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Abstract

To improve sustainability, concretes are increasingly pro-

duced using recipes containing up to a dozen different raw

materials. The increasing complexity of the composition

leads to an increased sensitivity and decreased robustness

of the concrete, making a reliable quality control of the

concrete highly important. Despite that, current quality

control is mainly conducted based on analogous and em-

pirical tests. This paper presents a novel approach for

an automatic quality assessment of fresh concrete on the

construction site. Based on a camera sensor setup, de-

livering image sequences showing the concrete flow dur-

ing the discharge process of a mixing truck, we propose

the Concrete Flow Transformer, a deep learning approach

based on Vision Transformers, for the prediction of fresh

concrete properties. The performance of the proposed ap-

proach is evaluated on a challenging real-world data set,

demonstrating highly convincing results for the prediction

of both, the consistency and rheological parameters of the

fresh concrete.

Introduction

Fresh concrete can be characterised by its workability, a

term which describes the concrete’s consistency and its

rheological properties. The workability of concrete is a

highly important factor for both, the classical casting of

concrete at the construction site as well as for 3D printing.

In this context, fresh concrete inheriting unsuitable

properties can lead to serious quality and safety relevant

problems, like segregation, flow blockage, or substantial

voids inside the concrete structure; effects demanding for

a proper quality control of the fresh concrete before its

incorporation. Moreover, in order to meet sustainability

goals, concretes are nowadays increasingly produced

using recipes containing up to a dozen different raw ma-

terial components, including e.g. CO2 reduced cements

or recycled aggregates. These increasingly complex

mixtures, however, lead to a pronounced sensitivity of the

concrete to fluctuations in the raw material properties,

and, therefore, to a decreased robustness of the concrete,

rendering a thorough quality control even more important

today and in the near future.

In current practice, quality control is typically conducted

on site based on normative regulated test methods

(e.g. flow table test and slump test), which, however,

rely on very simple empirical procedures, delivering

only provisional information on the concrete’s con-

sistency. Rheometer tests on the other hand allow

deeper insights into the rheological properties of con-

crete, but are typically expensive, time consuming,

Figure 1: High level overview on our approach. Image
sequences are recorded at the concrete discharge channel of a

mixing truck. The proposed Concrete Flow Transformer is used
to predict the consistency and the rheological properties of the

fresh concrete.

and hardly applicable to standard concrete, rendering

them unsuitable for an application in construction practice.

In order to overcome current limitations and to improve

concrete quality control and safety assurance on construc-

tion sites, we present a novel test procedure for the au-

tomatic on-site characterisation of fresh concrete during

the discharge process of a mixing vehicle (cf. Fig. 1). As

contributions of this paper, we propose a computer vision

based strategy for a digital characterisation of fresh con-

crete based on image sequences showing the concrete flow

at the mixing trucks’s discharge. Given the recorded video

frames, we propose Concrete Flow Transformer, a deep

learning approach based on Vision Transformers (ViT), for

the prediction of concrete properties like consistency and

rheological parameters. In this context, we present flow

tokenisation, a strategy for the generation of patch embed-

dings serving as input to the ViT, using priorly computed

dense optical flow information. Finally, we evaluate the

performance of our approach on a challenging real-world

data set, demonstrating highly promising results.

We hope with this paper to initiate and encourage further

future research, bridging the scientific disciplines of civil

engineering, building materials, computer vision, and data

sciences in order to bring forth developments of novel,

data-driven methods for an automatic, digital, and im-

proved quality assurance in construction and civil engi-

neering.



State of the art

Despite the increasing developments in digitisation

and automation of processes in other manufacturing

industries, the quality control of the concrete production

and construction industry is still based on conventional,

non-digital, batch-based and primarily manual methods.

Although of essential importance, the testing of concrete

properties on the construction site before casting is based

on very simple and empirical test methods as e.g. the

flow table test (EN 12350-5, 2019) for deriving the

concrete’s workability. In this test, the fresh concrete is

spread on a flow table and the diameter δ [mm] of the

resulting slump cake is used to derive an assessment of

the concrete’s consistency class C. In addition to slump

testing, rheometer test methods have gained attraction in

testing of fresh concrete (Haist et al., 2020) by determining

the parameters of a Bingham model (Yahia et al., 2016)

which is used to describe the rheological properties

of fresh concrete by the plastic viscosity μ [Pa·s] and

the yield stress τ0 [Pa]. However, concrete rheometer

test are exclusively batch-based, laborious and the data

interpretation is highly challenging. As a consequence,

increasing interest has emerged in developing and

providing digital and automatic methods for quality con-

trol in the concrete production industry (Haist et al., 2022).

A first approach for fresh concrete monitoring has been

proposed in (Yang et al., 2020), where the concrete mix

proportion is determined from single images of fresh

concrete using a convolutional neural network (CNN).

However, in practice, not only the mix proportion but

rather an indication for the concrete’s workability is of

main interest. In (Coenen et al., 2022), an approach

for the panoptic segmentation of fresh concrete was

presented, which allows to derive conclusions about the

sedimentation stability of the concrete, but does not give

indications about the concrete’s workability. Ponick et al.

(2022) proposed an approach for predicting the rheology

of concrete from stereo-images and 3D reconstructions of

the concrete’s surface during the mixing procedure. How-

ever, in their method, the temporal information, namely

the concrete flow, is not considered. Yet, we believe,

that the flow behaviour of fresh concrete carries valuable

information on the concrete’s characteristics. In (Ding and

An, 2018), an approach for determining the workability

from image sequences acquired during the mixing process

using a LSTM deep learning network has been proposed.

While promising results were obtained, processing was

done on rather low resolution grey scale images only

and the approach relied on 2D transformations, ignoring

the clearly visible effects perspective distortions. In this

paper, we follow a similar idea, namely to determine the

fresh concrete’s characteristics from image sequences

observing the concrete flow in an open-channel geometry.

From a methodological point of view, the problem tack-

led in this paper is closely related to deep learning based

video interpretation and classification. Compared to single

image interpretation, image sequences contain additional

temporal information, like e.g. object motion, which is

expected to carry valuable and relevant cues for solving

the respective problem. Many approaches apply a CNN

to each individual video frame in order to leverage the

strength of single-image CNNs and aggregate the extracted

information across time in order to capture temporal re-

lations. Often, a 2D-CNN backbone is applied to extract

frame-wise feature representations and temporal relation-

ships are modelled e.g. as conditional random fields (CRF)

(Sigurdsson et al., 2017), via recurrent modules like long-

short term memory cells (Hochreiter and Schmidhuber,

1997; Donahue et al., 2015), or via the self-attention mech-

anism within transformer-based architectures (Zhou et al.,

2018; Wang et al., 2021).

By expanding the 2D filters of a CNN to three dimensions,

an approach called 3D CNN (Ji et al., 2012), and apply-

ing the 3D filters along the temporal domain of an image

sequence in addition to the spatial image domain, single-

frame CNNs can be generalised to an application to video

data. In contrast to 2D CNNs, 3D filters conceptually allow

CNNs to model motion because they act as local spatio-

temporal filters, thus generating spatio-temporal feature

maps. In this way, 3D CNNs are often applied to sequen-

tial image data in the literature in order to solve video

interpretation problems, cf. for instance (Ji et al., 2012;

Tran et al., 2015; Camgoz et al., 2016).

Another strategy that can be found in the literature for

video interpretation is to make use of two-stream convolu-

tional neural networks (Simonyan and Zisserman, 2014).

In this case, the network architecture is based on two sep-

arate recognition streams, a spatial and a temporal stream,

which are then combined by fusion at a later stage of

the network. While the spatial stream performs video in-

terpretation from still video frames, the temporal stream

uses pre-computed dense optical flow maps as input and

is trained to generate feature embeddings from the explicit

motion information (Wang et al., 2018; Feichtenhofer et al.,

2016). In this work, we also make use of explicit optical

flow computations, i.e. of explicit per-pixel motion esti-

mates. In addition to the valuable information the optical

flow carries, it is also invariant to e.g. texture, colour, and

illumination, making it less prone to overfitting effects.

Methodology

The method proposed in this paper is built on the premise

that fresh concretes with different rheological properties

exhibit a different and distinguishable flow behaviour. This

hypothesis is founded by finite-element formulations of

non-Newtonian fluid flow, on the basis of which the flow

behaviour of Bingham fluid’s (such as concrete) can be de-

scribed as a function of its rheological parameters, namely

the plastic viscosity μ and yield stress τ0 (Whipple, 1997).

This paper targets the inverse problem, namely the objec-

tive of predicting the rheological properties (τ0 and μ) and

the consistency of fresh concrete from observations of its



flow behaviour. More specifically, we make use of image

sequences showing the concrete flow during the discharge

process of a mixing vehicle as input data to our approach.

The image sequences are acquired using a rigid camera

setup installed at the outlet of the mixing vehicle, where

we assume the images to be approximately acquired in

nadir view to the discharge channel, and the image coordi-

nate axes (x and y) to be approximately axis-parallel to the

longitudinal and transversal axes of the channel, resulting

in the property that the major constituent of the flow move-

ment is observed along one of the respective axes (here:

the x-axis).

Formal problem definition

Given an image sequence I(t) containing the images I(ti)
acquired according to the setup described above and show-

ing the discharge procedure of fresh concrete at discrete

time steps ti ∈ t with t = [t0, tn], the goal is to automatically

derive the target parameters describing the rheology and

consistency of the fresh concrete. For notation, we as-

sociate each concrete with its state vector s = (μ,τ0,δ ,C)
comprising the rheology (Bingham yield stress τ0 [Pa] and

plastic viscosity μ [Pa·s]) and the consistency (slump flow

diameter δ [mm] and consistency class C). In a first step,

we compute the dense optical flow O(ti) for each image

frame ti, describing the pixelwise movement between the

respective image and its subsequent frame. The dense

flow maps are used to generate a sequence of flow tokens

z(t) which serves as input to a multi-task Vision Trans-

former (ViT), that maps the observed concrete flow of the

time span t, represented by the flow token sequence, to the

corresponding fresh concrete properties s. An overview

on the procedure is shown in Fig. 3 and the approach is

described in more detail in the following sections.

Dense optical flow

Dense optical flow (cf. Fig. 2) denotes the problem of per-

pixel motion estimation between two consecutive frames

ti and ti+1 of an image sequence, and, thus, implies the

computation of a translation vector Δ = (Δx,Δy) for each

pixel, describing the pixel’s displacement between the two

frames in the x and y coordinate direction, respectively.

Figure 2: Visualisation of an example of the dense optical flow
computation. Left: Original image. Centre: The dense

displacement field in the x-coordinate direction (colour coding
corresponds to the normalised magnitude of the pixelwise

displacement Δx). Right: The RGB image overlayed with the
dense displacement field.

In this paper, we make use of the approach by Farnebäck

(2003) in order to derive the two-dimensional dense opti-

cal flow field O(ti) = (Ox(ti), Oy(ti)) for each image I(ti),
whereas Ox(ti) and Oy(ti) contain the displacement of each

pixel in the x and y coordinate direction, respectively. Re-

garding the application addressed in this paper, where the

open-channel concrete flow is observed, the dense optical

flow map implicitly encodes the velocity ϑ of the con-

crete flow at each pixel position in [px/(ti+1− ti)], which

corresponds to the magnitude of the translation vector Δ.

Furthermore, the flow direction of the concrete, namely

the angle α of the translation vector Δ, is also implicitly

contained. Fig. 2 shows an example of the dense optical

flow map Ox for the concrete flow of a specific epoch ti.

Revisiting Vision Transformers (ViT)

The original Vision Transformer (ViT) (Dosovitskiy et al.,

2021) takes a single image as input and extracts n non-

overlapping image patches xi ∈ R
h×w which are trans-

formed into 1D tokens zi ∈ R
d of length d using a linear

projection E. The sequence of tokens z0
∈ R

(n+1)×d with

z0 = [zcls,Ez1,Ez2, ...,Ezn]+p (1)

then serves as input to a transformer encoder architec-

ture (Vaswani et al., 2017). As is shown in Eq. 1, a

learnable classification token zcls is prepended to the se-

quence, whose representation at the final layer of the en-

coder is used as input embedding for the output layer.

Furthermore, a learnable position embedding p ∈ R
n×d

is added to the tokens (cf. Eq. 1) in order to retain po-

sitional information throughout the permutation invariant

self-attention operations of the encoder. The tokens are

passed through the transformer encoder which consists of

a stack of l = 1...L residual layers, each comprising Multi-

Head Self-Attention (MSA) (Vaswani et al., 2017), layer

normalisation (LN), and Multi-Layer Perceptron (MLP)

blocks, producing the intermediate outputs zl with

yl = MSA(LN(zl−1))+ zl−1 (2)

zl = MLP(LN(yl))+yl . (3)

Here, The MLP blocks consist of two linear projections

separated by a GELU non-linearity. MSA is based on

the self-attention (SA) mechanism, whose goal is to cap-

ture the interaction and dependencies amongst all entities

(tokens). To this end, three learnable weight matrices

W Q
∈ R

d×dq , W K
∈ R

d×dk , and WV
∈ R

d×dv are defined

(where dq = dv) in order to compute Queries Q = zW Q,

Keys K = zW K , and Values V = zWV . The self-attention

layer output results to

SA = softmax

(
Q ·KT√

dq

)
·V. (4)

MSA extends the self-attention mechanism by concatenat-

ing the outputs of h separate SA heads and projecting them

to the final embedding using another learnable weight ma-

trix W M , such that

MSA = Concat(SA1,SA2, ...,SAh) ·W
M. (5)

Finally, a MLP head is used on top of the transformer

encoder to produce the prediction output based on the

final encoded class token embedding zL
cls.



Concrete Flow Transformer

In this section, we describe the Concrete Flow Trans-

former, a ViT-based approach for the prediction of fresh

concrete properties from concrete flow observations. An

overview on the workflow of the proposed approach is

shown in Fig. 3. In contrast to the description in the

Figure 3: Overview on the procedure of the proposed Concrete
Flow Transformer. Given an image sequence, the dense optical
flow is computed for each frame. For each flow map, flow tokens
are extracted, linearly projected, enriched by position and class
embeddings, and fed to a multi-task transformer encoder. Two

network heads predict the target parameters describing the
consistency and rheology of the fresh concrete.

section above, the approach presented in this paper does

not operate on a single image, but on a sequence of images

showing the open channel flow of fresh concrete, instead.

However, the transformer encoder (Vaswani et al., 2017),

which forms the basis of ViT (Dosovitskiy et al., 2021),

is a flexible architecture that can operate on any sequence

of input tokens z ∈ R
(n+1)×d . In this paper, we therefore

propose flow tokenisation, a strategy for tokenising the

input image sequences containing the flow information of

the concrete.

Flow tokenisation: As input, we make use of the dense

optical flow maps O(t) computed from the image sequence

I(t) for each epoch ti = t0...tn, carrying the motion infor-

mation representing the concrete flow behaviour over time.

The specific setting treated in this work in form of the im-

age sequence acquired from the open channel concrete

flow leads to the occurrence of large amounts of redun-

dant information in the data. This is caused by the fact,

that the concrete’s movement mainly takes place along one

direction with a motion behaviour (velocity) that is approx-

imately constant along the direction of movement for an

individual time step ti (cf. Fig. 2). We therefore define

a location xS on the x-coordinate axis of the optical flow

map and extract a vertical profile slice zx(ti) ∈ R
y×1 and

zy(ti) ∈ R
y×1 with a width of 1 [px] at this location from

each of both channels of the dense flow field Ox(ti) and

Oy(ti). We linearly project the two-channel profile slices

in order to receive a flow token zi ∈ R
d with d = 2y for

each epoch. The tokens of all epochs ti ∈ t with i = 0...n
are arranged to the sequence z(t) ∈R

(n+1)×d according to

Eq. 1 and serve as input to the transformer encoder. A

schematic overview of this procedure is shown in Fig. 3.

We argue that by slicing the flow fields in order to gener-

ate the flow tokens, we discard the redundant information

contained in the flow data while conserving the relevant

motion information. As a result from this, the required

computational complexity is reduced while, at the same

time, the learning complexity of the transformer built on

top of the flow tokens is simplified, since in this way, learn-

ing to discern relevant data from redundant information

becomes less demanding. Particularly, the proposed way

of flow tokenisation preserves the following features. Each

token in z(t) carries the information of the concrete’s flow

velocity and flow direction at a specific point in time. As

established in (Whipple, 1997), the velocity is a function

of a material’s rheological properties and, consequently,

constitutes one of the most significant cues for the charac-

terisation of the fresh concrete.

Furthermore, the token sequence contains the flow data

over the entire time span t, consequently giving the trans-

former access to information on changes in the velocity

profiles over time. These changes correspond to acceler-

ation and deceleration behaviour of the material and can

be caused by varying transportation rates of the mixing

vehicle. We argue, that velocity changes in the concrete

flow as reaction to variations in the transportation rates

carry additional valuable information encoding rheologi-

cal properties of the material.

At last, each token preserves the information of the

flow behaviour along the transversal (y) direction of the

open channel. Consequently, each token encodes the

spatial motion information such as e.g. the current width

of the concrete flow stream, which implicitly contains

information about the volumetric transportation rate of

the concrete.

Prediction: As outlined before, we aim at learning a ViT

which predicts the fresh concrete properties represented

by the state vector s from open channel concrete flow ob-

servations over a time interval t represented by the flow

tokens z(t). Towards this goal, we employ a transformer

encoder with a number of L transformer blocks (cf. de-

scription above), which takes the sequence of n flow tokens

as input and produces a sequence of feature embeddings

zL = [zL
cls, zL

1 , zL
2 , ..., zL

n ] as output of the final layer ac-

cording to Eq. 3. As is depicted in Fig. 3, we employ two

MLP heads, a regression head and a classification head,

on top of the transformer encoder which predict the target

parameters from the class token embedding zL
cls .



The regression head is used to predict a number of nReg

real-valued parameters. In this work, nReg = 3, where

each parameter is related to the concrete’s rheology and

consistency, namely the slump flow diameter δ , the plastic

viscosity μ , and the yield stress τ0. In this paper, we

consider these parameters to be normalised in the range

[0; 1] using the minimum and maximum valid values. In

that case, we make use of an MLP head with three output

variables, one for each parameter, and by using the sigmoid

function as activation.

The classification head directly delivers a prediction of

the concrete’s consistency class C. To this end, the final

output is produced by an MLP using a softmax activation

function. More specifically, the classification head

produces nClass output variables p with ∑N
j=1

p j = 1 where

each variable p j represents the predicted probability for

each respective consistency class Cj. The final class being

considered as the predicted class for the input is defined

based on the maximum a posteriori criteria, i.e. is chosen

according to the class receiving the maximum probability

by the ViT.

Training: Training in this work is performed in a super-

vised manner. Therefore, the training procedure requires

training samples in the form of the flow token sequences in-

cluding corresponding reference values for the concrete’s

properties. Starting from a random initialisation of the ViT

parameters, training is done by minimising a loss func-

tion L . The optimisation is performed iteratively using

stochastic mini-batch gradient descent (SGD) (Goodfel-

low et al., 2016), where in this work the Adam optimiser

(Kingma and Ba, 2015) is used for weight optimisation.

The loss function used in this paper is composed of the

regression loss LR computed for the output of the regres-

sion head and the classification loss LC computed for the

output of the classification head, such that L =LR+LC.

Both losses quantify the difference between the concrete

properties predicted by the network and the reference prop-

erties. In case of the regression head, the mean squared

error (MSE) is used to calculate the loss while the cate-

gorical cross-entropy (CE) is used as loss function for the

classification head.

Experimental setup

Test data: The empirical evaluation of the proposed

method is conducted on a self-acquired data set of open-

channel concrete flow recorded during the discharge pro-

cess of a mixing vehicle. For data acquisition a setup as

shown in Fig. 4, consisting of a semi-circular open chan-

nel and a camera rig in approximate nadir view, was used.

Image acquisition was conducted using a frame rate of

60 [fps]. For the experiments in this paper, we down-scaled

the images to a resolution of 380×675 [px], corresponding

to an image scale of approximately 1 [px/mm]. In total, the

acquired data set consists of recordings of the discharge of

a variety of 18 different concretes with strongly varying

compositions and properties.

Figure 4: The proposed acquisition setup for the open-channel
concrete flow at the discharge of a mixing vehicle.

For this paper, we created sequence snippets, each of

which has a length of 60 [s]=̂3600 frames, extracted

from the original sequence of the 18 concretes between

points in time where a representative concrete flow

was present and observed during the discharge. In

order to obtain groundtruth values for the consistency

(slump flow δ and consistency class C) as well as for

the rheological parameters (plastic viscosity μ and yield

stress τ0), reference measurements were conducted based

on samples taken from each of the 18 concretes. In

this context, a portable rheometer for fresh concrete, an

eBT-V rheometer (Schleibinger), was used to generate

rotational-controlled rheological measurements from

which the rheological parameters are derived using the

Bingham model according to (Haist et al., 2020). In order

to obtain reference values for the consistency, the slump

flow was determined according to EN 206-1 (2001)/DIN

1045-2 (2008).

Training: For the experiments in this work, we make use

of the ViT-Base architecture as defined in (Dosovitskiy

et al., 2021) as encoder backbone, consisting of L = 12

layers and h = 12 MSA heads. Data-wise, we defined

both, a spatially and temporally disjunct separation of

train, test, and validation splits from the given sequence

snippets. For a spatial separation of the data, we defined

five equidistant slice locations xS,1 to xS,5 over the x-axis

range of the images, from which the flow tokens are

extracted. Three of the five splits are used for training and

one is used for validation and testing, respectively. For

a temporal separation, we divided the sequence snippets

into four equally sized parts, two of them are used for

training, and two for validation and testing. Provided

the data splits as just described, training is done based

on a randomly selected subset of flow tokens extracted

from the data. In this paper, we choose n = 256 for

the number of tokens in each sequence presented to the

transformer, meaning that only the flow information of



256/60≈ 4[sec] (supposing a frame rate of 60 fps) are fed

as training information to the network for each sample.

Training is done using the Adam optimiser (Kingma and

Ba, 2015), a mini-batch size of 32 and an initial learning

rate if 10
−4. To improve training, the learning rate is

decreased by a factor of 10
−1 after 50 epochs with no

improvement in the training loss.

Evaluation strategy: For the empirical evaluation of the

proposed approach, we apply a sliding window strategy

using the same number of flow tokens as used for train-

ing. More specifically, for each test split of the different

concrete snippets of length t, we extract a token sequence

of size n = 256 covering the epochs ti to ti+256, and in-

crementally increase i by 1. Each token sequence is pro-

cessed individually by the ViT, resulting in a number of

t−256 predictions for each of the concrete’s state param-

eters s = (μ,τ0,δ ,C). In order to assess the performance

of the classification head, namely the prediction of the

consistency class C, we determine the confusion matrix of

the predictions. Furthermore, we compute values for the

overall accuracy (OA) of the predictions as well as class-

wise values for recall, precision, and F1-score. For the

evaluation of the regression branch, i.e. the predictions for

the slump flow δ as well as for the rheological parameters

τ0 and μ , the mean absolute error (MAE) and root mean

squared error (RMSE) of the predictions are reported. In

addition to the mean errors, we also compute the standard

deviation of the absolute errors σAE to achieve further

insights into the error distribution of the predictions.

Evaluation

This chapter provides the quantitative evaluation of the

proposed Concrete Flow Transformer for the determina-

tion of fresh concrete properties based on open-channel

flow observations. We report the results obtained by the

classification head and the regression head separately.

Classification head

Fig. 5 shows the confusion matrix containing the results

of the classification head predicting the consistency class

of the concrete from the flow observations.

As is visible from the matrix, the classification leads to

an overall accuracy (OA) of 77.4%, i.e. that many of the

sliding window token sequences are associated the correct

class by the Concrete Flow Transformer. The confusions

show a clear pattern in the distribution of erroneous clas-

sifications, namely that the vast majority of errors appear

next to the main diagonal, i.e. at neighbouring classes. A

potential explanation for this observation is the fact that the

consistency classes are obtained by a discretisation of the

slump flow into individual consistency ranges, introducing

class boundaries to the parameter range of the continuous

variable δ . As several of concretes consistency classes lie

very close to the class boundaries, potentially leading to

an ambiguous setting of hard-to-distinguish concrete sam-

ples, partly causing the confusions that are observable in

Figure 5: Confusion matrix for the classification head including
the results for recall, precision, F1-score and overall accuracy.
The values are to be read as percentage of entities belonging to
reference class (rows) and being classified as the predicted class
(columns). The colour coding denotes low values (light green)

and high values (dark green). Empty entries correspond to
values of 0.0%.

Fig. 5. While the classwise F1-scores range from 68.2%

to 88.3% for four of the five classes, the class C0 only

achieves a F1-score of 54.8%. A reason for this can be the

under-representation of this class in the data set leading to

class-imbalance effects for the classification problem.

Regression head

The regression head predicts the values for slump flow

δ , the yield stress τ0, as well as the viscosity μ . The

quantitative results of the regression head predictions are

shown in Tab. 1 The table contains the mean absolute error

(MAE) of the target parameters, the standard deviation of

the mean error σAE and the RMSE.

Table 1: Quantitative results obtained by the regression head.
The MAE, the standard deviations of the absolute errors, as well

as the RMSE are shown for the individual target parameters.

Parameter MAE σAE RMSE

δ [mm] 23.3 34.5 41.6

τ0 [Pa] 11.9 12.9 17.5

μ [Pa·s] 1.9 2.2 2.9

As is visible from the table, we achieve highly promis-

ing results with mean absolute errors of only 23.3 [mm],

11.9 [Pa], and 1.9 [Pa·s] for the respective target param-

eters, namely the slump flow diameter, yield stress, and

plastic viscosity. As can be deducted from the relatively

large standard deviations of the MAE, the errors exhibit a

relatively broad distribution. In order to get deeper insights

into the distribution of the predictions for the individual

concrete samples, Fig. 6 shows the average predictions

together with the corresponding standard deviation σ for

each of the target parameters.

As is visible from the graphs of all three parameters, most

of the mean predictions are very close to the reference di-

agonal, indicating that the prediction performance can be

improved by averaging multiple predictions over time. An

exception is the concrete sample with a plastic viscosity

and yield stress at the maximum boundaries, and a slump

flow at the minimum boundary of the value range, respec-

tively. Here the distinctly largest difference between the

mean prediction and the reference values and the largest



(a) Results for the slump flow δ .

(b) Results for the viscosity μ .

(c) Results for the yield stress τ0.

Figure 6: Average predictions and the corresponding standard
deviations σ of the target parameters δ , τ0, and μ for each

individual concrete sample contained in the test set.

standard deviation of the predictions are observable. We

believe that this behaviour is caused by what is called

the long-tail problem (Wang et al., 2017), which refers

to the problem of an imbalanced statistical distribution of

the examples in the training data where only little data is

available for values in the tail of the distribution. This re-

sults in problems of these approaches w.r.t. their ability to

generalise to barely or never seen examples or situations.

This issue is currently being addressed by additional data

acquisition series.

Conclusion

We presented the Concrete Flow Transformer, a novel

method based on Vision Transformers for an automatic

characterisation of fresh concrete from image sequences

observing the open-channel concrete flow during the dis-

charge process of a mixing vehicle. In this context, we

proposed Flow tokenisation as efficient representation of

patches serving as input to a transformer architecture. We

showed that this representation encodes and preserves all

information relevant for the derivation of the fresh con-

crete properties while drastically reducing the amount of

(redundant) data. We demonstrated highly promising re-

sults by applying and evaluating the proposed method to

a challenging real-world data set. In the future, we aim

at building on research from the fields of fluid mechanics

and flow modelling in order to incorporate knowledge from

these fields to the problem of fresh concrete characterisa-

tion. In particular, we strive at incorporating sophisticated

flow models as prior knowledge to our deep learning based

approach, a strategy termed (physics) informed machine

learning (von Rueden et al., 2021). We believe in this

way to further improve the approach and to enhance the

performance of the concrete characterisation.
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