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Abstract 
Energy modeling is a crucial tool at the city level for city 
managers to take decisions related to the building stock. 
To achieve this, urban models need additional building 
information to ensure good-quality simulations. 
Automated image analysis has shown potential in many 
fields but has lacked to appear in works aiming to improve 
urban energy analysis. Thus, the objective of this study is 
to provide a methodology for the extraction of the 
window-to-wall ratio from building façade images. The 
methodology proposed in this study includes training a 
semantic segmentation model. Results of this study have 
shown that image segmentation models have great 
potential in extracting the window-to-wall ratio from 
façade images. 

Introduction 
While working towards being a North American leader in 
the fight against climate change, the Québec government 
has adopted demanding targets to be achieved by the year 
2030 (Gouvernement de Quebec, 2016). Such targets 
include the reduction of non-renewable energy, as well as 
the enhancement of energy efficiency by 15%. Building 
energy modeling (BEM) – a process of creating computer 
simulations, with the help of software tools, to analyze the 
energy performance of a building - is a very important tool 
in the battle towards decreasing energy demand. In 
addition, BEM is also a great player in decreasing energy 
demand because of its capacity to help in achieving 
energy compliance, as well as assist in the decision-
making of design parameters during building design (Nik-
Bakht et al., 2020; Allam et al., 2022; Panizza and Nik-
Bakht, 2022). 
Since being major contributors to climate change, cities 
require a rapid adaptation towards more sustainable 
practices to become more energy efficient. In this context, 
energy modeling at a city level can be a crucial tool. With 
the help of city energy models, city managers and energy 
planners can perform more informed diagnostics on the 
existing building stock, as well as plan for future energy 
strategies to be implemented. To achieve this, however, 
urban-scale 3D models need to include enough building 
information to ensure good-quality predictions. 
CityGML, for instance, is an open standard data model 
that is used for storing digital models of cities (CityGML 
| OGC, no date). Providing enough building data, 

CityGML models can be used for the modeling of energy 
performance at a neighborhood or city level (Nouvel et 
al., 2013).  
The energy performance of buildings is highly dependent 
on building parameters such as their geometry, material, 
existence, and size of windows, among many other 
parameters (Allam et al., 2020; Rafaela Orenga Panizza, 
2020). The CityGML models currently available for many 
cities (including the city of Montréal) typically include 
data related to the building geometries as well as the form 
of their roofs (Level of Detail 2 - LoD2), excluding all 
information related to building façades (Nouvel et al., 
2013). Though the area and volume of a building are of 
extreme importance when it comes to calculating energy 
demand, existing research has shown that, in the cold 
climate of Québec, the window-to-wall ratio (WWR) 
parameter (i.e. the size of the windows relative to the size 
of the building façade) is one of the most significant 
parameters when modeling the energy performance of 
buildings (Panizza and Nik-bakht, 2020; Panizza and Nik-
Bakht, 2022). CityGML models, however, do include this 
kind of information. So, the objective of this study is to 
propose a workflow method for the extraction of the 
window-to-wall ratio value of building façades for large-
scale implementation. 
The remainder of this paper is organized as follows. 
Section 2 is presenting an overview of the existing 
literature. In section 3, a brief overview of the dataset used 
throughout this study will be presented. In section 4, the 
proposed methodology will be explained, followed by an 
overview of the results and discussion, and finally, the 
concluding remarks. 

Literature Review 
In today’s world, an incredibly large amount of data is 
already being collected in endless areas. Thus, with that, 
the potential of automating image analysis has been 
recognized in a variety of fields (Koch et al., 2019). 
Building images, for instance, are a very rich source of 
building data. In the 3D urban modeling field, there is a 
significant amount of work utilizing laser scans and street 
view images for geo-localization, model reconstruction, 
etc. (Wang, 2013; Adegun et al., 2018; Koch et al., 2019). 
Laser scan-generated point-cloud images can simplify the 
detection of building façade elements but at the same 
time, are very expensive and time-consuming to obtain. 
Street view images, on the other hand, are mostly publicly 



available and can be easily gathered (Neuhausen, Koch 
and König, 2016).  
The existing literature in the field of urban image analysis 
is vast. A significant portion covers the use of image 
analysis for detecting street objects and/or building façade 
elements (Fathalla and Vogiatzis, 2017; Kang et al., 
2018). In the real estate field, for instance, works have 
been done to derive sociodemographic information from 
existing neighborhoods and residences (Gebru et al., 
2017). Works have also focused on the processing of 
street view images for the purpose of land-use 
classification (Adegun et al., 2018), geo-localization 
purposes (Babahajiani et al., 2017), as well as for 3D 
model reconstruction purposes (Wang et al., 2017). The 
applications are endless and have shown great potential. 
Though, since the objective of this study is to 
automatically calculate the ratio between window and 
wall of building façades with the help of images, greater 
focus was put into image segmentation methods.  
The pixel-wise feature of image segmentation techniques 
is what makes this method ideal for the calculation of 
window-to-wall ratio (Van Ackere et al., 2019). Image 
segmentation, however, can be performed in two different 
ways: semantic and instance segmentation. Semantic 
segmentation is when the objects within the same class are 
treated as one entity, while instance segmentation 
identifies the different objects within the different classes. 
The extraction of the window-to-wall ratio parameter 
relies on the total area of windows in comparison to the 
area of the building façade. Therefore, in this study 
focused attention was given to semantic image 
segmentation methods.   
While analyzing the existing literature with a focus on 
semantic segmentation methods, it has been noticed that a 
variety of deep learning models can be used to perform 
semantic segmentation tasks. To be able to perform 
semantic segmentation tasks, the convolutional neural 
network (CNN) models need to use an encoder-decoder 
architecture. Differently from a CNN architecture used for 
classification, the architecture used for segmentation has 
three main parts: the encoder, which is responsible for 
reading the input image and converting it into the 
appropriate format; the hidden state, which is the output 
of the encoder, or the coded message; and the decoder, 
which is where the coded message is converted into 
comprehensible language. Some encoder-decoder 
architectures used in the field include U-Net (Dai et al., 
2021), SegNet (Femiani et al., 2018), PSPNet (Zhang, 
Pan and Zhang, 2022), and DeepLabv3 (Ali, Verstockt 
and Van De Weghe, 2021).  
The different architectures found in the analyzed literature 
have shown to be successful in segmenting building 
facades for a variety of purposes. Dai et al., for instance, 
have used a U-Net architecture to train a building façade 
segmentation model for surveying purposes (Dai et al., 
2021). Other works have used PSPNet and DeepLabv3 for 
detecting defects and analyzing social changes, 
respectively (Ali, Verstockt and Van De Weghe, 2021; 
Zhang, Pan and Zhang, 2022). Though multiple works 

have been done to segment images of building façades, 
the existing literature has not yet used the help of image 
segmentation for collecting building parameters that are 
relevant to the energy performance analysis of buildings. 
Thus, the collection of building-related data at a large 
scale is a significant step towards the overarching goal of 
this research: to improve the quality of the existing city 
models by integrating building information details and 
therefore their ability to model energy demand. 

Proposed Methodology 
In order to accomplish the objective of this study, four 
main steps have been accomplished. During the first step 
(‘Data preparation’ phase), the labels from the selected 
dataset are manipulated to preserve only the classes of 
interest. Then, together with the original images, they 
form the final dataset that will be used during the next 
steps. The second step (‘Model architecture testing’ 
phase) is where the selected architecture is tested with 
different pre-trained layers to reach the best model 
architecture. Then, during the third step (‘Training 
phase’), the final dataset goes through an augmentation 
process to then be fed as input to deep learning 
architecture (selected in the previous step) for training. 
The trained model is then tested and evaluated during the 
last step (‘Evaluation phase’) to validate the workability 
of this model with widely available images from Google 
Street View (GSV) as well as evaluate its performance. 
An overview of the methodology being proposed in this 
study can be found in Figure 1. 

Dataset preparation 
Two different datasets were used throughout this study: a 
training dataset and an evaluation dataset. The dataset 
used for training is also known as CMP dataset (Fritz, 
2020). This manually labeled dataset contains 606 façade 
images of different architectural styles from different 
countries around the world, such as the Czech Republic, 
Slovakia, Argentina, Germany, Austria, England, Italy, 
Switzerland, Spain, Hungary, Greece, and the United 
States. The CMP dataset has labels for twelve different 
classes of objects and all object annotations have a 
rectangular shape. Classes of objects included in this 
dataset are the following: background, façade, window, 
blind, cornice, sill, door, balcony, deco, molding, pillar, 
and shop. The evaluation dataset consists of a sample of 
façade images of Montreal (Quebec, Canada) buildings 
extracted from GSV. The images include a wide variety 
of building types from different neighborhoods to enable 
the evaluation of the applicability of the proposed 
methodology at a large scale. 
The CMP dataset contains 12 different classes, of which 
9 of them are subclasses of either the ‘façade’ or the 
‘window’ class. Thus, to know the ratio between window 
and wall and to facilitate the training and prediction 
processes of the deep learning model, the subclasses of 
‘façade’ and ‘window’ were simplified at the pixel level. 
The ‘window’ and ‘blind’ classes from the original 
annotations are combined forming the new ‘window’ 



class. And the remaining façade elements (e.g., ‘doors’, 
‘molding’, ‘sill’) are combined forming the new ‘façade’ 
class. The pixels labeled with the ‘background’ class are 
kept the same. The processed annotations were then left 
with 3 classes: ‘background’, ‘façade’, and ‘window’. An 
example image with its respective annotations (before and 
after processing) is showcased in Figure 1.  
Different from the training dataset, the evaluation dataset 
was created specifically to be used in this project. This 
dataset is meant to be used for validating the workability 
of the model trained during this study, thus a wide variety 
of building façade types have been extracted to form the 
evaluation dataset. To be able to help in the evaluation of 
the model, this dataset needs to contain pixel-wise 
annotations that include the 3 relevant classes (just like 
the training dataset). The gathered images included ten 
different categories of buildings from the city of 
Montreal, Canada, i.e., low-, medium- and high-rise 
residential buildings, small and large office buildings, 
commercial, institutional/public, religious, industrial, and 
mixed-use buildings. These images were then manually 
annotated with the help of LabelMe (LabelMe. The Open 
annotation tool, no date). Lastly, the actual values for 
WWR of the façade shown in the photo were calculated 
manually by analyzing the 360° view of the façade from 
GSV. 

 
Figure 1. High-level methodology being followed by this study. 

Model architecture 
The architecture selected to be used for training of the 
image segmentation model in this study was the U-Net 

architecture (Ronneberger, Olaf; Fischer, Philipp; Brox, 
2021). The U-Net architecture is built upon an 
architecture named “fully convolutional network” 
(Zhuang et al., 2019) to be able to take fewer labeled 
images for training. The network architecture includes 
two paths: encoder and decoder. The encoder works like 
a convolutional network where the input images are 
downsampled into a compact and summarized 
representation of the input images based on the features 
recognized throughout the images (feature map). This 
compact representation is then the input to the decoder. 
The decoder path includes the upsampling of the feature 
map back to its original format. The most important part 
of this model is the process of encoding the input to 
provide a compact representation that is also complete and 
meaningful. Thus, in this study, pre-trained models have 
been used as the encoder to try to optimize the 
performance of the model.  
Pre-trained models are layers of a network that have been 
previously trained with a large dataset. They can be used 
as is or they can be customized for a specific task, a 
practice known as transfer learning. The idea behind the 
use of pre-trained models is that, if they are trained with a 
large enough dataset (e.g. ImageNet (Jia Deng et al., 
2009)), this model can then be used as a generic model of 
the visual world. New models can then take advantage of 
the feature maps learned during the training of these 
models without having to start from scratch. The practice 
of using transfer learning is often favored over starting a 
model from scratch since it makes it so the model can be 
trained faster, generally provides better accuracies, and is 
an effective way to handle the challenge of training a 
model when the available dataset is not very large 
(Zhuang et al., 2021).  
There is a variety of existing pre-trained networks that can 
be customized for use in the training of an image 
segmentation model. These networks can take various 
architectures. They can differ on the depth of the network 
(i.e., the number of layers) which directly influences the 
number of features, the number of convolutional layers, 
the number of fully connected layers, the filter sizes for 
the convolutional layers, etc. Throughout this study, 32 
different pre-trained models have been tested to select the 
most appropriate model architecture to achieve the 
objective of this work. The analyzed pre-trained networks 
included variations of the following convolutional neural 
networks: VGG (Vedaldi and Zisserman, 2015), ResNet 
(He et al., 2016), Inception (Szegedy et al., 2015), 
InceptionResNet (Szegedy et al., 2017), SeResNet (Hu et 
al., 2020), ResNext (Xie et al., 2017), DenseNet (Huang 
et al., 2017), EfficientNet (Tan and Le, 2019), SeResNext 
(Xie et al., 2017; Hu et al., 2020), SeNet (Hu et al., 2020), 
and MoobileNet (Howard et al., 2017).  

Model training and evaluation 
Based on the best-performing architecture selected in the 
previous section, the semantic segmentation model was 
trained. To avoid overfitting and ensure the best possible 
accuracy of the semantic segmentation model, the training 



dataset was augmented before being fed into the model for 
training. Data augmentation is a great strategy to be 
applied to overcome the limitation of not having a large 
enough training dataset available (Laupheimer et al., 
2018) and improve the quality of the image segmentation 
model. Augmentation techniques utilized include random 
brightness contrasts, random rotations, grid distortion, 
and horizontal and vertical flips. Given the nature of the 
problem, the semantic segmentation model was trained 
with 50 epochs, SoftMax as its activation function, and 
Adam optimizer. 
The output of this model is a pixel-wise prediction of the 
three classes: background, window, and wall. The quality 
of the produced output is then measured based on the 
intersection over union (IoU) metric. IoU is the primary 
accuracy measure for image segmentation. IoU for each 
class is calculated based on their true positives (TP), false 
positives (FP), and false negatives (FN) (Equation 1). 
With this predicted output (generated annotations), a 
pixel-wise analysis is performed in order to calculate the 
WWR of the façade. To do that, the size of both, the 
windows, and the walls of each building are collected by 
counting the pixels classified as ‘window’ and ‘wall’, the 
WWR of that façade can be calculated with Equation 2.
Where pwindow and pwall are the numbers of pixels classified 
as window and the number of pixels classified as wall, 
respectively.

Results and Discussion
After going through all the steps of the above-explained 
methodology, the results are presented and discussed in 
two parts: the ‘model architecture’ and the ‘model training 
and evaluation’. The first is focusing on the performance 
of the different architectures that have been tested for 
selecting the best-performing one to be selected for the 
following steps. And then the second part is focusing on 
the performance of the final trained model as well as its 
performance when applied to GSV data.

Model architecture
A total of 32 different backbone architectures were tested 
throughout this study. These models were trained with the 
original dataset and with 50 epochs, SoftMax as its 
activation function, and Adam optimizer. The selection of 
the best-performing model was done based on both, visual 
and metric evaluation of the trained models. The 
evaluation of the predictive results of the pool of models 
started with visualization. The visual evaluation is done 
initially to ensure that the models considered are 
providing reasonable predictions. Then, the remaining 
models are further evaluated based on the IOU metric. 
After the visual evaluation step, fourteen models that 
remained and their mean IOU throughout the three classes 
are showcased in Figure 2.

Figure 2. Analysis overview of the performance of validation 
set of pre-trained model architectures with their respective 

number of trainable parameters.

To help in the selection of the best architecture, the mean 
IOU of each architecture was analyzed alongside their 
number of trainable parameters. The number of trainable 
parameters in a model is generally a reflection of the depth 
of the architecture. More parameters to be trained may 
also result in longer training times due to a greater number 
of calculations needed, but that doesn’t always mean 
better results. We can clearly see that with the VGG 
models in Figure 2: the architecture with fewer parameters 
(VGG16) achieves higher accuracy that the one with a 
higher number of parameters (VGG19). We can also see 
that with the ResNet models (ResNet18, ResNet34, 
ResNet50, ResNet101, ResNet152), it is probably due to 
the extraction of too many features which can cause 
overfitting. In order to keep the selected model within a 
reasonable number of trainable parameters as well as high 
IOU accuracy, the selected architecture to be used moving 
forward during this study is ResNext101. Throughout this 
preliminary step, ResNext101 has taken an approximate 
training time of 578 minutes (performed on a computer 
with Intel Core i7-6700 3.4 GHz CPU and 32 GB RAM, 
running a Windows 10 operating system) and achieved a 
mean IOU accuracy of 0.686. 

Model training and evaluation
After the selection of the appropriate model backbone 
architecture (ResNext101), as discussed in the previous 
section, a more robust model was trained. This step aims 
to build a model of the best possible quality. Thus, the 
dataset used for model training, even though it was the 
same as the one used in the previous step, it was five times 
larger than the previous thanks to the data augmentation 
technique applied to the dataset before training. The 
training of this model at this phase is a lot more time-
consuming due to the large number of images in the 
training set, but as expected better accuracy is also 
achieved. The retraining of the ResNext101 model could 
bring the semantic segmentation model to a training IOU 
of over 0.9 and a validation IOU of 0.85. The obtained 
IOU for window and wall classes were 0.89 and 0.96, 
respectively. In comparison to similar studies (such as
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(Dai et al., 2021) and (Zhang, Pan and Zhang, 2022)), the 
window class is maintaining a very similar to moderately 
increased accuracy, but the wall class has shown a 
moderate increase. A visual representation of the model 
prediction on a test set image can be seen in Figure 3.  

 
Figure 3. Semantic segmentation model visual result from 

image retrieved from the test set. 

Now that the final model is already trained, it is time to 
start evaluating its applicability on a different dataset, in 
this study a dataset of GSV images. The GSV dataset is 
composed of 30 images, 3 of each building type. The GSV 
dataset, different from the dataset used for training, 
contains elements apart from the façade. The initial 
evaluation of the applicability of this methodology with 
GSV images has shown promising results. The model 
when applied to GSV images has provided a mean IOU of 
0.5 and a mean square error (MSE) of 0.023 throughout 
the GSV dataset. Though it is not a very high accuracy, it 
is a very good preliminary result given that the noise that 
comes with the images was not handled during this study, 
which leads the authors to believe that this result has the 
potential to be improved provided some additional 
preprocessing of the GSV images in the future works. 
Some sample results from the GSV image analysis can be 
seen in Figure 4. 
Though the dataset analyzed was limited, some 
preliminary findings could be highlighted from this 
analysis. While comparing the different building types 
during this analysis, it was noticed that this model 
produces a greater error in the WWR calculation of 
building categories such as commercial, high-rise 
residential, and mixed-used buildings in comparison to 
industrial, small offices, religious, low-and mid-rise 
residential, and public and institutional buildings. This 
happens mainly because, in high-rise buildings, the GSV 
image is not able to capture the building in its entirety. 
Also, the reason for the higher level of error in 
commercial and mixed-use buildings is related to the 
building noise that might be seen in the images, i.e., the 
neighboring buildings that can affect the results. 
Predominantly commercial areas (where commercial and 
mix-use buildings are generally found) are built in denser 
areas, which makes it very common for buildings to be 
very close to each other and, therefore, appear in 
unwanted GSV images and impact the estimated value of 
WWR. Residential buildings can also be found in denser 
areas as well, but these often have similar WWRs, which 
resulted in a low impact on the estimated WWR.  
From these findings, it was noticed that in addition to the 
already mentioned challenges when dealing with these 
images, curtain-wall buildings are not easily recognized 

as fully glazed by the trained model. That is because the 
dataset used for training did not contain a significant 
amount of curtain wall images. Also, the dataset in general 
contains a lot of noise. For instance, vegetation (can be 
seen in the second row of Figure 4), vehicles, and adjacent 
buildings (can be seen in the first row of Figure 4), among 
other things. In addition, the images of the desired 
buildings are also found to be at an angle or not covering 
the entire building façade in one image alone. These 
differences between datasets are what make the large-
scale implementation of this methodology a challenge.

 
Figure 4. Model results when applied to GSV images (the 
building types from top to bottom are mixed-use, high-rise 

residential, low-rise residential, and small office). 

Conclusion 
This study has proposed a methodology for automatically 
extracting building information that can be used for the 
enrichment of urban-scale 3D models. The main idea is to 
provide urban models with building information that has 
great significance when it comes to the energy analysis of 
these buildings. The steps taken by this study towards this 
overarching goal include a methodology that makes use 
of semantic segmentation methods for training a model 
capable of segregating the building façade images into 
three different categories, which then allows the 
extraction of the window-to-wall ratio of façades. The 
model was trained with the help of an already existing 
dataset and used for testing on widely available GSV 
images.  
The semantic segmentation model trained throughout this 
study achieved relatively high accuracies when compared 
with other studies (training IOU of over 0.9 and validation 
IOU of 0.85). However, when using this trained model on 



images from a different dataset (in this case GSV), the 
model performance when it comes to its ability to 
segregate the images drops a bit due to the extra noise that 
the images contain. Nevertheless, it is still a promising 
performance of 0.5 IOU. From these predictions, the 
WWR was able to be calculated and has shown an MSE 
of 0.023 when compared to the actual WWR from the 
image. The noises found in the GSV dataset are what 
make the large-scale implementation of this methodology 
a challenge.    
The technique used to gather WWR values from building 
façades at an urban scale is promising and can also be 
expanded to other types of available images as well. As it 
was noticed during the analysis of results when applied to 
GSV images, the handling of large-scale data may bring 
some added challenges, such as the angles in which the 
images are taken, objects that might be blocking the view 
of the façade, the shape, and height of the building itself, 
amongst others. Thus, in future works, these need to be 
addressed in order to be able to integrate this method with 
an urban model.  
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