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Abstract

The size distribution of concrete aggregate can signifi-

cantly affect the concretes properties (e.g. the consistency

and compressive strength). However, the aggregate size

distribution can be subject to large fluctuations and is

usually unknown during concrete production, leading to

a diminished ability of adapting the concrete mix design

accordingly. To overcome this limitation, we propose an

automatic approach for the estimation of the aggregate size

distribution prior to concrete mixing, using image obser-

vations of the material on the conveyor belt transporting

the aggregate to the concrete mixer. As a result, the de-

rived knowledge about the aggregate size distribution en-

ables a real-time adaptation of the concrete composition

for each concrete batch, e.g. by adapting the water demand

or the amount of plasticizer accordingly. In particular, we

propose Granulometry Transformer, a Vision Transformer

(ViT) based approach, demonstrating state-of-the-art re-

sults on two challenging public benchmark data sets of

both, coarse and fine aggregate material.

Introduction

Concrete is one of the most widely used building materials

in the world. In total, several billion tons of concrete

are produced and used every year. Aggregate, i.e. fine

and coarse particles usually of sizes between 0.1 and 32

mm, makes up around 70-80% of the concrete. Due to

the large share of aggregate, it significantly influences

many important properties - both in the fresh and in

the hardened state of the concrete. These include fresh

concrete properties such as consistency, workability

and segregation tendency as well as hardened concrete

properties such as compressive strength, durability,

etc. In this context, particularly the size distribution

of the aggregates (formally known as grading curve)

has a substantial effect on the properties and quality

characteristics of the concrete. As a consequence, in order

to achieve desired properties (e.g. a target consistency),

the aggregate size distribution has to be considered during

mix design and concrete production since it significantly

affects the water demand or the amount of required

superplasticizer. In practice however, the size distribution

is usually determined for small samples of the aggregate

(a few kilograms) by manual mechanical sieving and is

considered representative for a large amount of aggregate

(a few tons). Since the aggregate size distribution can

exhibit strong variations, especially in cases when e.g.

recycled material is used as aggregate, the size distribution

of the actual aggregate used for individual production

batches of concrete can differ from the predetermined

one, and is therefore unknown during production. As a

consequence, the mix design is based on imprecise or

incorrect assumptions, potentially leading to undesired

effects for the final concrete’s properties.

In this paper, we propose an approach for the image based

prediction of the size distribution of concrete aggregates

(cf. Fig. 1), delivering a real-time capable analysis of the

size distribution of concrete aggregate. Incorporating

such an approach as online measurement process into the

production chain of concrete by installing cameras above

the aggregate feeding belt allows to derive knowledge

about the total amount of aggregates used for the particular

concrete batch. As a result, it enables the opportunity

to react on detected variations in the size distribution of

the aggregate in real-time by adapting the composition,

i.e. the mixture design of the concrete accordingly,

so that the desired concrete properties are reached.

We refer the reader to (Haist et al., 2022), where a con-

cept for the online concrete production control is proposed.

Figure 1: High-level overview on the proposed method.

More specifically, we make the following contributions in

this paper.

• We propose a computer vision based strategy for an

automated estimation of concrete aggregate size dis-

tributions in order to enable a precise concrete pro-

duction control in real-time.

• We present a deep learning based approach for the

determination of aggregate grading curves by building

on recent success of transformer networks for vision

tasks. In particular, we adapt the architecture of a

vision transformer (ViT) network for a patch-based

prediction of particle size distributions.

• We perform an extensive evaluation of the proposed

framework based on two publicly available and chal-

lenging benchmark data sets of concrete aggregate,

covering coarse (0-32 mm) and fine (0-2 mm) ma-

terial. We demonstrate highly promising results ob-

tained by the proposed method, outperforming the

quality achieved by a standard ViT architecture.



State of the art

Along with water and cement, aggregate is one of the

main basic materials for the production of concrete. As

such, the aggregates have a considerable influence on

the properties of fresh concrete (e.g. workability and

consistency) and hardened concrete (e.g. compressive

strength, density, durability). In this context, additionally

to technical parameters such as the aggregate density,

particle shape, or the chemical composition, it is the par-

ticle size distribution which is of particular relevance for

concrete production. Knowledge about the aggregate size

distribution (also denoted as grading curve) is required for

concrete mixture design, since it significantly influences

parameters such as water consumption or the demand of

plasticizer. In current practice, however, the grading curve

of the aggregate is determined for small aggregate samples

by mechanical sieving and is considered as representative

for many tons of material, neglecting variations and a

potentially wide range of material scatter that is typically

inherited by aggregates (especially in the case of recycled

material). In contrast to current practice based on random

sampling, this work proposes an image based strategy

for grading curve estimation, allowing to determine the

granulometry of the entire material that is actually used

for each concrete batch, thus unfolding the potential of a

more precise mixture design and enhanced adaptation of

the concrete composition (Haist et al., 2022).

The estimation of object size distributions from images

has a wide field of interest, ranging from applications in

geosciences (Buscombe, 2020), biological and medical

applications (Sharma et al., 2020), via hydrological

(Chardon et al., 2022) to geographical (Soloy et al., 2020)

applications. One line of work towards determining

size distributions follows an object-based procedure, in

which individual objects are segmented first, and their

size distribution is computed from the segmentations in

a second step. In this context, early approaches for a

segmentation based estimation of size distributions were

based on grayscale thresholding and morphological oper-

ators (Kumara et al., 2012), edge detections (Hamzeloo

et al., 2014), or watershed transformations (Lira and Pina,

2006; Terzi, 2017). Modern approaches typically rely

on deep learning based methods for the segmentation

and granulometry estimation of particles. For example,

(Coenen et al., 2021) proposed a convolutional neural

network (CNN) based semantic segmentation of concrete

aggregate particles and (Soloy et al., 2020) use the

Mask RCNN architecture (He et al., 2017) for instance

segmenation of pebble grains. A method for the panoptic

segmentation of aggregate particles in fresh and hardened

concrete was proposed in (Coenen et al., 2022b). However,

object based approaches in general suffer from multiple

difficulties. On the one hand, they are sensitive to partial

occlusions and require an image resolution that is fine

enough for recognising the single particles in order to

allow the segmentation of individual instances. On the

other hand, they demand for an explicit conversion from

the two-dimensional segmentations to a volumetric size

distribution of the objects (Hamzeloo et al., 2014; Sun

et al., 2021), which is only approximate and, therefore,

causes inaccuracies for object-centric approaches w.r.t. the

task of estimating size distribution.

In contrast to the described object-based procedure,

statistical approaches avoid the explicit detection and

modelling of individual objects by relying on global

image statistics in order to predict the size distribution

directly from the raw image. In this context, Olivier

et al. (2019) and Coenen et al. (2022a) propose to

learn a CNN in order to distinguish different predefined

particle size distributions. However, in this way, only

a classification of a discrete set of grading curves is

possible. In order to overcome this limitation, CNN

based approaches for the prediction of the continuous

percentiles defining the size distribution were presented in

(Olivier et al., 2020; Lang et al., 2021; Sharma et al., 2020).

While the approaches mentioned so far are based on CNN-

architectures, recently the application of transformer based

models (Vaswani et al., 2017) for vision tasks has shown

great potential and encouraging results (Dosovitskiy et al.,

2021). In this work, we built upon the recent success

of so called Vision Transformers (ViT) and make use of

a transformer based architecture for the determination of

concrete aggregate size distributions.

Methodology

This paper presents a transformer based approach for the

automatic determination of concrete aggregate size dis-

tributions. By equipping the conveyor belt in a concrete

plant transporting the aggregate material to the concrete

mixer with a sensor setup acquiring image sequences of

the transported material (cf. Fig. 1), the proposed method

can be used to derive detailed knowledge about the actual

grading curve of the aggregates used for the production

of individual concrete batches in real-time. In this way,

an online adjustment of the concrete composition becomes

feasible, enabling the real-time control of desired concrete

properties as is depicted in Fig. 2 (Haist et al., 2022).

Figure 2: Schematic overview on the concept for a concrete
mixture adaptation on the basis of the proposed visual

granulometry estimation.



More formally, given an image I depicting concrete aggre-

gates, this paper aims at automatically deriving the grad-

ing curve G = [p1, p2, ..., pN ]. Per definition, the grading

curve is a histogram in which grain size intervals (bins) are

represented on the abscissa (x-axis) and the quantity pro-

portion is shown on the ordinate (y-axis). Consequently,

G is parameterised by a vector whose elements p j cor-

respond to the histogram percentiles of each grain size

interval j = [1...N]. In this representation, each percentile

is a continuous variable with {p j ∈ R | 0≤ p j ≤ 1} under

the constraint ∑ p j = 1. As a results, mapping the im-

age I to the grading curve G corresponds to a constrained

multi-regression problem of the individual percentiles p j,

in which the determined percentiles must sum op to 1. In

order to tackle this problem, we propose the Granulome-

try Transformer, a Vision Transformer based architecture,

acting as mapping function f : I → G.

Overview on Vision Transformers (ViT)

A typical Vision Transformer (ViT) (Dosovitskiy et al.,

2021) takes a single image as input and decomposes it into

a sequence of n non-overlapping image patches xi ∈ R
h×w

which are transformed into 1D tokens zi ∈ R
d of length

d using a linear projection E. The sequence of tokens

z0
∈ R

(n+1)×d with

z0 = [zcls,Ez1,Ez2, ...,Ezn]+p (1)

then serves as input to a transformer encoder architecture

(Vaswani et al., 2017). As is shown in Eq. 1, a learn-

able classification token zcls is prepended to the sequence,

whose representation at the final layer of the encoder is used

as input embedding for the output layer. Furthermore, a

learnable position embedding p ∈R
n×d is added to the to-

kens (cf. Eq. 1) in order to retain positional information

throughout the permutation invariant self-attention opera-

tions of the encoder. The tokens are passed through the

transformer encoder which consists of a stack of l = 1...L
residual layers, each comprising Multi-Head Self-Attention

(MSA) (Vaswani et al., 2017), layer normalisation (LN),

and Multi-Layer Perceptron (MLP) blocks. The output

of the last layer of the transformer encoder is denoted as

embedding zL = [Xcls,X1,X2, ...,Xn], where n is the total

number of patch tokens and Xcls and X1, ...,Xn correspond

to the embedded class token and patch tokens, respectively.

Finally, a MLP head H is used on top of the transformer en-

coder and typically produces the prediction output based

on the final encoded class token embedding Xcls. As a

consequence, the loss for image I can be written as

Lcls = D(H(Xcls), YI ) , (2)

where H(Xcls) is the output of the final prediction head for

the class embedding Xcls, YI is the reference for image I, and

D(·, ·) is a distance function such as e.g. the cross-entropy

loss for classification problems or the mean squared error

for regression problems.

Granulometry Transformer

The typical ViT as just described performs the prediction

on image-level based on the embedded cls-token (cf. Eq. 2)

and, consequently, neglects the rich information embedded

in each of the individual image patches X1, ...,Xn. In this

work, we propose to utilise each image patch embedding

and to incorporate the patch-level information into the pre-

diction of the particle size distribution. To this end, we

decompose the problem of grading curve estimation for

the image I into the sub-tasks of estimating the grading

curve for small patches extracted from I and, subsequently,

aggregate the information to derive the final size distribu-

tion for the whole image. More specifically, as is shown in

Fig. 3, we make use of the initial ViT-image-decomposition

into the sequence of n non-overlapping patches xi, and pre-

dict the grading curve Gi for each individual patch. Note,

that in this way, we discard the cls-token zcls and conse-

quently also the cls-embedding Xcls from the architectural

design of the ViT. Instead, we apply the MLP head H on

top of the transformer to each of the final token embed-

dings Xi (cf. Fig. 3). We make use of the softmax-function

as final activation in H, returning j = 1...N output values

representing the size distributions Gi which consequently

comply with the constraint ∑ p j = 1. Under the assumption

that each patch shows the same amount (mass) of material,

the final size distribution for the whole image is calculated

as global average of the patch-wise distributions Gi.

Figure 3: Overview on the proposed Granulometry Transformer
architecture. A sequence of linearly projected and flattened

image patches are fed to a transformer encoder and a MLP head
is used on top of the architecture to predict a particle size
distribution for each patch. The final grading curve for the

image is calculated by aggregating the patch-wise distributions.

We argue, that by decomposing the task of estimating the



size distribution for an entire image into decoupled tasks

of determining the grading curve for smaller individual

patches, we are conceptually able to simplify the complex-

ity for the network to learn the mapping between the image

and the associated grading curve. In the classical ViT

setting using the cls-token for prediction, the transformer

encoder has to learn a global latent space embedding as

feature representation on image-level on the basis of which

the MLP head produces the output. In the case of granu-

lometry estimation, generating a global feature embedding

can become challenging since the particle size distribu-

tion can locally be highly different, requiring the network

to learn a potentially complex aggregation of the local

variations into a joint image-level representation. Fig. 4

shows an example of concrete aggregate material which

exhibits strong variations in the local size distributions in

the image. We believe, by conceptually decomposing the

problem into multiple smaller sub-problems, we reduce the

complexity of generating the feature embeddings in latent

space. By allowing the network to produce patch-wise out-

put distributions that differ from the image-level reference

distribution, we enable the network to better account for

locally differing appearances, thus relaxing the demand on

the network’s capability of global reasoning.

Figure 4: Example of concrete aggregate material (left) with
locally varying size distributions (right).

Training

According to the proposed architecture shown in Fig. 3, the

total image loss for the final grading curve results to

L = D

(
1

n

n

∑
i=1

H(Xi), YI

)
. (3)

Note that compared to Eq. 2, the proposed loss does not

depend on the single class embedding Xcls, but instead

on all patch embeddings X1, ...,Xn, therefore leveraging

the additional valuable information encoded in each of

the individual tokens. In this paper, we make use of the

Kullback-Leibler divergence DKL as measure for D(·, ·)
which computes the similarity between the predicted and

the reference grading curves according to

DKL =
N

∑
j=1

p j · log

(
p j

p̂ j

)
, (4)

where p j and p̂ j are the reference and the predicted per-

centiles of the size distribution, respectively. Note that this

loss only accounts for errors in the reference bins p j > 0,

i.e. in size bins that actually contain material and con-

sequently, an overestimation of empty bins does not con-

tribute to the error metric directly. However, as we treat the

grading curve G as a probability distribution with ∑ p j = 1,

the overestimated values are missing in the bins that are

taken into account in the error metric, and therefore, are

considered indirectly.

Furthermore, in the setting covered by Eq. 4, the global

reference grading curve for the entire image is used for loss

computation and thus, training is performed based on a

single reference vector as supervision. As a consequence,

learning to produce the patch-wise size distributions is only

supervised implicitly which, however, allows to apply the

proposed method to data for which patch-wise reference

information is not available. Nevertheless, we point out that

the proposed method allows to perform training in a densely

supervised manner in cases where reference distribution for

the local patches are available or derivable, e.g. from given

instance segmentation masks. As was shown in (Jiang

et al., 2021), dense supervision can aid the training process

and improve model accuracy.

Experimental Setup

Test data

For the experimental evaluation of the proposed method,

we make use of the publicly available Deep Granulom-

etry Dataset1. The data set consists of images showing

concrete aggregate particles and reference data of the par-

ticle size distribution (grading curves) associated to each

image. It is distinguished between the Coarse Aggregate

Data (Dcoarse) and the Fine Aggregate Data (Dfine). Both

contain approximately 1700 images associated to one of

almost 35 different particle size distributions. While the

data in Dcoarse shows aggregate with particle sizes ranging

from 0.1 to 32 mm and provided reference percentiles for

N = 9 size bins, namely 0.25, 0.5, 1, 2, 4, 8, 16, 32.5, 63

[mm], the Dfine data contains fine material with grain sizes

between 0 and 2 mm and with references for N = 6 bins,

namely 0.063, 0.125, 0.25, 0.5, 1.0, 2.0 [mm]. Example

images of both data sets showing material with different

granularities (from fine to coarse) are shown in Fig. 5.

Test settings

In order to evaluate the grading curve prediction we

make use of the described data sets and train networks

for each data set individually. Due to computational

reasons we do not make use of the full image resolution

in which the data is provided but we downsample the

images to an image size of 512x704 [px] for the Dcoarse

data, corresponding to a ground sampling distance (GSD)

of 0.5 mm, and to an image size of 480x480 [px] for

the Dfine data, corresponding to a GSD of 0.1 mm.

As network architecture, we adapt the hybrid ViT-Base

1https://doi.org/10.25835/61y9peiq



Figure 5: Example images of the two publicly available data
sets used for evaluation in this paper.

architecture according to the definition in (Dosovitskiy

et al., 2021), i.e. we feed the image to a small CNN

backbone and form the input sequence for the transformer

based on the feature maps produced by the CNN. More

specifically, we apply two convolutional msEnc-modules

(Coenen et al., 2022a) in case of the Dcoarse data and one

msEnc-module in case of the Dfine data, which perform

residual multi-scale convolutions and downsampling,

and which produce feature maps whose size is reduced

by factor 0.25 and 0.5 w.r.t. the input image size of the

two data sets, respectively. The ViT-Base transformer

encoder is applied to patches extracted from the feature

maps using a patch size of 16x16 [px]. The encoder

backbone consists of L = 12 layers which are composed of

12 multi-head-self-attention (MSA) modules. Training is

done using the Adam optimiser (Kingma and Ba, 2015), a

mini-batch size of 24 and an initial learning rate of 10−5.

To improve training, the learning rate is decreased by a

factor of 10−1 after 10 epochs with no improvement in

the training loss. To reduce overfitting effects, we apply

random radiometric and geometric data augmentations

like colour shift, contrast and brightness variations, as

well as horizontal and vertical flips.

Evaluation strategy

For the evaluation, we follow a two-fold crossvalidation

strategy for both data sets. To this end, we split each data

set into three subsets T1, T2, and T3, containing a propor-

tion of 44%, 44%, and 12% of the total amount of images,

respectively. To ensure balanced data splits, we divide the

data in a way that the proportion of images belonging to

the same grading curve is identical across each split. For

each data set, we train two networks, alternating between

T1 and T2 as train and test split, respectively. The T3 split is

used as validation split for both networks. The evaluation

in this paper is performed on the joint results obtained by

the two networks on both test splits. To this end, we com-

pute the mean absolute errors (MAE) of the predictions

for the individual percentiles p j of the different particle

size bins. Furthermore, in order to assess the performance

of the grading curve predictions as a total, we make use

of the Hellinger distance DH (Hellinger, 1909), which is

a measure of the similarity between two probability dis-

tributions, namely the reference grading curve G and the

predicted grading curve Ĝ in this case. With

DH =
√

1−BC
(
G, Ĝ

)
, (5)

where BC(G, Ĝ) is the Bhattacharyya coefficient (Bhat-

tacharyya, 1943) defined as

BC
(
G, Ĝ

)
=

N

∑
j=1

√
p j · p̂ j, (6)

the distance DH delivers a bounded metric with a maximum

distance of 1 and a minimum distance of 0 in case both

probability distributions are identical.

In order to compare the results to current state-of-the-art,

we report the results on the same data achieved by the R-

S-Net, a purely CNN-based approach presented by Coenen

et al. (2022a), and by a standard Vision Transformer using

the ViT-Base architecture proposed in (Dosovitskiy et al.,

2021).

Evaluation

In Tab. 1 and 2, the percentile-wise MAE obtained on the

Dcoarse and the Dfine data are shown. As is visible from

the tables, the results of the Granulometry Transformer

proposed in this paper for the estimation of particle size

distributions are very promising. On the Dcoarse data, we

achieve percentile-wise MAEs between 0.19 % and 1.81 %

resulting in an average MAE of 1.08 %. On the Dfine

data set, the values for the MAEs are comparably larger,

ranging between 3.19 % and 4.71 %, with an average MAE

of 3.79 %. The same behaviour is observable also for the

results obtained by the R-S-net and the standard ViT. We

identify two potential reasons for the differences in the

performance on the two data sets. One reason might be the

different numbers of percentiles N that are differentiated

by the two data sets. While the Dcoarse data considers nine

grain size bins, the number of distinguished percentiles of

the Dfine data is only six. Because the softmax-activation,

used as normalisation by the final layer of the networks,

constraints the output to sum up to 1, the total magnitude

of the prediction errors is distributed over the amount of

percentiles, leading to decreased percentile-wise average

errors the more bins are considered for estimation. The

second reason might be related to the GSD of the data in

combination with the particle sizes covered by the data

sets. While the coarse aggregate data contains particles

with a maximum size of 32 mm and is used with a GSD

of 0.5 mm, leading to an image representation of the

largest grain by 64 px, the fine aggregate data containing

a maximum grain size of 2 mm is used with a GSD of

0.1 mm, leading to an representation of the maximum

particle in the image with a size of only 20 px. As a

consequence, it is possible, that the fewer amount of image



Table 1: Quantitative results obtained on the Dcoarse test data. The table shows the percentile-wise MAE and their average (Ø) in [%].

Grain size bins [mm] 0.25 0.5 1 2 4 8 16 31.5 63 Ø

R-S-Net (Coenen et al., 2022a) 0.19 1.15 1.27 0.62 1.40 1.51 1.62 1.72 0.20 1.08

ViT (Dosovitskiy et al., 2021) 0.21 1.63 1.77 0.93 1.24 2.80 2.42 2.94 0.21 1.57

Ours 0.19 1.37 1.42 0.69 1.12 1.81 1.46 1.43 0.21 1.08

Table 2: Quantitative results obtained on the Dfine test data. The table shows the percentile-wise MAE and their average (Ø) in [%].

Grain size bins [mm] 0.063 0.125 0.25 0.5 1 2 Ø

R-S-Net (Coenen et al., 2022a) 4.25 3.74 4.03 2.81 2.42 3.77 3.50

ViT (Dosovitskiy et al., 2021) 4.26 4.11 4.47 3.89 4.02 4.51 4.21

Ours 3.83 3.59 4.10 3.29 3.19 4.71 3.79

information per particle of the Dfine data in comparison

to the Dcoarse data can cause a decreased performance in

estimating the particle size distribution for the fine data set.

In addition to the MAEs, Tab. 3 contains the average

Hellinger distances obtained by the different methods on

the two aggregate data sets. As can be seen from the aver-

age MAE (cf. Tab. 1 and Tab. 2) as well as from the mean

Hellinger distances (Tab. 3), the proposed Granulometry

Transformer performs significantly better on both data sets

compared to the standard ViT used as baseline. Regard-

ing the average MAE, our method yields errors which are

smaller by a difference of 0.49 % and 0.42 % on the Dcoarse

and Dfine data set, respectively, which correspond to an

relative improvement of approximately 30 %. Similar rela-

tive improvements are obtained for the mean Hellinger dis-

tance on the Dcoarse data, while the relative improvements

on the Dfine data are with approximately 12 % comparably

smaller. Compared to the R-S-Net used as purely convo-

lutional baseline, our approach performs on-par w.r.t. both

metrics, the MAEs and the Hellinger distances.

Table 3: Average Hellinger distances obtained on the two data
sets Dcoarse and Dfine.

Mean Hellinger distances Dcoarse Dfine

R-S-Net (Coenen et al., 2022a) 0.500 0.101

ViT (Dosovitskiy et al., 2021) 0.071 0.127

Ours 0.048 0.112

To obtain more detailed insights into the distribution of

the percentile-wise absolute errors and the Hellinger dis-

tances, Fig. 6 and Fig. 7 show the cumulative histogram of

both metrics for the two test data sets, respectively. Again,

the depicted graphs highlight the previous observation of

our approach performing on-par with the CNN-based ap-

proach and outperforming the ViT baseline. Also, the

performance differences between both data sets become

visible by the cumulative histograms exhibiting a steep in-

cline on the Dcoarse data and a comparably flatter ascent of

the curve on the Dfine data set.

Since the data sets consists of multiple images associated

to identical particle size distributions (approx. 50 images

per grading curve), it is possible to agglomerate all predic-

tions of images having the same reference grading curve

by computing the average predicted value and standard

Figure 6: Cumulative histogram of absolute errors (top) and of
the Hellinger distance (bottom) obtained on the Dcoarse data set.

deviation for each percentile for a visual demonstration.

Fig. 8 shows representative examples of aggregate images

and their associated grading curves of both, the reference

(green) as well as the average prediction (red). Further-

more, the bands depicted in the diagrams represent the

standard deviation area of predictions for the test images

of the respective aggregate sample.

Conclusion

The current practice of concrete mixture design and

production often relies on strong assumptions on prop-

erties of the raw materials used for production, such as

e.g. the particle size distribution of the aggregate. As

a consequence, unknown variations of the aggregate’s

grading curve and deviations from the assumed size

distribution (especially pronounced in the case of recycled

materials), are not properly taken into account in the mix



Figure 7: Cumulative histogram of absolute errors (top) and of
the Hellinger distance (bottom) obtained on the Dfine data set.

design, potentially leading to undesired effects w.r.t. the

concrete properties. In order to enable the control of

the variations, we present a deep learning based method

for the determination of the grading curve of concrete

aggregate from images. More specifically, we propose

an adaptation of the Vision Transformer architecture

for the local patch-aware determination of the particle

size distribution, leading to an improved performance

compared to the standard ViT network. Experiments on

two challenging data sets demonstrated highly promising

results with percentile-wise mean average errors of less

than 2 % and 5 % obtained on both data sets, respectively.

In the future, we aim at extending the approach by not

only determining the particle size distribution of concrete

aggregate, but also at identifying shape-related properties

of the aggregate and at predicting its material composi-

tion (e.g. the material composition of recycled aggregate),

two properties which carry highly relevant information re-

garding the concrete mix design. Furthermore, we aim at

applying the proposed approach as a basis for the develop-

ment of an online concrete control scheme, with the goal

to adapt the mix composition in real time to react to the

detected fluctuations and properties of the raw materials.

This implies the extension of the described approach from

working in a static scenario (single images are processed)

to an application in a dynamic scenario (image sequences

obtained from the material moving on the conveyor belt).

(a) Exemplary results on the Dcoarse data.

(b) Exemplary results on the Dfine data..

Figure 8: Examples of aggregate images (right) belonging to
different reference grading curves (left, green) and the average
predicted size distribution (red curve) as well as its standard

deviation (light red area).
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