the final trained model as well as its
performance when applied to GSV data.

Model architecture

A total of 32 different backbone architectures were tested
throughout this study. These models were trained with the
original dataset and with 50 epochs, SoftMax as its
activation function, and Adam optimizer. The selection of
the best-performing model was done based on both, visual
and metric evaluation of the trained models. The
evaluation of the predictive results of the pool of models
started with visualization. The visual evaluation is done
initially to ensure that the models considered are
providing reasonable predictions. Then, the remaining
models are further evaluated based on the IOU metric.
After the visual evaluation step, fourteen models that
remained and their mean IOU throughout the three classes
are showcased in Figure 2.
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Figure 2. Analysis overview of the performance of validation
set of pre-trained model architectures with their respective
number of trainable parameters.

To help in the selection of the best architecture, the mean
IOU of each architecture was analyzed alongside their
number of trainable parameters. The number of trainable
parameters in a model is generally a reflection of the depth
of the architecture. More parameters to be trained may
also result in longer training times due to a greater number
of calculations needed, but that doesn’t always mean
better results. We can clearly see that with the VGG
models in Figure 2: the architecture with fewer parameters
(VGG16) achieves higher accuracy that the one with a
higher number of parameters (VGG19). We can also see
that with the ResNet models (ResNetl8, ResNet34,
ResNet50, ResNet101, ResNet152), it is probably due to
the extraction of too many features which can cause
overfitting. In order to keep the selected model within a
reasonable number of trainable parameters as well as high
10U accuracy, the selected architecture to be used moving
forward during this study is ResNext101. Throughout this
preliminary step, ResNext101 has taken an approximate
training time of 578 minutes (performed on a computer
with Intel Core 17-6700 3.4 GHz CPU and 32 GB RAM,
running a Windows 10 operating system) and achieved a
mean [OU accuracy of 0.686.

Model training and evaluation

After the selection of the appropriate model backbone
architecture (ResNext101), as discussed in the previous
section, a more robust model was trained. This step aims
to build a model of the best possible quality. Thus, the
dataset used for model training, even though it was the
same as the one used in the previous step, it was five times
larger than the previous thanks to the data augmentation
technique applied to the dataset before training. The
training of this model at this phase is a lot more time-
consuming due to the large number of images in the
training set, but as expected better accuracy is also
achieved. The retraining of the ResNext101 model could
bring the semantic segmentation model to a training IOU
of over 0.9 and a validation IOU of 0.85. The obtained
IOU for window and wall classes were 0.89 and 0.96,
respectively. In comparison to similar studies (such as



(Dai et al., 2021) and (Zhang, Pan and Zhang, 2022)), the
window class is maintaining a very similar to moderately
increased accuracy, but the wall class has shown a
moderate increase. A visual representation of the model
prediction on a test set image can be seen in Figure 3.

Testing image

Testing Label

Prediction on test image

100 150 200 0
Figure 3. Semantic segmentation model visual result from
image retrieved from the test set.

W0 150 200 250

Now that the final model is already trained, it is time to
start evaluating its applicability on a different dataset, in
this study a dataset of GSV images. The GSV dataset is
composed of 30 images, 3 of each building type. The GSV
dataset, different from the dataset used for training,
contains elements apart from the facade. The initial
evaluation of the applicability of this methodology with
GSV images has shown promising results. The model
when applied to GSV images has provided a mean IOU of
0.5 and a mean square error (MSE) of 0.023 throughout
the GSV dataset. Though it is not a very high accuracy, it
is a very good preliminary result given that the noise that
comes with the images was not handled during this study,
which leads the authors to believe that this result has the
potential to be improved provided some additional
preprocessing of the GSV images in the future works.
Some sample results from the GSV image analysis can be
seen in Figure 4.

Though the dataset analyzed was limited, some
preliminary findings could be highlighted from this
analysis. While comparing the different building types
during this analysis, it was noticed that this model
produces a greater error in the WWR calculation of
building categories such as commercial, high-rise
residential, and mixed-used buildings in comparison to
industrial, small offices, religious, low-and mid-rise
residential, and public and institutional buildings. This
happens mainly because, in high-rise buildings, the GSV
image is not able to capture the building in its entirety.
Also, the reason for the higher level of error in
commercial and mixed-use buildings is related to the
building noise that might be seen in the images, i.e., the
neighboring buildings that can affect the results.
Predominantly commercial areas (where commercial and
mix-use buildings are generally found) are built in denser
areas, which makes it very common for buildings to be
very close to each other and, therefore, appear in
unwanted GSV images and impact the estimated value of
WWR. Residential buildings can also be found in denser
arcas as well, but these often have similar WWRs, which
resulted in a low impact on the estimated WWR.

From these findings, it was noticed that in addition to the
already mentioned challenges when dealing with these
images, curtain-wall buildings are not easily recognized
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as fully glazed by the trained model. That is because the
dataset used for training did not contain a significant
amount of curtain wall images. Also, the dataset in general
contains a lot of noise. For instance, vegetation (can be
seen in the second row of Figure 4), vehicles, and adjacent
buildings (can be seen in the first row of Figure 4), among
other things. In addition, the images of the desired
buildings are also found to be at an angle or not covering
the entire building fagade in one image alone. These
differences between datasets are what make the large-
scale implementation of this methodology a challenge.

Testing Label

Testing Image

Prediction on test image

°

% 100 B0 20 A0 0 W 100 15 00 X 0 % 100 189 00 R0

Figure 4. Model results when applied to GSV images (the
building types from top to bottom are mixed-use, high-rise
residential, low-rise residential, and small office).

Conclusion

This study has proposed a methodology for automatically
extracting building information that can be used for the
enrichment of urban-scale 3D models. The main idea is to
provide urban models with building information that has
great significance when it comes to the energy analysis of
these buildings. The steps taken by this study towards this
overarching goal include a methodology that makes use
of semantic segmentation methods for training a model
capable of segregating the building fagade images into
three different categories, which then allows the
extraction of the window-to-wall ratio of fagades. The
model was trained with the help of an already existing
dataset and used for testing on widely available GSV
images.

The semantic segmentation model trained throughout this
study achieved relatively high accuracies when compared
with other studies (training IOU of over 0.9 and validation
10U of 0.85). However, when using this trained model on



images from a different dataset (in this case GSV), the
model performance when it comes to its ability to
segregate the images drops a bit due to the extra noise that
the images contain. Nevertheless, it is still a promising
performance of 0.5 IOU. From these predictions, the
WWR was able to be calculated and has shown an MSE
of 0.023 when compared to the actual WWR from the
image. The noises found in the GSV dataset are what
make the large-scale implementation of this methodology
a challenge.

The technique used to gather WWR values from building
fagades at an urban scale is promising and can also be
expanded to other types of available images as well. As it
was noticed during the analysis of results when applied to
GSV images, the handling of large-scale data may bring
some added challenges, such as the angles in which the
images are taken, objects that might be blocking the view
of the facade, the shape, and height of the building itself,
amongst others. Thus, in future works, these need to be
addressed in order to be able to integrate this method with
an urban model.
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