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Abstract

The size distribution of concrete aggregate can signifi-
cantly affect the concretes properties (e.g. the consistency
and compressive strength). However, the aggregate size
distribution can be subject to large fluctuations and is
usually unknown during concrete production, leading to
a diminished ability of adapting the concrete mix design
accordingly. To overcome this limitation, we propose an
automatic approach for the estimation of the aggregate size
distribution prior to concrete mixing, using image obser-
vations of the material on the conveyor belt transporting
the aggregate to the concrete mixer. As a result, the de-
rived knowledge about the aggregate size distribution en-
ables a real-time adaptation of the concrete composition
for each concrete batch, e.g. by adapting the water demand
or the amount of plasticizer accordingly. In particular, we
propose Granulometry Transformer, a Vision Transformer
(ViT) based approach, demonstrating state-of-the-art re-
sults on two challenging public benchmark data sets of
both, coarse and fine aggregate material.

Introduction

Concrete is one of the most widely used building materials
in the world. In total, several billion tons of concrete
are produced and used every year. Aggregate, i.e. fine
and coarse particles usually of sizes between 0.1 and 32
mm, makes up around 70-80% of the concrete. Due to
the large share of aggregate, it significantly influences
many important properties - both in the fresh and in
the hardened state of the concrete. These include fresh
concrete properties such as consistency, workability
and segregation tendency as well as hardened concrete
properties such as compressive strength, durability,
etc. In this context, particularly the size distribution
of the aggregates (formally known as grading curve)
has a substantial effect on the properties and quality
characteristics of the concrete. As a consequence, in order
to achieve desired properties (e.g. a target consistency),
the aggregate size distribution has to be considered during
mix design and concrete production since it significantly
affects the water demand or the amount of required
superplasticizer. In practice however, the size distribution
is usually determined for small samples of the aggregate
(a few kilograms) by manual mechanical sieving and is
considered representative for a large amount of aggregate
(a few tons). Since the aggregate size distribution can
exhibit strong variations, especially in cases when e.g.
recycled material is used as aggregate, the size distribution
of the actual aggregate used for individual production
batches of concrete can differ from the predetermined
one, and is therefore unknown during production. As a
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consequence, the mix design is based on imprecise or
incorrect assumptions, potentially leading to undesired
effects for the final concrete’s properties.

In this paper, we propose an approach for the image based
prediction of the size distribution of concrete aggregates
(cf. Fig. 1), delivering a real-time capable analysis of the
size distribution of concrete aggregate. Incorporating
such an approach as online measurement process into the
production chain of concrete by installing cameras above
the aggregate feeding belt allows to derive knowledge
about the total amount of aggregates used for the particular
concrete batch. As a result, it enables the opportunity
to react on detected variations in the size distribution of
the aggregate in real-time by adapting the composition,
i.e. the mixture design of the concrete accordingly,
so that the desired concrete properties are reached.
We refer the reader to (Haist et al., 2022), where a con-
cept for the online concrete production control is proposed.
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Figure 1: High-level overview on the proposed method.

More specifically, we make the following contributions in
this paper.

* We propose a computer vision based strategy for an
automated estimation of concrete aggregate size dis-
tributions in order to enable a precise concrete pro-
duction control in real-time.

* We present a deep learning based approach for the
determination of aggregate grading curves by building
on recent success of transformer networks for vision
tasks. In particular, we adapt the architecture of a
vision transformer (ViT) network for a patch-based
prediction of particle size distributions.

e We perform an extensive evaluation of the proposed
framework based on two publicly available and chal-
lenging benchmark data sets of concrete aggregate,
covering coarse (0-32 mm) and fine (0-2 mm) ma-
terial. We demonstrate highly promising results ob-
tained by the proposed method, outperforming the
quality achieved by a standard ViT architecture.



State of the art

Along with water and cement, aggregate is one of the
main basic materials for the production of concrete. As
such, the aggregates have a considerable influence on
the properties of fresh concrete (e.g. workability and
consistency) and hardened concrete (e.g. compressive
strength, density, durability). In this context, additionally
to technical parameters such as the aggregate density,
particle shape, or the chemical composition, it is the par-
ticle size distribution which is of particular relevance for
concrete production. Knowledge about the aggregate size
distribution (also denoted as grading curve) is required for
concrete mixture design, since it significantly influences
parameters such as water consumption or the demand of
plasticizer. In current practice, however, the grading curve
of the aggregate is determined for small aggregate samples
by mechanical sieving and is considered as representative
for many tons of material, neglecting variations and a
potentially wide range of material scatter that is typically
inherited by aggregates (especially in the case of recycled
material). In contrast to current practice based on random
sampling, this work proposes an image based strategy
for grading curve estimation, allowing to determine the
granulometry of the entire material that is actually used
for each concrete batch, thus unfolding the potential of a
more precise mixture design and enhanced adaptation of
the concrete composition (Haist et al., 2022).

The estimation of object size distributions from images
has a wide field of interest, ranging from applications in
geosciences (Buscombe, 2020), biological and medical
applications (Sharma et al., 2020), via hydrological
(Chardon et al., 2022) to geographical (Soloy et al., 2020)
applications. One line of work towards determining
size distributions follows an object-based procedure, in
which individual objects are segmented first, and their
size distribution is computed from the segmentations in
a second step. In this context, early approaches for a
segmentation based estimation of size distributions were
based on grayscale thresholding and morphological oper-
ators (Kumara et al., 2012), edge detections (Hamzeloo
et al., 2014), or watershed transformations (Lira and Pina,
2006; Terzi, 2017). Modern approaches typically rely
on deep learning based methods for the segmentation
and granulometry estimation of particles. For example,
(Coenen et al., 2021) proposed a convolutional neural
network (CNN) based semantic segmentation of concrete
aggregate particles and (Soloy et al., 2020) use the
Mask RCNN architecture (He et al., 2017) for instance
segmenation of pebble grains. A method for the panoptic
segmentation of aggregate particles in fresh and hardened
concrete was proposed in (Coenen et al., 2022b). However,
object based approaches in general suffer from multiple
difficulties. On the one hand, they are sensitive to partial
occlusions and require an image resolution that is fine
enough for recognising the single particles in order to
allow the segmentation of individual instances. On the
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other hand, they demand for an explicit conversion from
the two-dimensional segmentations to a volumetric size
distribution of the objects (Hamzeloo et al., 2014; Sun
et al., 2021), which is only approximate and, therefore,
causes inaccuracies for object-centric approaches w.r.t. the
task of estimating size distribution.

In contrast to the described object-based procedure,
statistical approaches avoid the explicit detection and
modelling of individual objects by relying on global
image statistics in order to predict the size distribution
directly from the raw image. In this context, Olivier
et al. (2019) and Coenen et al. (2022a) propose to
learn a CNN in order to distinguish different predefined
particle size distributions. However, in this way, only
a classification of a discrete set of grading curves is
possible. In order to overcome this limitation, CNN
based approaches for the prediction of the continuous
percentiles defining the size distribution were presented in
(Olivieretal., 2020; Lang et al., 2021; Sharma et al., 2020).

While the approaches mentioned so far are based on CNN-
architectures, recently the application of transformer based
models (Vaswani et al., 2017) for vision tasks has shown
great potential and encouraging results (Dosovitskiy et al.,
2021). In this work, we built upon the recent success
of so called Vision Transformers (ViT) and make use of
a transformer based architecture for the determination of
concrete aggregate size distributions.

Methodology

This paper presents a transformer based approach for the
automatic determination of concrete aggregate size dis-
tributions. By equipping the conveyor belt in a concrete
plant transporting the aggregate material to the concrete
mixer with a sensor setup acquiring image sequences of
the transported material (cf. Fig. 1), the proposed method
can be used to derive detailed knowledge about the actual
grading curve of the aggregates used for the production
of individual concrete batches in real-time. In this way,
an online adjustment of the concrete composition becomes
feasible, enabling the real-time control of desired concrete
properties as is depicted in Fig. 2 (Haist et al., 2022).

Image-based
Granulometry

Initial Mix
Design

Figure 2: Schematic overview on the concept for a concrete
mixture adaptation on the basis of the proposed visual
granulometry estimation.

Mix Adaptation



More formally, given an image / depicting concrete aggre-
gates, this paper aims at automatically deriving the grad-
ing curve G = [p1,p2, ..., pn]. Per definition, the grading
curve is a histogram in which grain size intervals (bins) are
represented on the abscissa (x-axis) and the quantity pro-
portion is shown on the ordinate (y-axis). Consequently,
G is parameterised by a vector whose elements p; cor-
respond to the histogram percentiles of each grain size
interval j = [1...N]. In this representation, each percentile
is a continuous variable with {p; € R| 0 < p; < 1} under
the constraint },p; = 1. As a results, mapping the im-
age [ to the grading curve G corresponds to a constrained
multi-regression problem of the individual percentiles p;,
in which the determined percentiles must sum op to 1. In
order to tackle this problem, we propose the Granulome-
try Transformer, a Vision Transformer based architecture,
acting as mapping function f: I — G.

Overview on Vision Transformers (ViT)

A typical Vision Transformer (ViT) (Dosovitskiy et al.,
2021) takes a single image as input and decomposes it into
a sequence of n non-overlapping image patches x; € R
which are transformed into 1D tokens z; € R? of length
d using a linear projection E. The sequence of tokens
20 € RUHD>d with

2’ = a5, Bzt E2a, ... B2, +p e
then serves as input to a transformer encoder architecture
(Vaswani et al., 2017). As is shown in Eq. 1, a learn-
able classification token zjs is prepended to the sequence,
whose representation at the final layer of the encoder is used
as input embedding for the output layer. Furthermore, a
learnable position embedding p € R"*¢ is added to the to-
kens (cf. Eq. 1) in order to retain positional information
throughout the permutation invariant self-attention opera-
tions of the encoder. The tokens are passed through the
transformer encoder which consists of a stack of / = 1...L
residual layers, each comprising Multi-Head Self-Attention
(MSA) (Vaswani et al., 2017), layer normalisation (LN),
and Multi-Layer Perceptron (MLP) blocks. The output
of the last layer of the transformer encoder is denoted as
embedding z* = [X5, X1, X2, ..., X,], where n is the total
number of patch tokens and X, and Xi, ..., X}, correspond
to the embedded class token and patch tokens, respectively.
Finally, a MLP head H is used on top of the transformer en-
coder and typically produces the prediction output based

on the final encoded class token embedding Xs. As a
consequence, the loss for image / can be written as
Lcls:D(H(Xcls)7Y})7 (2)

where H(X) is the output of the final prediction head for
the class embedding Xs, Y7 is the reference for image 7, and
D(-,-) is a distance function such as e.g. the cross-entropy
loss for classification problems or the mean squared error
for regression problems.
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Granulometry Transformer

The typical ViT as just described performs the prediction
on image-level based on the embedded cls-token (cf. Eq. 2)
and, consequently, neglects the rich information embedded
in each of the individual image patches Xi,...,X;,. In this
work, we propose to utilise each image patch embedding
and to incorporate the patch-level information into the pre-
diction of the particle size distribution. To this end, we
decompose the problem of grading curve estimation for
the image / into the sub-tasks of estimating the grading
curve for small patches extracted from 7 and, subsequently,
aggregate the information to derive the final size distribu-
tion for the whole image. More specifically, as is shown in
Fig. 3, we make use of the initial ViT-image-decomposition
into the sequence of n non-overlapping patches x;, and pre-
dict the grading curve G; for each individual patch. Note,
that in this way, we discard the cls-token z.j; and conse-
quently also the cls-embedding X.js from the architectural
design of the ViT. Instead, we apply the MLP head H on
top of the transformer to each of the final token embed-
dings X; (cf. Fig. 3). We make use of the softmax-function
as final activation in H, returning j = 1...N output values
representing the size distributions G; which consequently
comply with the constraint )’ p; = 1. Under the assumption
that each patch shows the same amount (mass) of material,
the final size distribution for the whole image is calculated
as global average of the patch-wise distributions G;.
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Figure 3: Overview on the proposed Granulometry Transformer
architecture. A sequence of linearly projected and flattened
image patches are fed to a transformer encoder and a MLP head
is used on top of the architecture to predict a particle size
distribution for each patch. The final grading curve for the
image is calculated by aggregating the patch-wise distributions.

We argue, that by decomposing the task of estimating the



size distribution for an entire image into decoupled tasks
of determining the grading curve for smaller individual
patches, we are conceptually able to simplify the complex-
ity for the network to learn the mapping between the image
and the associated grading curve. In the classical ViT
setting using the cls-token for prediction, the transformer
encoder has to learn a global latent space embedding as
feature representation on image-level on the basis of which
the MLP head produces the output. In the case of granu-
lometry estimation, generating a global feature embedding
can become challenging since the particle size distribu-
tion can locally be highly different, requiring the network
to learn a potentially complex aggregation of the local
variations into a joint image-level representation. Fig. 4
shows an example of concrete aggregate material which
exhibits strong variations in the local size distributions in
the image. We believe, by conceptually decomposing the
problem into multiple smaller sub-problems, we reduce the
complexity of generating the feature embeddings in latent
space. By allowing the network to produce patch-wise out-
put distributions that differ from the image-level reference
distribution, we enable the network to better account for
locally differing appearances, thus relaxing the demand on
the network’s capability of global reasoning.

distributions

Image coarse
7, R

fine

Figure 4: Example of concrete aggregate material (left) with
locally varying size distributions (right).

Training

According to the proposed architecture shown in Fig. 3, the
total image loss for the final grading curve results to

1 n
L—D(niZIH(Xi), Y,>. 3)

Note that compared to Eq. 2, the proposed loss does not
depend on the single class embedding X.is, but instead
on all patch embeddings Xi,...,X,, therefore leveraging
the additional valuable information encoded in each of
the individual tokens. In this paper, we make use of the
Kullback-Leibler divergence Dgp as measure for D(,-)
which computes the similarity between the predicted and
the reference grading curves according to

N pi
e = Y p,-log (f) , @
= P
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where p; and p; are the reference and the predicted per-
centiles of the size distribution, respectively. Note that this
loss only accounts for errors in the reference bins p; > 0,
i.e. in size bins that actually contain material and con-
sequently, an overestimation of empty bins does not con-
tribute to the error metric directly. However, as we treat the
grading curve G as a probability distribution with}_ p; =1,
the overestimated values are missing in the bins that are
taken into account in the error metric, and therefore, are
considered indirectly.

Furthermore, in the setting covered by Eq. 4, the global
reference grading curve for the entire image is used for loss
computation and thus, training is performed based on a
single reference vector as supervision. As a consequence,
learning to produce the patch-wise size distributions is only
supervised implicitly which, however, allows to apply the
proposed method to data for which patch-wise reference
information is not available. Nevertheless, we point out that
the proposed method allows to perform training in a densely
supervised manner in cases where reference distribution for
the local patches are available or derivable, e.g. from given
instance segmentation masks. As was shown in (Jiang
etal., 2021), dense supervision can aid the training process
and improve model accuracy.

Experimental Setup
Test data

For the experimental evaluation of the proposed method,
we make use of the publicly available Deep Granulom-
etry Dataset'. The data set consists of images showing
concrete aggregate particles and reference data of the par-
ticle size distribution (grading curves) associated to each
image. It is distinguished between the Coarse Aggregate
Data (Dcoarse) and the Fine Aggregate Data (Dgpe). Both
contain approximately 1700 images associated to one of
almost 35 different particle size distributions. While the
data in Dcoarse Shows aggregate with particle sizes ranging
from 0.1 to 32 mm and provided reference percentiles for
N = 9 size bins, namely 0.25, 0.5, 1, 2, 4, 8, 16, 32.5, 63
[mm], the Dy data contains fine material with grain sizes
between 0 and 2 mm and with references for N = 6 bins,
namely 0.063, 0.125, 0.25, 0.5, 1.0, 2.0 [mm]. Example
images of both data sets showing material with different
granularities (from fine to coarse) are shown in Fig. 5.

Test settings

In order to evaluate the grading curve prediction we
make use of the described data sets and train networks
for each data set individually. Due to computational
reasons we do not make use of the full image resolution
in which the data is provided but we downsample the
images to an image size of 512x704 [px] for the D¢oarse
data, corresponding to a ground sampling distance (GSD)
of 0.5 mm, and to an image size of 480x480 [px] for
the Dgye data, corresponding to a GSD of 0.1 mm.
As network architecture, we adapt the hybrid ViT-Base

https://doi.org/10.25835/61y9peiq



COArse o
>

Coare Aggregate Data

Fine Aggregate Data

Figure 5: Example images of the two publicly available data
sets used for evaluation in this paper.

architecture according to the definition in (Dosovitskiy
et al., 2021), i.e. we feed the image to a small CNN
backbone and form the input sequence for the transformer
based on the feature maps produced by the CNN. More
specifically, we apply two convolutional msEnc-modules
(Coenen et al., 2022a) in case of the Dyase data and one
msEnc-module in case of the Dgp. data, which perform
residual multi-scale convolutions and downsampling,
and which produce feature maps whose size is reduced
by factor 0.25 and 0.5 w.r.t. the input image size of the
two data sets, respectively. The ViT-Base transformer
encoder is applied to patches extracted from the feature
maps using a patch size of 16x16 [px]. The encoder
backbone consists of L = 12 layers which are composed of
12 multi-head-self-attention (MSA) modules. Training is
done using the Adam optimiser (Kingma and Ba, 2015), a
mini-batch size of 24 and an initial learning rate of 107>,
To improve training, the learning rate is decreased by a
factor of 10~! after 10 epochs with no improvement in
the training loss. To reduce overfitting effects, we apply
random radiometric and geometric data augmentations
like colour shift, contrast and brightness variations, as
well as horizontal and vertical flips.

Evaluation strategy

For the evaluation, we follow a two-fold crossvalidation
strategy for both data sets. To this end, we split each data
set into three subsets 77, T, and T3, containing a propor-
tion of 44%, 44%, and 12% of the total amount of images,
respectively. To ensure balanced data splits, we divide the
data in a way that the proportion of images belonging to
the same grading curve is identical across each split. For
each data set, we train two networks, alternating between
Ty and T as train and test split, respectively. The 73 split is
used as validation split for both networks. The evaluation
in this paper is performed on the joint results obtained by
the two networks on both test splits. To this end, we com-
pute the mean absolute errors (MAE) of the predictions
for the individual percentiles p; of the different particle
size bins. Furthermore, in order to assess the performance
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of the grading curve predictions as a total, we make use
of the Hellinger distance Dy (Hellinger, 1909), which is
a measure of the similarity between two probability dis-
tributions, namely the reference grading curve G and the
predicted grading curve G in this case. With

Dy =1/1-BC(G,G),

where BC(G,G) is the Bhattacharyya coefficient (Bhat-
tacharyya, 1943) defined as

&)

™=

BC(G,G) =Y. \/pj bj: (©6)

1

J

the distance Dy delivers a bounded metric with a maximum
distance of 1 and a minimum distance of 0 in case both
probability distributions are identical.

In order to compare the results to current state-of-the-art,
we report the results on the same data achieved by the R-
S-Net, a purely CNN-based approach presented by Coenen
et al. (2022a), and by a standard Vision Transformer using
the ViT-Base architecture proposed in (Dosovitskiy et al.,
2021).

Evaluation

In Tab. 1 and 2, the percentile-wise MAE obtained on the
Deoarse and the Dy data are shown. As is visible from
the tables, the results of the Granulometry Transformer
proposed in this paper for the estimation of particle size
distributions are very promising. On the D¢oarse data, we
achieve percentile-wise MAEs between 0.19 % and 1.81 %
resulting in an average MAE of 1.08 %. On the Dfpe
data set, the values for the MAEs are comparably larger,
ranging between 3.19 % and 4.71 %, with an average MAE
of 3.79 %. The same behaviour is observable also for the
results obtained by the R-S-net and the standard ViT. We
identify two potential reasons for the differences in the
performance on the two data sets. One reason might be the
different numbers of percentiles N that are differentiated
by the two data sets. While the D¢oarse data considers nine
grain size bins, the number of distinguished percentiles of
the Dgpe data is only six. Because the softmax-activation,
used as normalisation by the final layer of the networks,
constraints the output to sum up to 1, the total magnitude
of the prediction errors is distributed over the amount of
percentiles, leading to decreased percentile-wise average
errors the more bins are considered for estimation. The
second reason might be related to the GSD of the data in
combination with the particle sizes covered by the data
sets. While the coarse aggregate data contains particles
with a maximum size of 32 mm and is used with a GSD
of 0.5 mm, leading to an image representation of the
largest grain by 64 px, the fine aggregate data containing
a maximum grain size of 2 mm is used with a GSD of
0.1 mm, leading to an representation of the maximum
particle in the image with a size of only 20 px. As a
consequence, it is possible, that the fewer amount of image



Table 1: Quantitative results obtained on the Deyqpse test data. The table shows the percentile-wise MAE and their average (9) in [%].

‘ Grain size bins [mm] ‘ 025 0.5 1 2 4 8 16 31.5 63 ‘ %} ‘

R-S-Net (Coenen et al., 2022a) | 0.19 1.15 127 062 140 151 1.62 172 0.20 | 1.08

ViT (Dosovitskiy et al., 2021) 021 163 177 093 124 280 242 294 021 | 1.57

Ours 0.19 137 142 069 112 181 146 143 021 | 1.08

Table 2: Quantitative results obtained on the Dy, test data. The table shows the percentile-wise MAE and their average (@) in [%].
| Grain size bins [mm] [ 0063 0125 025 05 1 2 | 2 ]

R-S-Net (Coenen et al., 2022a) 4.25 374 403 281 242 377 | 3.50
ViT (Dosovitskiy et al., 2021) 4.26 4.11 447 389 402 451 | 421
Ours 3.83 3.59 410 329 3.19 471 | 379

information per particle of the Dg,e data in comparison
to the Dcoarse data can cause a decreased performance in
estimating the particle size distribution for the fine data set.

In addition to the MAEs, Tab. 3 contains the average
Hellinger distances obtained by the different methods on
the two aggregate data sets. As can be seen from the aver-
age MAE (cf. Tab. 1 and Tab. 2) as well as from the mean
Hellinger distances (Tab. 3), the proposed Granulometry
Transformer performs significantly better on both data sets
compared to the standard ViT used as baseline. Regard-
ing the average MAE, our method yields errors which are
smaller by a difference of 0.49 % and 0.42 % on the D¢oarse
and Dgje data set, respectively, which correspond to an
relative improvement of approximately 30 %. Similar rela-
tive improvements are obtained for the mean Hellinger dis-
tance on the Dcoarse data, while the relative improvements
on the Dgp. data are with approximately 12 % comparably
smaller. Compared to the R-S-Net used as purely convo-
lutional baseline, our approach performs on-par w.r.t. both
metrics, the MAEs and the Hellinger distances.

Table 3: Average Hellinger distances obtained on the two data
sets Deoarse and Dfpe.

‘ Mean Hellinger distances ‘ Dcoarse Deine
R-S-Net (Coenen et al., 2022a) 0.500 0.101
ViT (Dosovitskiy et al., 2021) 0.071 0.127
Ours 0.048 0.112

To obtain more detailed insights into the distribution of
the percentile-wise absolute errors and the Hellinger dis-
tances, Fig. 6 and Fig. 7 show the cumulative histogram of
both metrics for the two test data sets, respectively. Again,
the depicted graphs highlight the previous observation of
our approach performing on-par with the CNN-based ap-
proach and outperforming the ViT baseline. Also, the
performance differences between both data sets become
visible by the cumulative histograms exhibiting a steep in-
cline on the D¢oarse data and a comparably flatter ascent of
the curve on the Dg,e data set.

Since the data sets consists of multiple images associated
to identical particle size distributions (approx. 50 images
per grading curve), it is possible to agglomerate all predic-
tions of images having the same reference grading curve
by computing the average predicted value and standard
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Figure 6: Cumulative histogram of absolute errors (top) and of
the Hellinger distance (bottom) obtained on the D yqrse data set.

deviation for each percentile for a visual demonstration.
Fig. 8 shows representative examples of aggregate images
and their associated grading curves of both, the reference
(green) as well as the average prediction (red). Further-
more, the bands depicted in the diagrams represent the
standard deviation area of predictions for the test images
of the respective aggregate sample.

Conclusion

The current practice of concrete mixture design and
production often relies on strong assumptions on prop-
erties of the raw materials used for production, such as
e.g. the particle size distribution of the aggregate. As
a consequence, unknown variations of the aggregate’s
grading curve and deviations from the assumed size
distribution (especially pronounced in the case of recycled
materials), are not properly taken into account in the mix
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Figure 7: Cumulative histogram of absolute errors (top) and of
the Hellinger distance (bottom) obtained on the Dy, data set.

design, potentially leading to undesired effects w.r.t. the
concrete properties. In order to enable the control of
the variations, we present a deep learning based method
for the determination of the grading curve of concrete
aggregate from images. More specifically, we propose
an adaptation of the Vision Transformer architecture
for the local patch-aware determination of the particle
size distribution, leading to an improved performance
compared to the standard ViT network. Experiments on
two challenging data sets demonstrated highly promising
results with percentile-wise mean average errors of less
than 2 % and 5 % obtained on both data sets, respectively.

In the future, we aim at extending the approach by not
only determining the particle size distribution of concrete
aggregate, but also at identifying shape-related properties
of the aggregate and at predicting its material composi-
tion (e.g. the material composition of recycled aggregate),
two properties which carry highly relevant information re-
garding the concrete mix design. Furthermore, we aim at
applying the proposed approach as a basis for the develop-
ment of an online concrete control scheme, with the goal
to adapt the mix composition in real time to react to the
detected fluctuations and properties of the raw materials.
This implies the extension of the described approach from
working in a static scenario (single images are processed)
to an application in a dynamic scenario (image sequences
obtained from the material moving on the conveyor belt).
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Figure 8: Examples of aggregate images (right) belonging to
different reference grading curves (left, green) and the average

predicted size distribution (red curve) as well as its standard
deviation (light red area).
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