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Abstract

To improve sustainability, concretes are increasingly pro-
duced using recipes containing up to a dozen different raw
materials. The increasing complexity of the composition
leads to an increased sensitivity and decreased robustness
of the concrete, making a reliable quality control of the
concrete highly important. Despite that, current quality
control is mainly conducted based on analogous and em-
pirical tests. This paper presents a novel approach for
an automatic quality assessment of fresh concrete on the
construction site. Based on a camera sensor setup, de-
livering image sequences showing the concrete flow dur-
ing the discharge process of a mixing truck, we propose
the Concrete Flow Transformer, a deep learning approach
based on Vision Transformers, for the prediction of fresh
concrete properties. The performance of the proposed ap-
proach is evaluated on a challenging real-world data set,
demonstrating highly convincing results for the prediction
of both, the consistency and rheological parameters of the
fresh concrete.

Introduction

Fresh concrete can be characterised by its workability, a
term which describes the concrete’s consistency and its
rheological properties. The workability of concrete is a
highly important factor for both, the classical casting of
concrete at the construction site as well as for 3D printing.
In this context, fresh concrete inheriting unsuitable
properties can lead to serious quality and safety relevant
problems, like segregation, flow blockage, or substantial
voids inside the concrete structure; effects demanding for
a proper quality control of the fresh concrete before its
incorporation. Moreover, in order to meet sustainability
goals, concretes are nowadays increasingly produced
using recipes containing up to a dozen different raw ma-
terial components, including e.g. CO, reduced cements
or recycled aggregates. These increasingly complex
mixtures, however, lead to a pronounced sensitivity of the
concrete to fluctuations in the raw material properties,
and, therefore, to a decreased robustness of the concrete,
rendering a thorough quality control even more important
today and in the near future.

In current practice, quality control is typically conducted
on site based on normative regulated test methods
(e.g. flow table test and slump test), which, however,
rely on very simple empirical procedures, delivering
only provisional information on the concrete’s con-
sistency.  Rheometer tests on the other hand allow
deeper insights into the rheological properties of con-
crete, but are typically expensive, time consuming,
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Figure 1: High level overview on our approach. Image
sequences are recorded at the concrete discharge channel of a
mixing truck. The proposed Concrete Flow Transformer is used
to predict the consistency and the rheological properties of the
fresh concrete.

and hardly applicable to standard concrete, rendering
them unsuitable for an application in construction practice.

In order to overcome current limitations and to improve
concrete quality control and safety assurance on construc-
tion sites, we present a novel test procedure for the au-
tomatic on-site characterisation of fresh concrete during
the discharge process of a mixing vehicle (cf. Fig. 1). As
contributions of this paper, we propose a computer vision
based strategy for a digital characterisation of fresh con-
crete based on image sequences showing the concrete flow
at the mixing trucks’s discharge. Given the recorded video
frames, we propose Concrete Flow Transformer, a deep
learning approach based on Vision Transformers (ViT), for
the prediction of concrete properties like consistency and
rheological parameters. In this context, we present flow
tokenisation, a strategy for the generation of patch embed-
dings serving as input to the ViT, using priorly computed
dense optical flow information. Finally, we evaluate the
performance of our approach on a challenging real-world
data set, demonstrating highly promising results.

We hope with this paper to initiate and encourage further
future research, bridging the scientific disciplines of civil
engineering, building materials, computer vision, and data
sciences in order to bring forth developments of novel,
data-driven methods for an automatic, digital, and im-
proved quality assurance in construction and civil engi-
neering.



State of the art

Despite the increasing developments in digitisation
and automation of processes in other manufacturing
industries, the quality control of the concrete production
and construction industry is still based on conventional,
non-digital, batch-based and primarily manual methods.
Although of essential importance, the testing of concrete
properties on the construction site before casting is based
on very simple and empirical test methods as e.g. the
flow table test (EN 12350-5, 2019) for deriving the
concrete’s workability. In this test, the fresh concrete is
spread on a flow table and the diameter 6 [mm] of the
resulting slump cake is used to derive an assessment of
the concrete’s consistency class C. In addition to slump
testing, rheometer test methods have gained attraction in
testing of fresh concrete (Haist et al., 2020) by determining
the parameters of a Bingham model (Yahia et al., 2016)
which is used to describe the rheological properties
of fresh concrete by the plastic viscosity p [Pa-s] and
the yield stress 7o [Pa]. However, concrete rheometer
test are exclusively batch-based, laborious and the data
interpretation is highly challenging. As a consequence,
increasing interest has emerged in developing and
providing digital and automatic methods for quality con-
trol in the concrete production industry (Haist et al., 2022).

A first approach for fresh concrete monitoring has been
proposed in (Yang et al., 2020), where the concrete mix
proportion is determined from single images of fresh
concrete using a convolutional neural network (CNN).
However, in practice, not only the mix proportion but
rather an indication for the concrete’s workability is of
main interest. In (Coenen et al., 2022), an approach
for the panoptic segmentation of fresh concrete was
presented, which allows to derive conclusions about the
sedimentation stability of the concrete, but does not give
indications about the concrete’s workability. Ponick et al.
(2022) proposed an approach for predicting the rheology
of concrete from stereo-images and 3D reconstructions of
the concrete’s surface during the mixing procedure. How-
ever, in their method, the temporal information, namely
the concrete flow, is not considered. Yet, we believe,
that the flow behaviour of fresh concrete carries valuable
information on the concrete’s characteristics. In (Ding and
An, 2018), an approach for determining the workability
from image sequences acquired during the mixing process
using a LSTM deep learning network has been proposed.
While promising results were obtained, processing was
done on rather low resolution grey scale images only
and the approach relied on 2D transformations, ignoring
the clearly visible effects perspective distortions. In this
paper, we follow a similar idea, namely to determine the
fresh concrete’s characteristics from image sequences
observing the concrete flow in an open-channel geometry.

From a methodological point of view, the problem tack-
led in this paper is closely related to deep learning based
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video interpretation and classification. Compared to single
image interpretation, image sequences contain additional
temporal information, like e.g. object motion, which is
expected to carry valuable and relevant cues for solving
the respective problem. Many approaches apply a CNN
to each individual video frame in order to leverage the
strength of single-image CNNs and aggregate the extracted
information across time in order to capture temporal re-
lations. Often, a 2D-CNN backbone is applied to extract
frame-wise feature representations and temporal relation-
ships are modelled e.g. as conditional random fields (CRF)
(Sigurdsson et al., 2017), via recurrent modules like long-
short term memory cells (Hochreiter and Schmidhuber,
1997; Donahue et al., 2015), or via the self-attention mech-
anism within transformer-based architectures (Zhou et al.,
2018; Wang et al., 2021).

By expanding the 2D filters of a CNN to three dimensions,
an approach called 3D CNN (Ji et al., 2012), and apply-
ing the 3D filters along the temporal domain of an image
sequence in addition to the spatial image domain, single-
frame CNNs can be generalised to an application to video
data. Incontrast to 2D CNNs, 3D filters conceptually allow
CNNs to model motion because they act as local spatio-
temporal filters, thus generating spatio-temporal feature
maps. In this way, 3D CNNs are often applied to sequen-
tial image data in the literature in order to solve video
interpretation problems, cf. for instance (Ji et al., 2012;
Tran et al., 2015; Camgoz et al., 2016).

Another strategy that can be found in the literature for
video interpretation is to make use of two-stream convolu-
tional neural networks (Simonyan and Zisserman, 2014).
In this case, the network architecture is based on two sep-
arate recognition streams, a spatial and a temporal stream,
which are then combined by fusion at a later stage of
the network. While the spatial stream performs video in-
terpretation from still video frames, the temporal stream
uses pre-computed dense optical flow maps as input and
is trained to generate feature embeddings from the explicit
motion information (Wang et al., 2018; Feichtenhofer et al.,
2016). In this work, we also make use of explicit optical
flow computations, i.e. of explicit per-pixel motion esti-
mates. In addition to the valuable information the optical
flow carries, it is also invariant to e.g. texture, colour, and
illumination, making it less prone to overfitting effects.

Methodology

The method proposed in this paper is built on the premise
that fresh concretes with different rheological properties
exhibit a different and distinguishable flow behaviour. This
hypothesis is founded by finite-element formulations of
non-Newtonian fluid flow, on the basis of which the flow
behaviour of Bingham fluid’s (such as concrete) can be de-
scribed as a function of its rheological parameters, namely
the plastic viscosity p and yield stress 7o (Whipple, 1997).
This paper targets the inverse problem, namely the objec-
tive of predicting the rheological properties (7y and () and
the consistency of fresh concrete from observations of its



flow behaviour. More specifically, we make use of image
sequences showing the concrete flow during the discharge
process of a mixing vehicle as input data to our approach.
The image sequences are acquired using a rigid camera
setup installed at the outlet of the mixing vehicle, where
we assume the images to be approximately acquired in
nadir view to the discharge channel, and the image coordi-
nate axes (x and y) to be approximately axis-parallel to the
longitudinal and transversal axes of the channel, resulting
in the property that the major constituent of the flow move-
ment is observed along one of the respective axes (here:
the x-axis).

Formal problem definition

Given an image sequence /(t) containing the images /()
acquired according to the setup described above and show-
ing the discharge procedure of fresh concrete at discrete
time steps #; € t with t = [fg, 7,,], the goal is to automatically
derive the target parameters describing the rheology and
consistency of the fresh concrete. For notation, we as-
sociate each concrete with its state vector s = (u, 79, 8,C)
comprising the rheology (Bingham yield stress 7, [Pa] and
plastic viscosity u [Pa-s]) and the consistency (slump flow
diameter 6 [mm] and consistency class C). In a first step,
we compute the dense optical flow O(z;) for each image
frame ¢;, describing the pixelwise movement between the
respective image and its subsequent frame. The dense
flow maps are used to generate a sequence of flow tokens
z(t) which serves as input to a multi-task Vision Trans-
former (ViT), that maps the observed concrete flow of the
time span t, represented by the flow token sequence, to the
corresponding fresh concrete properties s. An overview
on the procedure is shown in Fig. 3 and the approach is
described in more detail in the following sections.

Dense optical flow

Dense optical flow (cf. Fig. 2) denotes the problem of per-
pixel motion estimation between two consecutive frames
t; and t;y; of an image sequence, and, thus, implies the
computation of a translation vector A = (Ax,Ay) for each
pixel, describing the pixel’s displacement between the two
frames in the x and y coordinate direction, respectively.

Image Z(t;)

Dense displacement field O, (t;)

Z(t;) + O.(t:)

Figure 2: Visualisation of an example of the dense optical flow
computation. Left: Original image. Centre: The dense
displacement field in the x-coordinate direction (colour coding
corresponds to the normalised magnitude of the pixelwise
displacement A). Right: The RGB image overlayed with the
dense displacement field.

In this paper, we make use of the approach by Farnebiack
(2003) in order to derive the two-dimensional dense opti-
cal flow field O(z;) = (Ox(ti), O,(t;)) for each image I(z;),
whereas O,(f;) and O, (t;) contain the displacement of each
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pixel in the x and y coordinate direction, respectively. Re-
garding the application addressed in this paper, where the
open-channel concrete flow is observed, the dense optical
flow map implicitly encodes the velocity ¥ of the con-
crete flow at each pixel position in [px/ (fi+1 —#;)], which
corresponds to the magnitude of the translation vector A.
Furthermore, the flow direction of the concrete, namely
the angle a of the translation vector A, is also implicitly
contained. Fig. 2 shows an example of the dense optical
flow map O, for the concrete flow of a specific epoch ;.

Revisiting Vision Transformers (ViT)

The original Vision Transformer (ViT) (Dosovitskiy et al.,
2021) takes a single image as input and extracts n non-
overlapping image patches x; € R which are trans-
formed into 1D tokens z; € R? of length d using a linear
projection E. The sequence of tokens z° € RODxd with

()]

then serves as input to a transformer encoder architec-
ture (Vaswani et al.,, 2017). As is shown in Eq. 1, a
learnable classification token z.s is prepended to the se-
quence, whose representation at the final layer of the en-
coder is used as input embedding for the output layer.
Furthermore, a learnable position embedding p € R"*?
is added to the tokens (cf. Eq. 1) in order to retain po-
sitional information throughout the permutation invariant
self-attention operations of the encoder. The tokens are
passed through the transformer encoder which consists of
astack of / = 1...L residual layers, each comprising Multi-
Head Self-Attention (MSA) (Vaswani et al., 2017), layer
normalisation (LN), and Multi-Layer Perceptron (MLP)
blocks, producing the intermediate outputs z' with
y' = MSA(LN(z 1)) 42! 2)
z' = MLP(LN(y))) +y'. (3)
Here, The MLP blocks consist of two linear projections
separated by a GELU non-linearity. MSA is based on
the self-attention (SA) mechanism, whose goal is to cap-
ture the interaction and dependencies amongst all entities
(tokens). To this end, three learnable weight matrices
WQ e RI%dq WK ¢ RI*d and WY € R*4 are defined
(where d; = d,) in order to compute Queries Q = AUCR
Keys K = zWX, and Values V = zW". The self-attention
layer output results to

2= [za1ss Ez1,Ez2, ..., Ez, ] +p

SA = softmax (Q 4)

kT
V.
)
MSA extends the self-attention mechanism by concatenat-
ing the outputs of / separate SA heads and projecting them
to the final embedding using another learnable weight ma-
trix WY, such that

MSA = Concat(SA|,SA,,...,SA,) - WM. 5)

Finally, a MLP head is used on top of the transformer
encoder to produce the prediction output based on the
final encoded class token embedding zéls.



Concrete Flow Transformer

In this section, we describe the Concrete Flow Trans-
former, a ViT-based approach for the prediction of fresh
concrete properties from concrete flow observations. An
overview on the workflow of the proposed approach is
shown in Fig. 3. In contrast to the description in the
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Figure 3: Overview on the procedure of the proposed Concrete
Flow Transformer. Given an image sequence, the dense optical
flow is computed for each frame. For each flow map, flow tokens
are extracted, linearly projected, enriched by position and class
embeddings, and fed to a multi-task transformer encoder. Two
network heads predict the target parameters describing the
consistency and rheology of the fresh concrete.

section above, the approach presented in this paper does
not operate on a single image, but on a sequence of images
showing the open channel flow of fresh concrete, instead.
However, the transformer encoder (Vaswani et al., 2017),
which forms the basis of ViT (Dosovitskiy et al., 2021),
is a flexible architecture that can operate on any sequence
of input tokens z € ROD*d_In this paper, we therefore
propose flow tokenisation, a strategy for tokenising the
input image sequences containing the flow information of
the concrete.

Flow tokenisation: As input, we make use of the dense
optical flow maps O(t) computed from the image sequence
I(t) for each epoch t; = 1...t,, carrying the motion infor-
mation representing the concrete flow behaviour over time.
The specific setting treated in this work in form of the im-
age sequence acquired from the open channel concrete
flow leads to the occurrence of large amounts of redun-
dant information in the data. This is caused by the fact,
that the concrete’s movement mainly takes place along one
direction with a motion behaviour (velocity) that is approx-
imately constant along the direction of movement for an
individual time step #; (cf. Fig. 2). We therefore define
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a location xg on the x-coordinate axis of the optical flow
map and extract a vertical profile slice z(#;) € R**! and
zy(t;) € R7*! with a width of 1 [px] at this location from
each of both channels of the dense flow field O,(#;) and
O,(t;). We linearly project the two-channel profile slices
in order to receive a flow token z; € R? with d = 2y for
each epoch. The tokens of all epochs #; € t with i = 0...n
are arranged to the sequence z(t) € R("+1)*¢ according to
Eq. 1 and serve as input to the transformer encoder. A
schematic overview of this procedure is shown in Fig. 3.
We argue that by slicing the flow fields in order to gener-
ate the flow tokens, we discard the redundant information
contained in the flow data while conserving the relevant
motion information. As a result from this, the required
computational complexity is reduced while, at the same
time, the learning complexity of the transformer built on
top of the flow tokens is simplified, since in this way, learn-
ing to discern relevant data from redundant information
becomes less demanding. Particularly, the proposed way
of flow tokenisation preserves the following features. Each
token in z(t) carries the information of the concrete’s flow
velocity and flow direction at a specific point in time. As
established in (Whipple, 1997), the velocity is a function
of a material’s rheological properties and, consequently,
constitutes one of the most significant cues for the charac-
terisation of the fresh concrete.

Furthermore, the token sequence contains the flow data
over the entire time span t, consequently giving the trans-
former access to information on changes in the velocity
profiles over time. These changes correspond to acceler-
ation and deceleration behaviour of the material and can
be caused by varying transportation rates of the mixing
vehicle. We argue, that velocity changes in the concrete
flow as reaction to variations in the transportation rates
carry additional valuable information encoding rheologi-
cal properties of the material.

At last, each token preserves the information of the
flow behaviour along the transversal (y) direction of the
open channel. Consequently, each token encodes the
spatial motion information such as e.g. the current width
of the concrete flow stream, which implicitly contains
information about the volumetric transportation rate of
the concrete.

Prediction: As outlined before, we aim at learning a ViT
which predicts the fresh concrete properties represented
by the state vector s from open channel concrete flow ob-
servations over a time interval t represented by the flow
tokens z(t). Towards this goal, we employ a transformer
encoder with a number of L transformer blocks (cf. de-
scription above), which takes the sequence of n flow tokens
as input and produces a sequence of feature embeddings
2k =[Zh, 2k, 2, .., ZL] as output of the final layer ac-
cording to Eq. 3. As is depicted in Fig. 3, we employ two
MLP heads, a regression head and a classification head,
on top of the transformer encoder which predict the target

parameters from the class token embedding zCLlS .



The regression head is used to predict a number of nReg
real-valued parameters. In this work, nreg = 3, where
each parameter is related to the concrete’s rheology and
consistency, namely the slump flow diameter &, the plastic
viscosity , and the yield stress 7p. In this paper, we
consider these parameters to be normalised in the range
[0; 1] using the minimum and maximum valid values. In
that case, we make use of an MLP head with three output
variables, one for each parameter, and by using the sigmoid
function as activation.

The classification head directly delivers a prediction of
the concrete’s consistency class C. To this end, the final
output is produced by an MLP using a softmax activation
function.  More specifically, the classification head
produces nciags OUtput variables p with ):7:1 pj = 1 where
each variable p; represents the predicted probability for
each respective consistency class C;. The final class being
considered as the predicted class for the input is defined
based on the maximum a posteriori criteria, i.e. is chosen
according to the class receiving the maximum probability
by the ViT.

Training: Training in this work is performed in a super-
vised manner. Therefore, the training procedure requires
training samples in the form of the flow token sequences in-
cluding corresponding reference values for the concrete’s
properties. Starting from a random initialisation of the ViT
parameters, training is done by minimising a loss func-
tion .Z. The optimisation is performed iteratively using
stochastic mini-batch gradient descent (SGD) (Goodfel-
low et al., 2016), where in this work the Adam optimiser
(Kingma and Ba, 2015) is used for weight optimisation.
The loss function used in this paper is composed of the
regression loss %, computed for the output of the regres-
sion head and the classification loss .2 computed for the
output of the classification head, such that . = %z + Z¢.
Both losses quantify the difference between the concrete
properties predicted by the network and the reference prop-
erties. In case of the regression head, the mean squared
error (MSE) is used to calculate the loss while the cate-
gorical cross-entropy (CE) is used as loss function for the
classification head.

Experimental setup

Test data: The empirical evaluation of the proposed
method is conducted on a self-acquired data set of open-
channel concrete flow recorded during the discharge pro-
cess of a mixing vehicle. For data acquisition a setup as
shown in Fig. 4, consisting of a semi-circular open chan-
nel and a camera rig in approximate nadir view, was used.
Image acquisition was conducted using a frame rate of
60 [fps]. For the experiments in this paper, we down-scaled
the images to a resolution of 380675 [px], corresponding
to an image scale of approximately 1 [px/mm]. In total, the
acquired data set consists of recordings of the discharge of
a variety of 18 different concretes with strongly varying
compositions and properties.
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Figure 4: The proposed acquisition setup for the open-channel
concrete flow at the discharge of a mixing vehicle.

For this paper, we created sequence snippets, each of
which has a length of 60 [s]=3600 frames, extracted
from the original sequence of the 18 concretes between
points in time where a representative concrete flow
was present and observed during the discharge. In
order to obtain groundtruth values for the consistency
(slump flow 6 and consistency class C) as well as for
the rheological parameters (plastic viscosity u and yield
stress Tp), reference measurements were conducted based
on samples taken from each of the 18 concretes. In
this context, a portable rheometer for fresh concrete, an
eBT-V rheometer (Schleibinger), was used to generate
rotational-controlled rheological measurements from
which the rheological parameters are derived using the
Bingham model according to (Haist et al., 2020). In order
to obtain reference values for the consistency, the slump
flow was determined according to EN 206-1 (2001)/DIN
1045-2 (2008).

Training: For the experiments in this work, we make use
of the ViT-Base architecture as defined in (Dosovitskiy
et al., 2021) as encoder backbone, consisting of L = 12
layers and & = 12 MSA heads. Data-wise, we defined
both, a spatially and temporally disjunct separation of
train, test, and validation splits from the given sequence
snippets. For a spatial separation of the data, we defined
five equidistant slice locations xg 1 to x5 5 over the x-axis
range of the images, from which the flow tokens are
extracted. Three of the five splits are used for training and
one is used for validation and testing, respectively. For
a temporal separation, we divided the sequence snippets
into four equally sized parts, two of them are used for
training, and two for validation and testing. Provided
the data splits as just described, training is done based
on a randomly selected subset of flow tokens extracted
from the data. In this paper, we choose n = 256 for
the number of tokens in each sequence presented to the
transformer, meaning that only the flow information of



256/60 = 4[sec] (supposing a frame rate of 60 fps) are fed
as training information to the network for each sample.
Training is done using the Adam optimiser (Kingma and
Ba, 2015), a mini-batch size of 32 and an initial learning
rate if 10~*. To improve training, the learning rate is
decreased by a factor of 10~! after 50 epochs with no
improvement in the training loss.

Evaluation strategy: For the empirical evaluation of the
proposed approach, we apply a sliding window strategy
using the same number of flow tokens as used for train-
ing. More specifically, for each test split of the different
concrete snippets of length t, we extract a token sequence
of size n = 256 covering the epochs #; to #;;256, and in-
crementally increase i by 1. Each token sequence is pro-
cessed individually by the ViT, resulting in a number of
t — 256 predictions for each of the concrete’s state param-
eters s = (U, 7o, 8,C). In order to assess the performance
of the classification head, namely the prediction of the
consistency class C, we determine the confusion matrix of
the predictions. Furthermore, we compute values for the
overall accuracy (OA) of the predictions as well as class-
wise values for recall, precision, and Fl-score. For the
evaluation of the regression branch, i.e. the predictions for
the slump flow & as well as for the rheological parameters
Tp and U, the mean absolute error (MAE) and root mean
squared error (RMSE) of the predictions are reported. In
addition to the mean errors, we also compute the standard
deviation of the absolute errors oag to achieve further
insights into the error distribution of the predictions.

Evaluation

This chapter provides the quantitative evaluation of the
proposed Concrete Flow Transformer for the determina-
tion of fresh concrete properties based on open-channel
flow observations. We report the results obtained by the
classification head and the regression head separately.

Classification head

Fig. 5 shows the confusion matrix containing the results
of the classification head predicting the consistency class
of the concrete from the flow observations.

As is visible from the matrix, the classification leads to
an overall accuracy (OA) of 77.4%, i.e. that many of the
sliding window token sequences are associated the correct
class by the Concrete Flow Transformer. The confusions
show a clear pattern in the distribution of erroneous clas-
sifications, namely that the vast majority of errors appear
next to the main diagonal, i.e. at neighbouring classes. A
potential explanation for this observation is the fact that the
consistency classes are obtained by a discretisation of the
slump flow into individual consistency ranges, introducing
class boundaries to the parameter range of the continuous
variable 8. As several of concretes consistency classes lie
very close to the class boundaries, potentially leading to
an ambiguous setting of hard-to-distinguish concrete sam-
ples, partly causing the confusions that are observable in

500

soft
420-480
Co
1.8%

Consistency|
[mm]
Class

Co

C,

G

G

C,
Precision
F1

OA

very soft fluid  very fluid I very fluid II
480-550 550-620  620-700 >700
C, C, C; Cy
0.2% 2.5%
8.7% 3.2%
a2v  |IEEE
5.5%
1.5%
72.0%
78.5%

Recall
39.6%
73.3%
86.2%
63.3%
82.7%

0.2% 0.8%
11.5%
3.2%
74.0%
68.2%

1.2%
22.6%
94.8%
88.3%

88.6%
54.8%
77.4%)]

66.6%
69.8%

Figure 5: Confusion matrix for the classification head including
the results for recall, precision, F1-score and overall accuracy.
The values are to be read as percentage of entities belonging to
reference class (rows) and being classified as the predicted class
(columns). The colour coding denotes low values (light green)
and high values (dark green). Empty entries correspond to
values of 0.0%.

Fig. 5. While the classwise F1-scores range from 68.2%
to 88.3% for four of the five classes, the class Cp only
achieves a F1-score of 54.8%. A reason for this can be the
under-representation of this class in the data set leading to
class-imbalance effects for the classification problem.

Regression head

The regression head predicts the values for slump flow
0, the yield stress Ty, as well as the viscosity p. The
quantitative results of the regression head predictions are
shown in Tab. 1 The table contains the mean absolute error
(MAE) of the target parameters, the standard deviation of
the mean error g and the RMSE.

Table 1: Quantitative results obtained by the regression head.

The MAE, the standard deviations of the absolute errors, as well
as the RMSE are shown for the individual target parameters.

Parameter MAE OAE RMSE
6 [mm] 233 34.5 41.6
Ty [Pa] 11.9 12.9 17.5
u [Pa-s] 1.9 2.2 2.9

As is visible from the table, we achieve highly promis-
ing results with mean absolute errors of only 23.3 [mm)],
11.9 [Pa], and 1.9 [Pa-s] for the respective target param-
eters, namely the slump flow diameter, yield stress, and
plastic viscosity. As can be deducted from the relatively
large standard deviations of the MAE, the errors exhibit a
relatively broad distribution. In order to get deeper insights
into the distribution of the predictions for the individual
concrete samples, Fig. 6 shows the average predictions
together with the corresponding standard deviation ¢ for
each of the target parameters.

As is visible from the graphs of all three parameters, most
of the mean predictions are very close to the reference di-
agonal, indicating that the prediction performance can be
improved by averaging multiple predictions over time. An
exception is the concrete sample with a plastic viscosity
and yield stress at the maximum boundaries, and a slump
flow at the minimum boundary of the value range, respec-
tively. Here the distinctly largest difference between the
mean prediction and the reference values and the largest
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Figure 6: Average predictions and the corresponding standard
deviations o of the target parameters 8, Ty, and [ for each
individual concrete sample contained in the test set.

standard deviation of the predictions are observable. We
believe that this behaviour is caused by what is called
the long-tail problem (Wang et al., 2017), which refers
to the problem of an imbalanced statistical distribution of
the examples in the training data where only little data is
available for values in the tail of the distribution. This re-
sults in problems of these approaches w.r.t. their ability to
generalise to barely or never seen examples or situations.
This issue is currently being addressed by additional data
acquisition series.

Conclusion

We presented the Concrete Flow Transformer, a novel
method based on Vision Transformers for an automatic
characterisation of fresh concrete from image sequences
observing the open-channel concrete flow during the dis-
charge process of a mixing vehicle. In this context, we
proposed Flow tokenisation as efficient representation of
patches serving as input to a transformer architecture. We
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showed that this representation encodes and preserves all
information relevant for the derivation of the fresh con-
crete properties while drastically reducing the amount of
(redundant) data. We demonstrated highly promising re-
sults by applying and evaluating the proposed method to
a challenging real-world data set. In the future, we aim
at building on research from the fields of fluid mechanics
and flow modelling in order to incorporate knowledge from
these fields to the problem of fresh concrete characterisa-
tion. In particular, we strive at incorporating sophisticated
flow models as prior knowledge to our deep learning based
approach, a strategy termed (physics) informed machine
learning (von Rueden et al., 2021). We believe in this
way to further improve the approach and to enhance the
performance of the concrete characterisation.
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