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Abstract

Indoor construction progress monitoring has challenges
like occlusion, light variation, dynamic environment
which makes its automation different from outdoor
construction progress monitoring. Al/deep learning
approaches can help overcome these challenges but using
them for indoor construction monitoring raises some
issues like lack of annotated image data for construction
works. Transfer learning provides the initial solution to
the Alrelated challenges. In our research we use this state-
of-the-art method on construction site data and detect as-
built stages of a drywall construction. The results are
promising with accurate prediction of 3 stages of the
drywall process.

Introduction

Construction industry is a core industry and backbone of
anation’s economy, yet it suffers from delays and wastage
on account of lack of streamlined process. The
management of construction process requires progress
monitoring, which determines the status of each task in
each location. Progress data are required for key decisions
of a construction project including work directives to
construction crews and progress payments to contractors
(Kenley & Seppénen, 2009). Lack of accurate progress
data can lead to significant wasted effort for the crews
(Seppénen & Gorsch, 2022).

The general method of construction progress monitoring
consists of manual observations and reporting the data in
weekly contractor meetings. The manual observations are
subjective as the reported data could be incomplete and
not clearly defined (Zhao et al., 2021). To solve the
problems with manual data collection, automatic
construction progress monitoring is desired. Automatic
progress monitoring stores data in digital format and can
be used as part of digital twins in construction stage.
Digital twins for construction not only include as-
designed models and processes but also as-built model
and processes during construction (Sacks et al., 2020).
Digital twin for as-built process requires interpretation of
as-built process data collected from the construction site.
Visual data from site provides scope for better and
objective interpretation of as-built process data.

Yet, automatic interpretation of collected data poses a
challenge because of construction scene scenario. The
construction scene is dynamic, immersive and crowded
which renders the interpretation of visual data collected
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complex (Fathi et al.,2015). The geometries and materials
change frequently while construction progresses (Paneru
& Jeelani, 2021). Also, there are variations in scene like
light variations, presence of dust particles & reflective
objects which may affect the accuracy of the data
collected on site and consequently the interpretation
(Mirzaei et al., 2022). These challenges require different
algorithms for pre-processing the images and for feature
extraction as presented in their pioneering work by
Hamledari et al. (2017) and Kropp et al. (2014) on indoor
construction  element  detection. The  research
demonstrates promising results, but these algorithms have
the inherent drawback that they are specifically tailored to
progress detection in certain scenarios. To extend these
methods to different construction sites or visual
conditions may not produce accurate results. Also, using
the same algorithms for new images may require heavy
pre-processing to bring the visual conditions to a level
where the algorithms could work fine on a new set of data.
Thus, there is a need to explore the use of AT and machine
learning for construction as-built data interpretation
which has been less explored in construction domain.

For our research case, we focus on drywall construction
progress monitoring by using Deep learning-based data
interpretation. Drywall is chosen as it is an important
assembly of indoor construction. BIM (Building
Information Models) typically does not include separate
elements for each stage of drywall process, so geometry-
based methods are not sufficient. This research tries to
classify the stage of dry wall in as-built data by utilizing
the capability of “You look only once’(YOLO) object
detection algorithm. The challenges which come up while
using deep learning in the context of indoor construction
progress monitoring are discussed. The resolution of
challenges like lack of extensive annotated construction
data overcoming the conditions at construction site is an
interesting research question which we explore in this

paper.
Background

Artificial intelligence and machine learning (AIML)
algorithms like Random Forests, SVM and deep learning
algorithms like CNN have become popular tools in visual
scene interpretation for various applications like
autonomous driving, urban scene classification, video
surveillance etc (Paneru & Jeelani, 2021). The computer
vision (CV) for these applications has advanced to a level
of great accuracy. For construction progress monitoring,
attempts have been made to automate the progress



assessment based on work package assessment & CV
(Braun et al., 2018), by one-to-one comparison between
as-built and as-designed data (Yang et al., 2015, Roh et
al., 2011, Hamledari et al., 2017). In most works, the use
of CV is limited to object classification and comparison
between objects is done visually in as-built and as-
designed data. (Golparvar et al., 2011, Masood et al.,
2020). The approach of comparing as-built to as-designed
may be useful for reporting the percentage of work being
completed but does not address instances where a single
element of construction goes through different stages.
This information can be used for optimizing time and
resources on construction site, which requires modelling
of individual element using object detection and
monitoring them using Al and CV.

Some works also demonstrate appearance-based methods
to identify changes on construction site based on either
geometries or material (Han et al., 2015, Dimitrov and
Golparvar, 2014, Son & Kim, 2010, Kevin et al., 2018).
Kevin et al. (2018) were successful in capturing element
wise progress based on geometries of elements but they
did not use a machine learning based approach. In context
of construction progress monitoring there is a need to find
an efficient and automatic way to align as-built data with
as-designed data and to develop algorithms which either
do not need a large amount of training data or can be
augmented with the help of limited number of labeled
classes (Seong et al., 2017). In addition, there have been
attempts to recognize some individual objects like rebar
covers using specific machine learning algorithms which
are particularly tailored to this application (Cuypers et al.,
2021). Due to unique characteristics of constructions
sites, there is also a need to build a comprehensive
database for training neural networks which can address
variations and dynamics on sites. (Paneru & Jeelani,
2021). Occlusions have been tackled by Xin et al. (2019)
by using Fermat paths of light between a known visible
scene and an unknown object not in the line of sight of a
transient camera to create a prediction of hidden surfaces.
However, occlusion and limited visibility issues have not
been resolved completely and continue to be a challenge
in using computer vision for construction.

There are two prominent research work related to dry wall
detection by Kropp et al., (2014) and Hamledari et al.
(2017). Both research works utilize traditional image
processing i.e. color and texture based object recognition.
The first one only identifies 3 stages of dry wall i.e.
paneling, plastering and painting using support vector
machines. The latter framework can recognize framing,
insulation, installed drywall, plastered drywall, and
painted partition stages of the dry wall. The work is very
promising but has localization errors. The algorithm is
specifically tailored to a set of images and using the
methods on other construction site images may require
heavy pre-processing. Another recent research work by
Ekanayake et al. (2022) employs similar approach, but
their detection is limited to framing, insulation and
drywall installation. We aim to detect all stages of the dry
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wall as these phases convey progress at the level which
can be important for tracking resources and manpower at
the construction site.

The following challenges can be summarized from the
literature before AIML can be used impeccably for
construction progress monitoring:

1. Due to dynamic site conditions, occlusion (Rebolj et al.,
2008) may happen common for both images and point
cloud (as-built data).

2. Lack of any algorithms which are trained on
construction site objects or large construction site
datasets.

3. Lack of fully annotated dataset (Fang et al., 2019)
because of new objects, which can appear on construction
site.

Moreover, the role of semantics and ontologies in
integration with CV needs to be explored for change
detection that can provide a crucial clue for construction
progress monitoring. Choice of AIML algorithms which
do not show what is happening inside these algorithms
also pose a challenge for transparent solution
development.

Methodology

The initial step in automatic progress monitoring is
detection of objects on the construction sites. The
detection of objects can be achieved by deriving features
by using traditional image processing but that is not
universal and application specific. For a more holistic
approach, a generalizable solution is more desirable
which can be achieved through deep learning methods.
Supervised deep learning methods require labeled or
annotated data for the model training. Therefore, in this
paper we focus on two problems: (1) the lack of domain-
specific annotated data and (2) the absence of deep
learning models tailored to the construction progress
monitoring.

The experiments are done on dry wall because it has
distinguishable stages of construction which are typically
not included in BIM models. Therefore, just comparing
BIM model to images is not sufficient. Our aim is to have
a holistic approach which can detect all the as-built stages
of dry wall to improve situational awareness on
construction sites. Therefore, we choose the stages of
drywall so that it covers all the prominent steps in its
installation which are as follows, Stage 0: No dry wall;
Stage 1: Installation of studs (figure 1); Stage 2: Gypsum
Paneling; Stage 3: Electrical and plumbing works (figure
2); Stage 4: Insulation work; Stage 5: Wall-closed/only
paneled side visible without studs; Stage 6: Plastering of
the wall (figure 3); Stage 7: Painting of the wall.

We formulate our problem as a computer vision task,
specifically object detection, which amounts to detection
and location of objects of interest in an image. We use
deep learning approach in combination with transfer



learning to train a model for object detection (Pan et al.,
2009). Transfer learning methods allow leveraging
already obtained knowledge for solving different, but
related task. As an example, first layers of a convolutional
neural network pre-trained on CIFAR image dataset
(Krizhevsky, 2009) can be reused for classification
problem on a custom image dataset. Transfer learning can
be viewed as a form of model regularization. Thus, it is
particularly beneficial for reducing overfitting of large
neural networks to small datasets. In addition, transfer
learning reduces training time and saves computational
resources, compared to training deep learning models
from scratch. Given these arguments, applying transfer
learning approach to construction domain seems very
promising.

Figure 1: Stage I-Installation of Studs for the dry wall

Figure 2: Stage 3-Electrical and plumbing works

Figure 3: Stage 6. Plastering of the wall

In the following experiments we use pre-trained YOLO
v7 deep neural network model commonly used for fast,
real-time object detection. It was first introduced by
Redmon et. al. (2016) to modify object detection as a
regression problem to spatially separated bounding boxes

513

and associated class probabilities. The advantage of using
YOLO is that the algorithm utilizes a single neural
network to predict objects in images making it an
optimized object detection pipeline.

YOLO v7 (Wang et. al, 2022) is the latest version of
YOLO model and is originally trained on COCO dataset
which has images of 91 objects of common occurrence
like car, hat, umbrella, dogs, suitcase, tennis racket, cup,
cake, door etc. There are no existing neural network
models in public domain which are trained on extensive
construction site data. Thus, the first task is to create an
annotated dataset for indoor construction works.

Data Collection and Annotation

The data was initially collected in the form of 360 degree
videos on two construction sites. Drywall snapshots were
taken from these videos to generate images for each stage
of the dry wall. We have labeled 100-150 images per each
stage, with the assumption that this is a minimal sample
size needed for fine-tuning pre-trained neural network.
The images were annotated using bounding box with
labels as YOLO accepts annotation in the form of
bounding boxes. Sample images of annotation are shown
in the figures 1, 2 & 3.

The images were annotated within a software called
Image Annotation Lab. Before choosing Image
Annotation Lab as the labelling software, comparisons
were made with VGG annotator, MakeSense, RoboFlow
and Supervisely based on parameters such as easy GUI,
price and output formats provided. Most of the stages had
the target number of labelled images but some stages
could not be captured very extensively like insulation
because the stage is completed too fast during
construction. This class imbalance has to be taken into
account during training of the YOLO model and
interpreting results.

Next, we used pre-trained the YOLO v7 neural network
on the custom dataset consisting of drywall stages and
respective bounding boxes. Figure 4 shows the original
YOLO vl architecture which consists of a CNN backbone
for feature learning and extraction and a head for
prediction of class probabilities, bounding box objectness
score (confidence score as described in Equation 1) and
bounding boxes coordinates. We applied transfer
learning, specifically fine-tuning of the pre-trained
network to train YOLO v7 on our custom dataset.

truth

Pr(Class_i|Object) * Pr(Object) * IOUE truth

= Pr(Class_i) * IOU —
pred

(1)
where,

Pr(Class_i|Object)  represents the  conditional
probability of the predicted class i given the presence of
an object in the bounding box.

Pr(Object) represents the marginal probability of the
presence of an object in the bounding box. It is the
probability that there is an object in the bounding box,
regardless of what the predicted class is.



truth . . .
10U pr:—ed represents the intersection over union (IOU)

between the predicted bounding box and the ground-truth
bounding box. The IOU is a measure of the overlap
between the two boxes, with a value of 1 indicating a
perfect overlap and a value of 0 indicating no overlap.
Pr(Class_i) represents the marginal probability of the
predicted class i. It is the probability that the predicted
class is 1, regardless of whether an object is present in the
bounding box.

The head i.e. classifier is modified as per the number of
classes or the type of prediction. In our case it is a multi-
label, multi-class prediction, so head of the YOLO is
modified as per the requirements. Since construction site
images are a new type of data for YOLO, we try to
customize the parameters of the neural network. This
implies that weights were updated only for the last
convolutional layers before the classification head (fine-
tuning) with a small learning rate. The details of images
per class are shown in table 1. The number of images for
Stage 4 i.e. Insulation and Stage 7 i.e. Painting of the dry
wall were too low in the collected data set. Therefore, they
are not included in this phase of object detection and
progress monitoring.

vvvvv yers  Conv. Layers
12 7y 3x3x1024
2 P2 $aioss

Tx1x512 3x3x1024

x512 3x3x1024  3x3x102452

Maxpool Layer  Maxpool Layer
2242 2242

Figure 4: YOLO architecture

Table 1: Image of each stage of dry wall

Name of Stage No. of Images

Stage 1 Studs 86

Stage 2 Gypsum Paneling 171

Stage 3 Electrical 111

Stage 5 Gypsum Panel 199
Visible Side

Stage 6 Gypsum Plaster 130

Results

The experiment was configured in Google Collaboratory
(Google colab) by downloading the Yolov7 model from
GitHub. (Wang et. al, 2022). The image dataset was
divided into 2 categories, the first one containing 80 % of
data to be used for training and the rest 20% to be used for
validation. Yolo7.pt containing weights based on MS
COCO dataset was downloaded and put into the Yolov7
directory to be used as for transfer learning. In the
coco.yaml file the location of training and validation set
were defined and classes were modified according to our
requirements based on 6 classes of drywall. The entire
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folder was then uploaded to google drive to be used with
Google Colab. The default training parameters were used
for the training images, the image dataset was
standardized with no rotation, translation needed.
Training was done on the Tensor processing unit (TPU)
provided by Google colab with batch size of 8 for total of
50 epochs.

After the training was completed, the resulting weights
were stored in the best.pt file in the training folder. These
weights were then copied to the main directory to be used
for object detection. After training, the updated model is
tested on the validations set and the recall, the mean
average precision (mAP) and average loss at an
intersection over union (IoU) of 0.5 is observed from each
stage of drywall. The F1 score is not reported as the
dataset is small, and the score does work well with class
imbalance.

Table 2 summarizes the precision, recall and mAP for all
the given stages. Recall and mAP was highest for stage 2
i.e. Gypsum paneling followed by stage 5 and 6. This can
also be observed from the figures 5 and 6 where the model
has predicted gypsum paneling visible side with .80
confidence score and Gypsum plaster with .53 confidence
score. The model predicts the right class with a confidence
score (For example a .80 confidence score will mean that
the model is 80 % confident that the object detected by the
bounding box is present in the image) depending on the
similarity of features derived from training images and
test images. Lowest recall & mAP is observed for stage 1
i.e studs and stage 3 i.e. electrical and plumbing works, so
the model in its current form is not able to detect these
stages. An example of this is shown in figure 7 where the
model predicts a stage as stage 2 i.e. Gypsum paneling but
there are some electrical wires visible which implies it
should be Stage 3 Electric work stage.

Table 2: Summary of results on validation set

Name of  Precision  Recall
Stage
Studs 1
Gypsum 0.465
Paneling
Electric
Works
Gypsum
Plaster
Visible
side
Gypsum
Plaster

mAP@0.5

0
0.855

0.00195
0.657

0.11 0.0769 0.0648

0.376 0.607 0.478

0.255 0.5 0.27

Discussion

The model in its current form is able to detect 3 stages
well but is unable to detect the first and the third stage at
all. This may happen due to several factors which
influenced the model training and feature extraction from
the input images. The first reason could be the number of
input images given to neural network for each stage. The
number of images for stage 1 are low compared to rest of



the stages (Table 1). Fewer images imply that the model
has less instances to learn the features of these images
which may be a major reason of non-detection of first
stage.

However, there must be other reasons for non -detection
for the third stage because the number of images seem
sufficient, but performance of the model is poor. This may
be because the features in the second and third stage are
very similar. There are studs and gypsum panel visible in
both stages. Visually the electrical wires are very slender
and take very little space on the image (example: figure
7). Thus, the model predicts it to be stage 2 instead of
stage 3. The work attempted to classify all major stages in
dry wall construction. In contrast to Ekenayake et al.
(2022), we got good results for stage 2: gypsum paneling,
stage 5: both side paneled and stage 6: plastering. This
distinction of stages has not been done in previous works;
most researchers before having divided the drywall
progress into fewer stages.

Also, classification and localization by YOLOv7 is more
accurate than YOLOv4 which has more localization
errors (John and Meva, 2023). The limitation of our work
is that, currently we are not able to detect the framing
stage accurately which has been well detected by
Hamledari et. al. (2017) and Ekenayake et al. (2022). This
needs further investigation for improvement of the
detection process. The model which was produced by
training on a small set of drywall images showed positive
results for as-built stage detection of drywall. However,
some challenges remain for using neural networks for
object detection. The number of images should be
adequate so that model can learn features for accurate
prediction. If the features are similar in several stages,
there is need of data augmentation techniques to be
employed. To distinguish between similar stages,
semantic information could also be provided to the neural
network to enhance the prediction capabilities. This
highlights the need for an extensive database which could
store images in a semantic way. In future research, we will
extend this research to include more images of the stages
and employ data augmentation techniques for a robust
model. Ultimately, a generalizable solution for many
indoor progress detection tasks is required to enable
automatic data analysis for digital twins in construction.

Conclusion

Automated construction progress monitoring is important
not only from a perspective of creating real time digital
situational awareness, but it forms an important part of
digital twins in construction phase. In this work we
identified various challenges which appear while applying
modern techniques like deep learning using sensors for
automatic progress monitoring. Challenges like lack of
annotated dataset and lack of a comprehensive framework
related to indoor construction were solved to an extent by
transfer learning. Yet challenges of occlusion and sematic
interpretation remain. In future research, this process
should be integrated with automatic data collection from
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worksite. It can also be explored how computer vision
results can be augmented by combining other data
sources.

Figure 6. Prediction for Gypsum plastering

Snge 2 _Grpaem_Ponelieg __Mes 0.72

Figure 7: Prediction for Electrical wiring stage

In future works, we will explore how data from different
sensors like location, temperature, humidity, and
videos/images can be fused together for workflow
monitoring. This is envisaged to be done by using a real
time data collection and identification system involving
Spot robot and algorithm developed for the use case. The
Spot robot will collect videos and point cloud data of the
site and these along with other sensor data will be



processed using Al. This data would be transferred to a
server where processing will be done, and the processed
information would be returned to a system which can help
visualize the situation on the worksite. This system of
visual management could be a digital board or a tablet or
an app made for visual management and accessible by all
stakeholders.
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