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Abstract

Automatic geometry digitisation of existing buildings
remains challenging due to the large scale and heavy
clutter of input point clouds. This paper presents a two-
stage hybrid method to detect structural objects. The first
stage detects areas of interest that are likely to contain an
object, while the second stage finds precise objects. The
method benefits from data-driven and model-driven
approaches to achieve high accuracy for large-scale,
highly cluttered and occluded real-world environments.
We evaluate our method on the Stanford3D S3DIS dataset
to show that the method detects from 83% to 98% of
structural objects, such as columns, doors and windows.

Introduction

This paper is about digitising existing buildings' geometry
from Point Cloud Datasets (PCDs), i.e. constructing their
geometric Digital Twins (geometric DTs or gDTs).
Constructing DTs is important because they improve
various processes during the operation, maintenance, and
renovation stages of the building lifecycle (Becerik-
Gerber et al. 2012; Bryde et al. 2013; Sacks et al. 2018).
However, the costs of constructing a gDT of an existing
building counteract the benefits of DTs (Hossain and
Yeoh 2018).

Digitisation of existing buildings uses PCDs as a
reference for as-is geometry because building design
models are outdated or unreliable (Mahdjoubi et al. 2015).
It remains a time-consuming and manually intensive
process. State of Practice commercial software, e.g.
EdgeWise3D or Faro as-built, can fit parametric models
into point clusters of objects, detect planar/cylindrical
surfaces as a basis for object modelling, and select the
most appropriate models from a catalogue. Although it
serves as a strong support for semi-automatic modelling,
the industry still requires a significant amount of manual
work, such as modelling undetected objects and ensuring
model consistency, among other.

While buildings have numerous object types, only a few
of them frequently appear. Studies show that slabs, walls,
columns, beams, doors and windows cover 85% of
structural objects (Drobnyi et al. 2022). This work aims to
automate the detection of these objects for constructing
gDTs of existing buildings. In general, automatic object
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detection methods can be classified in two types, model-
driven approaches and data-driven approaches. The
former ones yield robust detection and accurate
boundaries but remain impractical in large-scale or
cluttered indoors environments due to the exploding
computational costs. While the latter ones, such as the
work of Qian et al. (2022), are scalable and easily
extendable to new object types and environments, they
have insufficient performance on smaller objects, such as
columns, beams, doors and windows.

In this paper, we propose a hybrid method to detect
structural objects in large-scale, heavily cluttered indoor
PCDs. We formulate our approach in a two-stage
framework: first data-driven and second model-driven
stages benefit from both of the above-mentioned
approaches. The data-driven stage significantly reduces
the search space for objects, while the model-driven stage
yields a precise object location with crisp, well-defined
boundaries. The proposed method can successfully detect
objects, such as columns, doors and windows, in real-
world PCDs. We conducted experiments on the public
dataset S3DIS (Armeni et al. 2016). Experimental results
show that our proposed method can achieve promising
performance for gDT construction.

Background

We give an overview of existing research in the area of
digitising buildings and PCD deep learning and highlight
gaps in knowledge in this section. Object detection
methods in PCD for indoor environments can be split into
model-driven and data-driven methods. The model-driven
methods detect handcrafted features and compose them to
form objects. These methods are based on
planar/cylindrical surface detection using RANSAC,
Hough Transform, or region-growing algorithms. This
allows for the detection of walls, ceilings, floors, columns,
beams, and pipes in indoor PCDs (Anagnostopoulos et al.
2016; Dimitrov and Golparvar-Fard 2015; Han et al.
2021; Wang et al. 2021). These methods, however, are
designed for environments with low occlusion and no
clutter and become computationally infeasible on large-
scale inputs.



Model-driven automatic detection of doors can be
achieved by analysing wall surfaces. It can use empty
regions of wall planes for opened doors (Shi et al. 2019)
or colour discontinuity for closed walls (Quintana et al.
2018). These, however, remain sensitive to the quality of
wall detection methods and occlusions or assume that
local colour distribution will be very distinctive for walls
and doors.

The space decomposition methods allow splitting the
large-scale input into multiple smaller PCDs for better
computational efficiency of object detection methods.
This usually involves 2D detection on a projected PCD
onto an XY plane (Macher et al. 2017; Ochmann et al.
2019; Shi et al. 2019), which remains sensitive to clutter
and occlusions and is subject to other constraints, such as
known positions of sensor location. Alternatively,
methods such as Pan et al. (2021), Tran et al. (2018) can
partition spaces directly in 3D, but they are limited to
Manhatten-world buildings with limited occlusions.

Data-driven methods infer objects based on previously
seen labelled samples. This allows for predicting
bounding boxes of objects directly from PCDs using deep
neural networks or other learnable classifiers (Armeni et
al. 2016; Xu et al. 2021a; b) or object clusters of building
elements (Perez-Perez et al. 2021a; b). However, these
methods are designed for environments with no clutter or
require the input to be split into individual spaces
beforehand, yielding better performance than for large-
scale cluttered environments (Qian et al. 2022).

Besides, these methods operate with clusters of points of
original PCD or their bounding boxes, which only cover
a part of object surfaces. However, many objects, such as
columns, are only partially visible; therefore, these
methods detect only a part of the object by design. Figure
1 shows an example of this phenomenon. A bounding box
of the ground truth cluster of points of a column covers
roughly one-third of the volume of the column.

Figure 1 Ground truth cluster (dark green) and parametric
model (blue bounding box) of a rectangular column.
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Many works in the computer vision domain perform class
segmentation of points in PCDs (Qian et al. 2022; Thomas
et al. 2019; Zhao et al. 2020), which can be helpful for
object detection as a first filtering step. While these
methods yield high-quality results for large objects, such
as floors, ceilings, and walls, their performance on other
structural objects is notably smaller. The predicted
segmentation fades columns, windows and doors (mainly
closed doors) into walls or other classes as they have
similar geometry. Also, the boundaries of clusters are
usually poorly shaped. Figure 2 shows the predicted
semantic class labels for points generated with the
PointNext-B model and highlights both of these issues. It
limits pure data-driven methods' applicability in detecting
building objects.

Figure 2 Example of semantic segmentation. Dark green —
columns, light green — windows, red — doors, orange - walls.

Overall, robust detection of structural objects, excluding
walls, ceilings and floors, remains challenging for real-
world PCDs. The gap in knowledge is that existing
methods for structural object detection rely on space
partioning or require limited occlusions instead of directly
detecting objects in large-scale inputs with clutter and
occlusions. The paper aims to fill this gap. The research
questions this work answers:

1. How to effectively find areas that are likely to
contain structural objects in large-scale,
cluttered PCDs?

How to robustly detect objects when a notable
part of objects’ surface is not visible?

Proposed Solution

We propose a two-stage hybrid method for detecting
rectangular columns, doors and windows in large-scale,
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Figure 3 Method overview.

occluded PCDs of existing buildings. In contrast to
existing studies, this paper uses data-driven methods to
detect a rough potential position of structural objects and
applies model-driven methods to refine detected objects.
The first stage uses deep neural networks to generate areas
of interest, inside which there is high likelihood that the
object is fully contained. The second stage uses model-
driven methods to detect and refine particular object types
for each area of interest from the first stage. Figure 3
provides an overview of the proposed solution.

Areas of interest detection

The first stage receives the entire PCD as input and yields
bounding boxes that may contain objects of interest. We
use a deep neural network to predict the scores for each
point and class of an entire floor of a building. We design
a PointNeXt-based model (Qian et al. 2022) and train with
semantic class segmentation supervision. We sample
multiple overlapping spheres from the input, predict class
scores for each point, and average them among samples.
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Figure 4 Overview of the stage one. Ool - Object of Interest (e.g.
column or door), th - threshold.
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The neural network predicts probability-like (softmax)
values for each point for each object type. Unlike the
semantic class segmentation task, which assigns a class
label to a point taking a class with the maximum score, we
threshold scores of classes of interest (Figure 4). We keep
a point if the score of the object type, e.g. column, for the
point exceeds the threshold and discard it otherwise. This
approach is chosen because points of object types of
interest are usually misclassified as other classes which
are in the majority of the dataset, e.g. walls. It allows
detecting objects with lower likelihood, which frequently
happens with columns, doors and windows.

We then cluster the remaining points using the DBSCAN
algorithm in 3D space to retrieve seed clusters. After that,
we compute extended bounding boxes of these clusters to
include potential false-negative detections and capture
context. These extended bounding boxes serve as areas of
interest for objects for later stages.

Object detection

The second stage takes every bounding box and fits a
model of a particular object type. This stage aims to check
if the input bounding box contains an object of interest.
We detect an object if the fitted model aligns well with the
PCD. Otherwise, we discard the bounding box. We
represent the geometry of objects as oriented bounding
boxes with one axis parallel to the Z axis.

The implementation of the method varies depending on
the object type. Rectangular columns are oriented cuboids



inside empty regions of the PCD. We reduce the problem
of fitting a column into a 2D problem. We project the
point cloud inside a bounding box to the XY plane and
find linear segments there. We then find all pairs of close
perpendicular segments and check the number of points
falling inside the bounding box spanned by these line
segments. If there are no points inside the bounding box
and the dimensions of this box are within column size
(e.g. each side is from 0.2 to 1 metre), we consider it to be
a column. Otherwise, we discard it.

After that, we iterate over each pair of bounding boxes to
check if they belong to the same column and merge them.
We merge the pair if the union (i.e. a minimal bounding
box that includes both bounding boxes of a pair) is empty
inside and of a reasonable size. This is necessary because
each corner spans an object, meaning that multiple objects
per single ground truth column may be generated.

We assume that doors and windows have cuboidal shapes
with frames around them. Practically, windows and open
and closed doors are visible only from one side.
Therefore, only a planar surface of an object remains
visible. We use point clusters from the first stage as seed
points for plane segmentation. We estimate plane
parameters for each cluster of areas of interest using
RANSAC. We then reclassify points lying on the plane
and compute a bounding box of it.

Later, we check the dimension of each proposed object
and filter out too-short, too-tall, too-narrow and too-wide
objects because these bounding boxes belong to other
object types. Lastly, we merge overlapping bounding
boxes because a few bounding boxes from the first stage
may cover the same object.

The benefits of the proposed method are based on the
following assumptions:
e Generated areas of interest cover only a part of
the input PCD.
e Objects of interest have a distinctive geometry.

Experiments

We use the S3DIS dataset (Armeni et al. 2016) for the
experiments. We use Areas-1, 2, 3, 4, and 6 for the
training of the neural network for the first stage and Area-
5 for testing as a standard split. Area-5 covers a floor of a
university building, it has 53 rooms and multiple corridors
and contains 53 rectangular columns, 41 windows and 76
doors. Area-5 is the dataset's largest, most occluded, and
most challenging scene. We also exclude round columns
and windows with no points on their surface because the
training set has none of these objects. We report the
performance only for rectangular columns (R Columns).

We evaluate the performance of both stages. We evaluate
the first stage in terms of area coverage and object
coverage. The proposed stage splits the input into multiple
areas of small area (~5sq.m.) that cover the majority of
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objects of the original PCD. Figure 5 shows the detected
areas of interest for columns.

A
Figure 5 Detected areas of interest for columns (red bounding

boxes). Colours are ground truth class labels (dark green -
columns)

Table 1 Performance of the first stage. It shows what part of
the area is covered by areas of interest (in per cent) and how
many objects of interest are inside (in per cent).

Object type R Columns | Windows | Doors
Area covered 27% 5% 11%
Objects covered 92% 100% 91%

Table 1 shows the portion of the original PCD inside of
all of the bounding boxes and what part of ground truth
objects are inside it. It shows that the first stage can
significantly reduce the search space for the second stage,
improving the overall method's componential complexity.

False-negative column area of interest detection in the
first stage falls into two categories: columns with large
dimensions (e.g. around 1 metre) with only one side fully
captured and columns with only one side visible and one
side occluded by a bookshelf. In both cases, these objects
are hardly distinguishable from walls. Besides, the ground
truth labels are inconsistent from object to object (e.g. a
column surface is marked as a column on one side and as
a wall on another), which hardens the training of the
neural network. It is worth noting that the method still
detects the majority of such columns.

False-negative door detections in the first stage
correspond to closed doors aligned with the wall's surface,
i.e. lie on the same plane as the wall. This is also because
of the small number of such objects in the training dataset.

In the second stage, we model the geometry of an object
as a minimal enclosing bounding box of the object. We
then compare it to the bounding boxes of ground truth
object clusters and register a correct detection if the
overlap is at least 50%.

Table 2 shows object-level precisions and recalls for
object types in consideration. While the precision for
rectangular columns is low, the others precisions and
recalls are high. This highlights that the method
accurately detects doors and windows while generating



Figure 6 Examples of detected rectangular columns, windows and doors. PCD colour are ground truth (dark green - columns, light
green - windows, red - doors). Blue bounding boxes - detected objects.

many false positive columns. It indicates that column
detection should be improved. Figure 7 shows the results
of the second stage of the method for columns. Figure 6
shows the final results of the method.

The detected columns tend to be larger in volume than
bounding boxes of ground truth clusters (Figure 1). This
is usually a better result because it aligns better with
construction patterns.

Table 2 Object-level precision and recall at overlap threshold The undetected column parts are usually occluded with
0.5 bookshelves aligned with the column surface, similar to
the false negatives in the first stage. The method struggles

Obje.ct. type | R Column | Window Door to detect them because the column-bookshelf border is
Precision 53% 95% 97% hardly visible and poorly recognisable in terms of
Recall 90% 98% 91%

Ground
Truth
Class
Segmentatio
SV ,
Ours Figure 8 False negative detection of part of a column (in red).

Figure 7 Example of results for columns. Dark gree - columns.

geometry. This leads to columns being unrecognised or
partially recognised. Figure 8 highlights this situation;
note that only a small part of a column side is visible while
the visible side is aligned with a bookshelf.



The vast majority of false-negative door detection
corresponds to closed doors that are on the same plane as
the wall they are on. This indicates that closed doors may
not have enough descriptive geometry to be detected.
Their detection would require colour information in the
second stage.

The proposed method can successfully detect rough
locations of the majority of rectangular columns in the
first stage. This stage is also easily extendable to other
object types and environments by providing
corresponding labelled PCDs for training. The quality of
the outcome for the objects considered in this study can
be improved in the same way.

Discussion

The implemented object detection method finds most
objects from the input. Although it produces a substantial
number of false positives for rectangular columns due to
the similar nature of their geometry to other objects, it can
benefit from a  better-designed method  for
detecting/fitting object models (2™ stage). Alternatively,
false-positive detections can be easily removed manually
in practical applications.

The overall method can robustly detect objects directly in
large-scale PCDs, even if objects are heavily occluded.
Unlike other methods, our method does not require the
input to be split into individual spaces or other objects to
be detected, e.g. walls. Additionally, two stages of the
method are decoupled and can be used in combination
with other segmentation neural networks for better
performance of the first stage or model fitting methods for
better performance of the second stage. The first stage can
also be used as a preprocessing step for other model fitting
methods to improve their componential efficiency on
large-scale inputs.

Conclusions and Future Work

The paper presents a two-stage approach to generating
objects in large-scale, highly cluttered PCDs of existing
buildings. It benefits from the flexibility and extensibility
of data-driven approaches in the first stage and the
preciseness, robustness and formality of model-driven
approaches in the second stage.

The proposed method can highlight the most likely areas
for objects and significantly reduce computational costs
for further geometry modelling. This can improve
practical semi-automatic pipelines and research methods
by reducing search space for precise object geometry
fitting. It also proposes a set of simple model-fitting
methods to refine object proposals and generate precise
geometry of objects.

It can contribute towards reducing gDT construction costs
for buildings from PCD to the point of their profitability.
It will unlock the benefits of DTs for existing buildings
and lead to a more cost-effective, sustainable and resilient
built environment. This will benefit the overall economy.
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We plan to improve both stages to increase the precision
and recall for both stages and evaluate the presented
approach on other datasets. The future work for the first
stage includes investigating other neural network models,
a better hyperparameter selection, and other thresholding
strategies. For the second stage, we plan to better method
for rectangular columns, add other object types, and
consider colour values to detect objects with poor-defined
geometry.

Acknowledgement

This work is funded by the EU Horizon 2020 CBIM
project under agreement No. 860555 and EU Horizon
2020 BIM2TWIN project under agreement No. 958398.

References

Anagnostopoulos, I., V. Patraucean, I. Brilakis, and P.
Vela. 2016. “Detection of Walls, Floors, and Ceilings
in Point Cloud Data.” 2302-2311. American Society
of Civil Engineers.
https://doi.org/10.1061/9780784479827.229.

Armeni, 1., O. Sener, A. R. Zamir, H. Jiang, I. Brilakis,
M. Fischer, and S. Savarese. 2016. “3D Semantic
Parsing of Large-Scale Indoor Spaces.” 1534—1543.

Becerik-Gerber, B., F. Jazizadeh, N. Li, and G. Calis.
2012. “Application Areas and Data Requirements for
BIM-Enabled Facilities Management.” J. Constr.
Eng. Manag., 138 (3): 431-442. American Society of
Civil Engineers.
https://doi.org/10.1061/(ASCE)CO.1943-
7862.0000433.

Bryde, D., M. Broquetas, and J. M. Volm. 2013. “The
project benefits of Building Information Modelling
(BIM).” Int. J. Proj. Manag., 31 (7): 971-980.
https://doi.org/10.1016/j.ijproman.2012.12.001.

Dimitrov, A., and M. Golparvar-Fard. 2015.
“Segmentation of building point cloud models
including detailed architectural/structural features and
MEP systems.” Autom. Constr., 51: 32-45.
https://doi.org/10.1016/j.autcon.2014.12.015.

Drobnyi, V., Y. Fathy, and I. Brilakis. 2022. “Generating
geometric digital twins of buildings: a review.”
Computing in Construction, 0—0. University of Turin.

Han, J., M. Rong, H. Jiang, H. Liu, and S. Shen. 2021.
“Vectorized indoor surface reconstruction from 3D
point cloud with multistep 2D optimization.” ISPRS J.
Photogramm. ~ Remote  Sens., 177:  57-74.
https://doi.org/10.1016/j.isprsjprs.2021.04.019.

Hossain, M. A., and J. K. W. Yeoh. 2018. “BIM for
Existing Buildings: Potential Opportunities and
Barriers.” IOP Conf. Ser. Mater. Sci. Eng., 371:
012051. (0) Publishing.
https://doi.org/10.1088/1757-899X/371/1/012051.

Macher, H., T. Landes, and P. Grussenmeyer. 2017.
“From Point Clouds to Building Information Models:



3D Semi-Automatic Reconstruction of Indoors of
Existing Buildings.” Appl. Sci., 7 (10): 1030.
Multidisciplinary ~ Digital ~ Publishing Institute.
https://doi.org/10.3390/app7101030.

Mahdjoubi, L., C. A. Brebbia, and R. Laing. 2015.
Building Information Modelling (BIM) in Design,
Construction and Operations. WIT Press.

Ochmann, S., R. Vock, and R. Klein. 2019. “Automatic
reconstruction of fully volumetric 3D building models
from oriented point clouds.” ISPRS J. Photogramm.
Remote Sens., 151: 251-262.
https://doi.org/10.1016/].isprsjprs.2019.03.017.

Pan, Y., A. Braun, A. Borrmann, and I. Brilakis. 2021.
“Void-growing: a novel Scan-to-BIM method for
manhattan world buildings from point cloud.”
Computing in Construction, 312-321. ETH.

Perez-Perez, Y., M. Golparvar-Fard, and K. El-Rayes.
2021a. “Segmentation of point clouds via joint
semantic and geometric features for 3D modeling of
the built environment.” Autom. Constr., 125: 103584.
https://doi.org/10.1016/j.autcon.2021.103584.

Perez-Perez, Y., M. Golparvar-Fard, and K. El-Rayes.
2021b. “Scan2BIM-NET: Deep Learning Method for
Segmentation of Point Clouds for Scan-to-BIM.” J.
Constr. Eng. Manag., 147 (9): 04021107. American

Society of Civil Engineers.
https://doi.org/10.1061/(ASCE)CO.1943-
7862.0002132.

Qian, G., Y. Li, H. Peng, J. Mai, H. A. A. K. Hammoud,
M. Elhoseiny, and B. Ghanem. 2022. “PointNeXt:
Revisiting PointNet++ with Improved Training and
Scaling Strategies.” arXiv.

Quintana, B., S. A. Prieto, A. Adan, and F. Bosché. 2018.
“Door detection in 3D coloured point clouds of indoor
environments.” Autom. Constr., 85: 146-166.
https://doi.org/10.1016/j.autcon.2017.10.016.

Sacks, R., C. Eastman, G. Lee, and P. Teicholz. 2018.
BIM Handbook: A Guide to Building Information
Modeling  for Owners, Designers, FEngineers,
Contractors, and Facility Managers. John Wiley &
Sons.

Shi, W., W. Ahmed, N. Li, W. Fan, H. Xiang, and M.
Wang. 2019. “Semantic Geometric Modelling of
Unstructured Indoor Point Cloud.” ISPRS Int. J. Geo-
Inf., 8 (1): 9. Multidisciplinary Digital Publishing
Institute. https://doi.org/10.3390/ijgi8010009.

Thomas, H., C. R. Qi, J.-E. Deschaud, B. Marcotegui, F.
Goulette, and L. J. Guibas. 2019. “KPConv: Flexible
and Deformable Convolution for Point Clouds.”
6411-6420.

Tran, H., K. Khoshelham, A. Kealy, and L. Diaz
Vilarifio. 2018. “Shape Grammar Approach to 3D
Modeling of Indoor Environments Using Point
Clouds.”  J. Comput. Civ. Eng., 33.

524

https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000800.

Wang, B., C. Yin, H. Luo, J. C. P. Cheng, and Q. Wang.
2021. “Fully automated generation of parametric BIM
for MEP scenes based on terrestrial laser scanning
data.” Autom. Constr., 125: 103615.
https://doi.org/10.1016/j.autcon.2021.103615.

Xu, Y., X. Shen, and S. Lim. 2021a. “CorDet: Corner-
Aware 3D Object Detection Networks for Automated
Scan-to-BIM.” J. Comput. Civ. Eng., 35 (3):
04021002. American Society of Civil Engineers.
https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000962.

Xu, Y., X. Shen, S. Lim, and X. Li. 2021b. “Three-
Dimensional Object Detection with Deep Neural
Networks for Automatic As-Built Reconstruction.” J.
Constr. Eng. Manag., 147 (9): 04021098. American
Society of Civil Engineers.
https://doi.org/10.1061/(ASCE)CO.1943-
7862.0002003.

Zhao, H., L. Jiang, J. Jia, P. Torr, and V. Koltun. 2020.
“Point Transformer.” ArXiv201209164 Cs.



