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Abstract 
Automatic geometry digitisation of existing buildings 
remains challenging due to the large scale and heavy 
clutter of input point clouds. This paper presents a two-
stage hybrid method to detect structural objects. The first 
stage detects areas of interest that are likely to contain an 
object, while the second stage finds precise objects. The 
method benefits from data-driven and model-driven 
approaches to achieve high accuracy for large-scale, 
highly cluttered and occluded real-world environments. 
We evaluate our method on the Stanford3D S3DIS dataset 
to show that the method detects from 83% to 98% of 
structural objects, such as columns, doors and windows. 

Introduction 
This paper is about digitising existing buildings' geometry 
from Point Cloud Datasets (PCDs), i.e. constructing their 
geometric Digital Twins (geometric DTs or gDTs). 
Constructing DTs is important because they improve 
various processes during the operation, maintenance, and 
renovation stages of the building lifecycle (Becerik-
Gerber et al. 2012; Bryde et al. 2013; Sacks et al. 2018). 
However, the costs of constructing a gDT of an existing 
building counteract the benefits of DTs (Hossain and 
Yeoh 2018).  
 
Digitisation of existing buildings uses PCDs as a 
reference for as-is geometry because building design 
models are outdated or unreliable (Mahdjoubi et al. 2015). 
It remains a time-consuming and manually intensive 
process. State of Practice commercial software, e.g. 
EdgeWise3D or Faro as-built, can fit parametric models 
into point clusters of objects, detect planar/cylindrical 
surfaces as a basis for object modelling, and select the 
most appropriate models from a catalogue. Although it 
serves as a strong support for semi-automatic modelling, 
the industry still requires a significant amount of manual 
work, such as modelling undetected objects and ensuring 
model consistency, among other. 
 
While buildings have numerous object types, only a few 
of them frequently appear. Studies show that slabs, walls, 
columns, beams, doors and windows cover 85% of 
structural objects (Drobnyi et al. 2022). This work aims to 
automate the detection of these objects for constructing 
gDTs of existing buildings. In general, automatic object 

detection methods can be classified in two types, model-
driven approaches and data-driven approaches. The 
former ones yield robust detection and accurate 
boundaries but remain impractical in large-scale or 
cluttered indoors environments due to the exploding 
computational costs. While the latter ones, such as the 
work of Qian et al. (2022), are scalable and easily 
extendable to new object types and environments, they 
have insufficient performance on smaller objects, such as 
columns, beams, doors and windows. 
 
In this paper, we propose a hybrid method to detect 
structural objects in large-scale, heavily cluttered indoor 
PCDs. We formulate our approach in a two-stage 
framework: first data-driven and second model-driven 
stages benefit from both of the above-mentioned 
approaches. The data-driven stage significantly reduces 
the search space for objects, while the model-driven stage 
yields a precise object location with crisp, well-defined 
boundaries. The proposed method can successfully detect 
objects, such as columns, doors and windows, in real-
world PCDs. We conducted experiments on the public 
dataset S3DIS (Armeni et al. 2016). Experimental results 
show that our proposed method can achieve promising 
performance for gDT construction. 

Background 
We give an overview of existing research in the area of 
digitising buildings and PCD deep learning and highlight 
gaps in knowledge in this section. Object detection 
methods in PCD for indoor environments can be split into 
model-driven and data-driven methods. The model-driven 
methods detect handcrafted features and compose them to 
form objects. These methods are based on 
planar/cylindrical surface detection using RANSAC, 
Hough Transform, or region-growing algorithms. This 
allows for the detection of walls, ceilings, floors, columns, 
beams, and pipes in indoor PCDs (Anagnostopoulos et al. 
2016; Dimitrov and Golparvar-Fard 2015; Han et al. 
2021; Wang et al. 2021). These methods, however, are 
designed for environments with low occlusion and no 
clutter and become computationally infeasible on large-
scale inputs. 
 



Model-driven automatic detection of doors can be 
achieved by analysing wall surfaces. It can use empty 
regions of wall planes for opened doors (Shi et al. 2019)
or colour discontinuity for closed walls (Quintana et al. 
2018). These, however, remain sensitive to the quality of
wall detection methods and occlusions or assume that
local colour distribution will be very distinctive for walls 
and doors.

The space decomposition methods allow splitting the 
large-scale input into multiple smaller PCDs for better 
computational efficiency of object detection methods. 
This usually involves 2D detection on a projected PCD 
onto an XY plane (Macher et al. 2017; Ochmann et al. 
2019; Shi et al. 2019), which remains sensitive to clutter 
and occlusions and is subject to other constraints, such as 
known positions of sensor location. Alternatively, 
methods such as Pan et al. (2021), Tran et al. (2018) can 
partition spaces directly in 3D, but they are limited to 
Manhatten-world buildings with limited occlusions.

Data-driven methods infer objects based on previously 
seen labelled samples. This allows for predicting 
bounding boxes of objects directly from PCDs using deep 
neural networks or other learnable classifiers (Armeni et 
al. 2016; Xu et al. 2021a; b) or object clusters of building 
elements (Perez-Perez et al. 2021a; b). However, these 
methods are designed for environments with no clutter or 
require the input to be split into individual spaces 
beforehand, yielding better performance than for large-
scale cluttered environments (Qian et al. 2022).

Besides, these methods operate with clusters of points of 
original PCD or their bounding boxes, which only cover 
a part of object surfaces. However, many objects, such as 
columns, are only partially visible; therefore, these 
methods detect only a part of the object by design. Figure 
1 shows an example of this phenomenon. A bounding box 
of the ground truth cluster of points of a column covers 
roughly one-third of the volume of the column.

Many works in the computer vision domain perform class 
segmentation of points in PCDs (Qian et al. 2022; Thomas 
et al. 2019; Zhao et al. 2020), which can be helpful for 
object detection as a first filtering step. While these 
methods yield high-quality results for large objects, such 
as floors, ceilings, and walls, their performance on other 
structural objects is notably smaller. The predicted 
segmentation fades columns, windows and doors (mainly 
closed doors) into walls or other classes as they have 
similar geometry. Also, the boundaries of clusters are 
usually poorly shaped. Figure 2 shows the predicted 
semantic class labels for points generated with the 
PointNext-B model and highlights both of these issues. It
limits pure data-driven methods' applicability in detecting 
building objects.

Overall, robust detection of structural objects, excluding 
walls, ceilings and floors, remains challenging for real-
world PCDs. The gap in knowledge is that existing 
methods for structural object detection rely on space 
partioning or require limited occlusions instead of directly 
detecting objects in large-scale inputs with clutter and 
occlusions. The paper aims to fill this gap. The research 
questions this work answers:

1. How to effectively find areas that are likely to 
contain structural objects in large-scale, 
cluttered PCDs?

2. How to robustly detect objects when a notable 
part of objects’ surface is not visible?

Proposed Solution
We propose a two-stage hybrid method for detecting
rectangular columns, doors and windows in large-scale, 

Figure 1 Ground truth cluster (dark green) and parametric 
model (blue bounding box) of a rectangular column.

Figure 2 Example of semantic segmentation. Dark green –
columns, light green – windows, red – doors, orange - walls.



occluded PCDs of existing buildings. In contrast to 
existing studies, this paper uses data-driven methods to 
detect a rough potential position of structural objects and 
applies model-driven methods to refine detected objects. 
The first stage uses deep neural networks to generate areas 
of interest, inside which there is high likelihood that the 
object is fully contained. The second stage uses model-
driven methods to detect and refine particular object types 
for each area of interest from the first stage. Figure 3
provides an overview of the proposed solution. 

Areas of interest detection
The first stage receives the entire PCD as input and yields 
bounding boxes that may contain objects of interest. We 
use a deep neural network to predict the scores for each
point and class of an entire floor of a building. We design
a PointNeXt-based model (Qian et al. 2022) and train with 
semantic class segmentation supervision. We sample 
multiple overlapping spheres from the input, predict class 
scores for each point, and average them among samples.

The neural network predicts probability-like (softmax)
values for each point for each object type. Unlike the 
semantic class segmentation task, which assigns a class 
label to a point taking a class with the maximum score, we 
threshold scores of classes of interest (Figure 4). We keep 
a point if the score of the object type, e.g. column, for the
point exceeds the threshold and discard it otherwise. This 
approach is chosen because points of object types of 
interest are usually misclassified as other classes which 
are in the majority of the dataset, e.g. walls. It allows
detecting objects with lower likelihood, which frequently 
happens with columns, doors and windows. 

We then cluster the remaining points using the DBSCAN 
algorithm in 3D space to retrieve seed clusters. After that,
we compute extended bounding boxes of these clusters to 
include potential false-negative detections and capture 
context. These extended bounding boxes serve as areas of 
interest for objects for later stages.

Object detection
The second stage takes every bounding box and fits a 
model of a particular object type. This stage aims to check 
if the input bounding box contains an object of interest.
We detect an object if the fitted model aligns well with the 
PCD. Otherwise, we discard the bounding box. We 
represent the geometry of objects as oriented bounding 
boxes with one axis parallel to the Z axis.

The implementation of the method varies depending on 
the object type. Rectangular columns are oriented cuboids 

Figure 3 Method overview.

Figure 4 Overview of the stage one. OoI - Object of Interest (e.g. 
column or door), th - threshold.



inside empty regions of the PCD. We reduce the problem 
of fitting a column into a 2D problem. We project the  
 point cloud inside a bounding box to the XY plane and 
find linear segments there. We then find all pairs of close 
perpendicular segments and check the number of points 
falling inside the bounding box spanned by these line 
segments. If there are no points inside the bounding box 
and the dimensions of this box are within column size 
(e.g. each side is from 0.2 to 1 metre), we consider it to be 
a column. Otherwise, we discard it.  
 
After that, we iterate over each pair of bounding boxes to 
check if they belong to the same column and merge them. 
We merge the pair if the union (i.e. a minimal bounding 
box that includes both bounding boxes of a pair) is empty 
inside and of a reasonable size. This is necessary because 
each corner spans an object, meaning that multiple objects 
per single ground truth column may be generated. 
 
We assume that doors and windows have cuboidal shapes 
with frames around them. Practically, windows and open 
and closed doors are visible only from one side. 
Therefore, only a planar surface of an object remains 
visible. We use point clusters from the first stage as seed 
points for plane segmentation. We estimate plane 
parameters for each cluster of areas of interest using 
RANSAC. We then reclassify points lying on the plane 
and compute a bounding box of it.  
 
Later, we check the dimension of each proposed object 
and filter out too-short, too-tall, too-narrow and too-wide 
objects because these bounding boxes belong to other 
object types. Lastly, we merge overlapping bounding 
boxes because a few bounding boxes from the first stage 
may cover the same object. 
 
The benefits of the proposed method are based on the 
following assumptions: 

 Generated areas of interest cover only a part of 
the input PCD. 

 Objects of interest have a distinctive geometry. 

Experiments 
We use the S3DIS dataset (Armeni et al. 2016) for the 
experiments. We use Areas-1, 2, 3, 4, and 6 for the 
training of the neural network for the first stage and Area-
5 for testing as a standard split. Area-5 covers a floor of a 
university building, it has 53 rooms and multiple corridors 
and contains 53 rectangular columns, 41 windows and 76 
doors. Area-5 is the dataset's largest, most occluded, and 
most challenging scene. We also exclude round columns 
and windows with no points on their surface because the 
training set has none of these objects. We report the 
performance only for rectangular columns (R Columns). 
 
We evaluate the performance of both stages. We evaluate 
the first stage in terms of area coverage and object 
coverage. The proposed stage splits the input into multiple 
areas of small area (~5sq.m.) that cover the majority of 

objects of the original PCD. Figure 5 shows the detected 
areas of interest for columns.  

 
Table 1 Performance of the first stage. It shows what part of 
the area is covered by areas of interest (in per cent) and how 
many objects of interest are inside (in per cent). 

Object type R Columns Windows Doors 
Area covered  27% 5% 11% 
Objects covered 92% 100% 91% 

 
Table 1 shows the portion of the original PCD inside of 
all of the bounding boxes and what part of ground truth 
objects are inside it. It shows that the first stage can 
significantly reduce the search space for the second stage, 
improving the overall method's componential complexity. 
 
False-negative column area of interest detection in the 
first stage falls into two categories: columns with large 
dimensions (e.g. around 1 metre) with only one side fully 
captured and columns with only one side visible and one 
side occluded by a bookshelf. In both cases, these objects 
are hardly distinguishable from walls. Besides, the ground 
truth labels are inconsistent from object to object (e.g. a 
column surface is marked as a column on one side and as 
a wall on another), which hardens the training of the 
neural network. It is worth noting that the method still 
detects the majority of such columns. 
 
False-negative door detections in the first stage 
correspond to closed doors aligned with the wall's surface, 
i.e. lie on the same plane as the wall. This is also because 
of the small number of such objects in the training dataset. 
 
In the second stage, we model the geometry of an object 
as a minimal enclosing bounding box of the object. We 
then compare it to the bounding boxes of ground truth 
object clusters and register a correct detection if the 
overlap is at least 50%.  
 
Table 2 shows object-level precisions and recalls for 
object types in consideration. While the precision for 
rectangular columns is low, the others precisions and 
recalls are high. This highlights that the method 
accurately detects doors and windows while generating 

Figure 5 Detected areas of interest for columns (red bounding 
boxes). Colours are ground truth class labels (dark green - 
columns) 



many false positive columns. It indicates that column 
detection should be improved. Figure 7 shows the results 
of the second stage of the method for columns. Figure 6
shows the final results of the method. 

Table 2 Object-level precision and recall at overlap threshold 
0.5

Object type R Column Window Door
Precision 53% 95% 97%
Recall 90% 98% 91%

The detected columns tend to be larger in volume than 
bounding boxes of ground truth clusters (Figure 1). This 
is usually a better result because it aligns better with 
construction patterns.

The undetected column parts are usually occluded with 
bookshelves aligned with the column surface, similar to 
the false negatives in the first stage. The method struggles 
to detect them because the column-bookshelf border is 
hardly visible and poorly recognisable in terms of 

geometry. This leads to columns being unrecognised or 
partially recognised. Figure 8 highlights this situation; 
note that only a small part of a column side is visible while 
the visible side is aligned with a bookshelf.

Figure 8 False negative detection of part of a column (in red).

Figure 7 Example of results for columns. Dark gree - columns.

Figure 6 Examples of detected rectangular columns, windows and doors. PCD colour are ground truth (dark green - columns, light 
green - windows, red - doors). Blue bounding boxes - detected objects.



The vast majority of false-negative door detection 
corresponds to closed doors that are on the same plane as 
the wall they are on. This indicates that closed doors may 
not have enough descriptive geometry to be detected. 
Their detection would require colour information in the 
second stage. 
 
The proposed method can successfully detect rough 
locations of the majority of rectangular columns in the 
first stage. This stage is also easily extendable to other 
object types and environments by providing 
corresponding labelled PCDs for training. The quality of 
the outcome for the objects considered in this study can 
be improved in the same way. 

Discussion 
The implemented object detection method finds most 
objects from the input. Although it produces a substantial 
number of false positives for rectangular columns due to 
the similar nature of their geometry to other objects, it can 
benefit from a better-designed method for 
detecting/fitting object models (2nd stage). Alternatively, 
false-positive detections can be easily removed manually 
in practical applications. 
 
The overall method can robustly detect objects directly in 
large-scale PCDs, even if objects are heavily occluded. 
Unlike other methods, our method does not require the 
input to be split into individual spaces or other objects to 
be detected, e.g. walls. Additionally, two stages of the 
method are decoupled and can be used in combination 
with other segmentation neural networks for better 
performance of the first stage or model fitting methods for 
better performance of the second stage. The first stage can 
also be used as a preprocessing step for other model fitting 
methods to improve their componential efficiency on 
large-scale inputs. 

Conclusions and Future Work 
The paper presents a two-stage approach to generating 
objects in large-scale, highly cluttered PCDs of existing 
buildings. It benefits from the flexibility and extensibility 
of data-driven approaches in the first stage and the 
preciseness, robustness and formality of model-driven 
approaches in the second stage. 
 
The proposed method can highlight the most likely areas 
for objects and significantly reduce computational costs 
for further geometry modelling. This can improve 
practical semi-automatic pipelines and research methods 
by reducing search space for precise object geometry 
fitting. It also proposes a set of simple model-fitting 
methods to refine object proposals and generate precise 
geometry of objects. 
 
It can contribute towards reducing gDT construction costs 
for buildings from PCD to the point of their profitability. 
It will unlock the benefits of DTs for existing buildings 
and lead to a more cost-effective, sustainable and resilient 
built environment. This will benefit the overall economy. 
 

We plan to improve both stages to increase the precision 
and recall for both stages and evaluate the presented 
approach on other datasets. The future work for the first 
stage includes investigating other neural network models, 
a better hyperparameter selection, and other thresholding 
strategies. For the second stage, we plan to better method 
for rectangular columns, add other object types, and 
consider colour values to detect objects with poor-defined 
geometry. 
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