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Abstract

Germany's large stock of existing bridge infrastructure
must be digitalized as BIM due to political requirements.
Therefore, point cloud data can be used, and available
open-source datasets and different approaches on
semantic segmentation are being researched. To bridge
the gap between theoretical research on point cloud data
and manual inspection, a list of object-oriented classes for
semantic segmentation is proposed. These classes are put
into context with entities of the IFC schema and the
German ASB-Ing. An application example with the
proposed classes is shown using a manually segmented
point cloud and an approach with the RANSAC Shape
Detection algorithm.

Introduction

The German infrastructure network includes a large
number of bridges. In 2021 the federal highway network
contained about 40.000 bridges (BAST, 2021). Around
86% of these bridges are reinforced or prestressed
concrete bridges, and almost 64% of the bridge
constructions have a length between 2 m — 30 m (BAST,
2021). These statistics show that the majority of bridges
are shorter concrete bridges and not large span
constructions with special designs. During bridge
inspections in Germany, every bridge receives a condition
grade to rate the structural integrity. The range of this
condition grade varies between 1,0 (best) and 4,0 (worst)
with steps of 0,1. In 2021, the main amount of federal
highway bridges received condition grades between 2,0 to
2,4 (47,4%). Around 5% of the bridges were graded
between 3,0 to 4,0 (BAST, 2021). While the majority of
highway bridge structures was built between 1965 to
1985, the condition grades for many bridges will become
worse in the future (BAST, 2021). Due to the
deterioration of the bridge grades more manual
inspections and maintenance becomes necessary. With
the Federal Trunk Roads BIM Masterplan (BMDV,
2021), the Federal Ministry for Digital and Transport
(BMDV) of Germany presents the regulatory framework
for the nationwide application of the building information
modeling (BIM) methodology for public highway
infrastructure projects. The plan prescribes that the BIM
methodology must be applied in planning new
infrastructure projects and in every other use case, such as
operation and maintenance (BMDYV, 2021). In this paper,
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the abbreviation BIM stands for the digital representation
of the model itself, not the methodology. Otherwise, it is
specified in the text. While the BIM methodology is
currently still being tested in infrastructure and civil
engineering in execution (Schneider & Tschickardt, 2021)
and maintenance phases, the extension of the industry
foundation classes (IFC) format for infrastructure and
bridges is currently under further development
(buildingSMART, 2022a). Still, it is politically enforced
that the large stock of bridges in German infrastructure
must be digitalized and transferred into a BIM. Manual
remodeling of single bridges is already a labor-intensive
task (Bednorz et al., 2020), and it is not feasible for the
number of professionals in Germany. In summary, it is
necessary to at least support or fully automate the
digitalization and BIM generation of the existing bridge
stock using digital methods. One approach for generating
initial digital representations of the bridge constructions
is point cloud data (PCD), which can be gathered from
methods such as laser scanning or photogrammetry. PCD
represents scanned objects as points in a 3D-coordinate
system with X, Y, and Z coordinates and often with RGB-
color information. As a first step towards a BIM
representation of a scanned bridge, semantic
segmentation of the point cloud data is necessary.
Semantic segmentation involves finding context within
the various points of the PCD. In this case, different
construction parts of the bridges must be detected.
Additionally, the BIM could be enriched with further
information such as material properties or damages
(Kaufmann, Glock & Tschickardt, 2022). There are
already different approaches for the semantic
segmentation of PCD. Two main approaches can be
differentiated: (i) heuristic and (ii) machine learning
methods. In the following section, related research on this
topic is addressed. Crucial for any approach on automated
or semi-automated semantic segmentation is the amount
and quality of existing PCD. This data is necessary for
testing and validation of the segmentation results and is
also required for training in machine learning.
Furthermore, the classes, that represent the different
bridge parts in the semantic segmentation are highly
important. Only a segmentation process with appropriate
classes can add value for practical application in the
construction business. For this reason, the following paper
highlights related work on existing bridge datasets of PCD
and different approaches on (semi-)automatic semantic



segmentation.  Additionally, relevant objects for
segmentation classes are proposed and discussed in the
context of the current manual procedure of bridge
inspection and digitalization.

Related work

Data sets for semantic segmentation in bridge
construction

The biggest open-source and structured data set of PCD
with reinforced concrete bridges is proposed by (Lu,
Brilakis & Middelton, 2019). In this dataset, ten
reinforced concrete highway bridges are provided. The
PCD was scanned using the Terrestrial Laser Scanner
FARO Focus 3D X330. All bridges are located in United
Kingdom, around Cambridgeshire. The dataset has non-
data ratios (on-site traffic noise, trees, large ground
surfaces and ramp) between 11,1 % and 55,1 %. Version
2 of the dataset contains 10 to 82 million points per bridge
point cloud, captured from 14 to 25 scanning points.
Version 1 of the dataset consists of the same PCD but with
a lower point density, respectively lower file sizes (Lu,
Brilakis & Middelton, 2019). Furthermore, various PCDs
of different single bridges can be found. One concrete
bridge from Westlandseweg in Delft, NL, was scanned
during a Master’s program at TU Delft. The mixed-
vehicle and tram bridge is available as a 2,1 GB large
.e57-file, with 118 million points. The PCD was scanned
with a Leica ScanStation P40, from nine different
scanning points, registered, and downsampled to a
sampling step of 5 mm with the Leica Cyclone software
(Truong, Lindenbergh et al., 2021). Another PCD was
scanned by TU Delft on Schipluiden, Zuid-Holland, NL.
It contains a steel truss bridge that was previously used for
trams and is now used for light traffic, like pedestrians,
bicycles, and motorbikes. The data is provided as a
0,46 GB large .e57-file, consisting of 40 million points.
The settings for data capturing were the same as the bridge
from Westlandseweg: a Leica ScanStation P40 and down
sampled to a sampling step of 5 mm with the Leica
Cyclone software. Fourteen different scanning points
were needed (Truong, Papalexiou et al., 2021). (Turkan &
Xu, 2022) generated a PCD of a concrete bridge in
Corvallis, Oregon, USA using a combination of
photogrammetry and laser scanning with UAS images.
Therefore, a DJI Mavic 2 Drone and a combination of a
Leica GS14 GNSS, a Leica CS15 and a Leica Nova MS50
MultiStation was used. Besides the bridge PCD with
approximately nine million points in .las format, 1247
high-resolution images in .dng format and the coordinates
(WCS) of 12 ground control points and 15 visual targets
attached to the bridge surface in .txt format are provided.
Three PCDs of a three-span bridge are provided by
(Abraham, 2016). The so-called Wolf Creek Bridge
dataset contains just the roadway and rails without any
load-bearing structures of the actual bridge. The PCDs
consist of approximately 21 — 23 million points and can
be downloaded in .laz format. No further information
about the capturing methods etc. is available. PCD of a
steel truss bridge contains the Inglewood bridge data set
with 14 registered 3D scans of a single bridge. It is
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provided by (Hvidberg, Dawson & Robinson, 2019) in
Jlas format. The 14 available single scans sum up to an
approximately 8 GB PCD file with round 340 million
points, resulting in a high point density. For scanning a
Z+F 5010X laser scanner and for processing the Z+F
Laser Control (v.8.9.0) software was used.

Table 1: Overview of existing bridge point cloud datasets

Name Generation  File Number of
method type points
Cambridgeshire Laser .bin  10-82 Mio. per
scanning bridge (V2)
Westlandseweg Laser .e57 118 Mio.
scanning
Schipluiden Laser .57 40 Mio.
scanning
Corvallis Photogram las 9 Mio.
metry .dng
Laser
: Axt
scanning
Wolf Creek n.a. Jlaz  21-23 Mio. per
point cloud
Inglewood Laser las 340 Mio.
scanning

Table 1 shows an overview of available bridge PCDs
obtained from different sources. The homogeneity of the
point clouds varies, so the number of points does not
necessarily guarantee high point densities. None of the
datasets have annotated PCDs or BIMs available as a
ground truth, thus requiring manual work for automatic
semantic segmentation and BIM generation. For future
generation of bridge PCDs, it is essential to have a
sufficient point density to detect smaller bridge parts, such
as bearings, rails, or joints for automatic semantic
segmentation or further research on PCDs. However,
many existing bridge PCDs are not open source due to
bridges being classified as critical infrastructure, making
it challenging to share them for research purposes. A
practical legal way to share these datasets for research
purposes has yet to be found. In case of an economical
perspective special capturing methods could be evaluated,
like path planning for data acquisition (Tschickardt,
Kaufmann & Glock, 2022). This approach could focus
different capturing densities, depending on the size of the
specific objects to be scanned.

Heuristic methods

In (Lu, Brilakis & Middelton, 2019) heuristic methods for
semantic segmentation of bridges in PCD are proposed.
Therefore, a top-down approach and recursive slicing
algorithms are combined. In the first step, a principle
component analysis is used to align the bridge PCD in a
global XYZ-coordinate system. There the x-axis follows
the direction of the superstructure, the z-axis is defined
perpendicular to the ground and the y-axis is
perpendicular to both. After this alignment, the PCD is
sliced in 0,5 m thick point clouds along the x-axis. Then a
feature detector is used, where every point cloud slice is
bounded by a 3D axis-aligned-bounding-box (AABB). In
the midplane of these AABBs, a 2D skeleton of the slice



is used for a height comparison. While the height of the
pier area is much higher than the deck area, each slice is
classified into two classes: pier assembly and deck
assembly regions. Continuing this logic, the two classified
regions are focused on themselves to separate further
classes for semantic segmentation of the bridge PCD. (Lu,
Brilakis & Middelton, 2019) distinguishes four semantic
classes: piers, pier caps, slabs and girders. With the
proposed methods (Lu, Brilakis & Middelton, 2019)
achieved high detection rates for semantic segmentation
for straight bridges with flat decks. As stated in the
publication, this approach is not suitable for non-even
bridges, like diaphragm bridges, bridges with complex
geometries or small spacings between girders. Steel
bridges, like truss bridges are not suitable as well. (Qin et
al., 2021) proposed a methodology for semantic
segmentation by using average point cloud densities to
divide the PCD in different bridge parts. The
methodology is developed with a clean, synthetic point
cloud without noise points, so no preprocessing is needed.
For semantic segmentation, the PCD is divided into
intervals along the z-axis. Then, the point densities are
determined for each interval by using the kd-tree
algorithm. Every horizontal plane in the PCD leads to a
peak in the interval density. Each density peak is
interpreted as the top or bottom surface of a bridge part,
and all points in between are assigned to the
corresponding class. In addition, (Qin et al., 2021)
proposed a method for handling uneven planes by
projecting the point cloud onto the xy-coordinate plane
and using point density segmentation.

Machine learning methods

Besides heuristic methods, approaches using machine
learning have gained larger popularity. Due to the
increasing computing capacities of related hardware,
machine learning has become more and more capable of
handling complicated tasks. Machine learning can be
divided into three different approaches: (i) unsupervised
learning, (ii) supervised learning, and (iii) reinforcement
learning. Most proposed methods of machine learning for
semantic segmentation of PCD focus on supervised
learning, respectively deep learning. Therefore, a pre-
segmented dataset of annotated PCD is used to train a
neural network. Additional unannotated data is needed for
validation purposes. After the training of the neural
network is finished, a test data set with both annotated and
raw PCD is used to measure the capability of the trained
neural network. In (Mafipour, Vilgertshofer & Borrmann,
2022b) the so called RandLA-Net is used. The trained
features contain normal vectors, 2D point density, 3D
point density, XYZ-coordinates, and RGB-features of the
PCD, after (Pan, Mafipour & Mehranfar, 2022) showed
better results in the performance of the neural network,
compared to training on just XYZ-coordinates and RGB-
features. For training, validation and testing the above-
mentioned Cambridgeshire dataset of (Lu, Brilakis &
Middelton, 2019) was used. The neural network was
trained on four classes, named deck, railing, pier and
background. During preprocessing the data was sub-
sampled in 5 cm uniform grid voxels. After further data
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augmentation, including random rotation of the PCD
around the z-axis and a class weighting on the number of
points to equalize the impact on the loss function. The
RandLA-Net was built with four layers, a ratio of 1/4, 8
neurons, a batch size of 3, a learning rate of 0,01 and was
trained for 512 epochs. As a result, a mean Intersection
over Units (mloU) of 88,45% and a mean accuracy
(mAcc) of 95,62% was reached. Due to the lack of
qualified and similar PCD, (Mafipour et al., 2022)
proposed a method to enrich datasets of real with
synthetic PCD. Therefore, a workflow was developed to
generate synthetic PCD. First 3D models of bridges were
designed with a BIM-authoring system, containing of
Autodesk Revit® and SOFiSTiK Bridge Modeler, based
on structural drawings of real bridges. By varying
dimensions and number of spans different shapes are
varied. A similar method for the generation of synthetic
data is proposed by (Hoop, Tschickardt & Schmitt, 2022).
Additionally, trees and dense vegetation are modelled in
the approach by (Mafipour et al., 2022). The transition
from the 3D geometrical model to the PCD was realized
with a virtual laser scanner, named Helios++ (Esmoris et
al., 2022). Therefore, a frequency of 120 Hz, a pulse
frequency of 5000 Hz, a 180° scanning angle and 10 head
rotations per sec/deg were set. Occlusion and RGB
information based on interpolation of real PCD were
simulated additionally. Finally, the enriched dataset with
real and synthetic PCD reached an improvement of
+5,5 % on mloU and + 3,1 % on mAcc. (Xia, Yang &
Chen, 2022) combined a machine learning approach with
a local descriptor. Therefore, the dataset of (Lu, Brilakis
& Middelton, 2019) was used as well. First, disturbances
and noise were removed, using Density-Based Spatial
Clustering of Applications with Noise (DBSCAN). For
the proposed method no preprocessing like voxelization
or subsampling of the PCD is needed. The workflow is
divided into three steps. First, a multi-scale descriptor for
describing the geometric features of bridges is designed.
Second, a pipeline for pointwise classification of the PCD
is developed, using the deep learning neural network
PointNet. In the last step, the results are refined. (Xia,
Yang & Chen, 2022) distinguishes five classes, named
background, slab, girder, pier cap and pier. The results of
the proposed method state an improvement of the mloU
from 45,92% to 94,62% by combining PointNet with a
local descriptor, compared to PointNet without a local
descriptor. Furthermore, (Xia, Yang & Chen, 2022) lists
the results where the proposed workflow can contribute to
recent research question and the specific limitations of the
methodology. A comparison of different deep learning
algorithms for semantic segmentation of bridge PCD was
published in (Kim & Kim, 2020). The neural network
architectures that were used were PointNet,
PointConvolutionalNeuralNetwork ~ (PointCNN)  and
DynamicGraphConvolutionalNeuralNetwork (DGCNN).
A non-public dataset of 27 scans on three bridges, scanned
with a Trimble TX8, was used. Six classes were focused
on for the semantic segmentation, namely abutment,
girder, slab, background, pier and surface. During the
proposed methodology the PCD was partitioned in same-



sized blocks, free from data loss and overlapping, first.
After the training was finished, the overall accuracy (OA)
and the mloU were determined for comparison. After a
cross-validation, a hyperparameter tuning was made.
Overall, the DGCNN performed best with a mloU of
86,85%, followed by PointNet (84,29%) and PointCNN
(76,78%). Concluding for all of the above-mentioned
approaches on semantic segmentation of bridge PCD, a
large amount of real-world point clouds is needed for
either training, testing and validation. The majority of the
related work is based on PCD of ten bridges, provided by
(Lu, Brilakis & Middelton, 2019) and shows a significant
lack of data for scientific research.

Standards for bridge inspection

Maintenance management of bridges in Germany is
predominantly based on preventive maintenance. This
means that instead of merely reacting to damage and
repairing it, the condition of traffic facilities is to be
maintained at a constant level of quality by means of
targeted, efficient strategies, considering the available
maintenance budget. The conceptual system of
maintenance of traffic facilities distinguishes between
operational maintenance, for control and maintenance of
the facility parts and structural maintenance which covers
maintenance, repair and renewal (BMVI, 2021). This
results in various fields of activity and a broad spectrum
of participants involved the implementation of strategic
maintenance management. One of these fields of activity
is condition recording and assessment, which includes the
regular inspection and monitoring of the condition of the
system, the road surface and the engineering structures
(BAST, 2017). The (DIN 1076, 1999) and the guideline
for the uniform acquisition, assessment, recording, and
evaluation of results of structural tests according to DIN
1076 (RI-EBW-PRUF) (BMVI, 2017) form the essential
basis for the uniform recording and evaluation of
engineering structures in Germany. A further step towards
standardization is achieved through the defined
information content provided by the Instruction Road
Information Bank for Engineering Structures, Subsystem
Structure Data (ASB-ING) (BAST, 2013). In general, the
ASB-ING lists and describes different structural parts of
the bridge that must be focused on during inspections in
detail. It specifically defines general information for
determining the length, height, or width, as well as
describing different cross-sections for the main structure
and various support and bearing types. Additionally, for
example different cross-sections for the main structure or
various support and bearing types are described. For

clarity and assignability every listed detail is assigned to
a continuous number with fifteen digits that can be
referred to. Due to the necessity of the digital
representation of the existing bridge structures in the
Federal Trunk Roads BIM Masterplan (BMDV, 2021) the
open-source data schema IFC becomes even more
important. Throughout 2018 and 2019, buildingSMART
started the extension of the IFC with a variety of
infrastructure domains, including bridge structures. This
extension approach was initiated while the alignment
work and harmonization of the IFC 4 release took place.
Thereby bridge specific part types (IfcBridgePart) like
abutment, deck, foundation or pier, to name a few, were
added in the IfcProductExtension. For less bridge-specific
parts already existing entities from the shared element
data schema, like IfcBeam, IfcBearing or IfcWall can be
used for BIM generation (buildingSMART, 2019).

Research gap

Based on this literature research, various research gaps
can be identified In the case of real-life data acquisition of
bridge PCD, requirement definitions must be examined.
Therefore, specific targets must be defined for what the
data is going to be used for and what specific requirements
are necessary for this data. Examples could include the
point density, level of surface completeness (LOC), lists
of building parts that must be scanned, etc. In particular,
the LOC could be further determined in the context of
semantic segmentation. Furthermore, a methodology for
data capture for semantic segmentation of PCD can be
developed. Both the scientific approach for data capture
(e.g., high point density, everything has to be scanned in
detail) and an economic approach (e.g., high-speed
scanning, just points of interest with needed densities)
could be discussed as well. In the field of semantic
segmentation of bridge PCD, various approaches have
already been evaluated and can be expanded in the future.
Promising approaches can be enhanced to become more
reliable and accurate for different types of bridge
constructions. Additionally, fundamental research in e.g.,
augmented vision is under constant development and
could open further approaches in the future. For semi-
manual segmentation of PCD rather simple algorithms,
like the random sample consensus (RANSAC) (Schnabel,
Wahl & Klein, 2007) can be applied and refined. Many
parameter studies are yet to be made. To fill the gap
between the theoretical issue of semantic point cloud
segmentation and the current manual bridge inspection
the definition of semantic classes and rules for annotation
have to be discussed.

Figure 1: Example of the raw RGB point cloud data (left) and the colorized, manual semantic segmented point cloud data (right) of
bridge 2 (Lu, Brilakis & Middelton, 2019)
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Object-oriented bridge inspection

Class definition of important bridge components for
semantic segmentation

As stated above various approaches for a necessary
semantic segmentation of point clouds of existing bridge
structures already exist and work within limitations.
Limitations are e.g., a specific type of bridges, simple
geometries or few segmentation classes of broad bridge
parts. For practical use cases, the quality and details of the
digital bridge representation are very important. The
mentioned classes cannot fulfill the requirements needed
for the manual and laborious task of the current procedure
of bridge BIM generation with bridge components and a
sufficient level of detail (LOD). To fill the gap between
scientific research on semantic segmentation of PCD with
generic classes and practical applications for an
automated digitalization of existing bridge structures, the
specific segmented classes are highly important.
Therefore, this paper proposes a list and specific
annotation rules for the semantic segmentation of bridge
PCD. The proposed classes are linked to specific
representations in the current IFC schema and the
equivalent numbers in the German ASB-Ing.

Annotation classes and rules

The following stated classes in Table 2 represent the first
excerpt of possible practical relevant classes and can be
extended anytime. The proposed classes focus on
reinforced concrete bridges and the most common
components in this type of bridges. In accordance with the
proposed classes and annotation rules, this list can be
extended further for special bridge types. The specific
labels name the different classes of the bridge parts for the
semantic segmentation of PCD. Additionally, a short
description is given for each label to ensure clarity during
the segmentation process. These descriptions must be
precise enough so that every point in the sparse 3D data
can be assigned to a specific class. To simplify the
segmentation process with better visualization, each label
is connected to an individual, unique color. The coloring
of the points during the semantic segmentation process
serves for the simplification of the manual process with
visual feedback. For training, testing or validation of
automated semantic segmentation approaches the
connection of the specific points with the corresponding
label is important. The unique colors are listed in the 6-
digit Hex Color Code. For every label, possible
representations in the IFC schema are listed. Therefore,
the currently under development version IFC4.3.1.x dev
with the newest documentation is used (buildingSMART,
2022b). The entities from the IfcProductExtension of the
core data schemas for bridge-specific parts, including
precise enumerations of different types, and general
entities from the shared element data schema are used.
Furthermore, the segmentation classes are linked to
relevant bridge parts of the manual bridge inspection
using the fifteen-digit-long numbers of the ASB-Ing.
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Application example

To show the application of the listed classes on real bridge
PCD, bridge 2 of the above-mentioned Cambridgeshire
(Lu, Brilakis & Middelton, 2019) dataset was randomly
chosen. The manual semantic segmentation and coloring
of the points was carried out with the open-source
software CloudCompare (cloudcompare.org). Figure 1
shows the raw RGB data of bridge 2 from the
Cambridgeshire dataset on the left-hand side. For
visualization noise points from scanning and background
points of no interest were removed. Only the relevant
points for the listed structural classes were obtained. The
bridge PCD was cut into various smaller point clouds,
containing the specific bridge parts to be labeled, by using
the implemented segmentation tool. Afterwards, the
sliced sub-point clouds of the bridge parts were colorized
with the listed Hex Color Code. The result can be seen in
Figure 1 on the right-hand side. To highlight the result of
the different approaches with more detailed segmentation
classes, Figure 2 shows a cross-section of the application
example bridge 2. In this detail, the bridge caps on both
sides of the roadway can be seen in a slightly darker blue
(207EA0). Bridge caps belong to important bridge
components in terms of inspection and maintenance.
Therefore, they should play an important role in semantic
segmentation and automated bridge reconstruction in
BIM.

Figure 2: Cross-section of the semantic segmented point cloud
of bridge 2

Furthermore, the bearings ( ) of the superstructure
can be identified on top of the pier (E12752) in Figure 2.
By recognizing structurally important parts as the bearing
the reconstructed BIM reaches a higher level of detail and
usability for practical bridge inspections. Besides the
manual annotation of bridge 2 the approach with the also
in CloudCompare (cloudcompare.org) implemented
RANAC (Schnabel, Wahl & Klein, 2007) Shape
Detection plugin was tested. The main idea of the
RANSAC algorithm is the detection of simple primitives,
as planes, spheres, cylinders, cones or toruses in sparse
point cloud data. Within the range of different parameters
possible primitives are fit in. In the implemented dialogue
the minimum number of support points per primitive has
to be set. In case of the shown example this number was
randomly set to 10.000 points. As primitive to be detected,



Table 2: Classes/ Labels of important bridge components for semantic segmentation of bridge point cloud data

Class/Label Description/Rule Color-Hex Possible IFC ASB-ING-Nr.
representation
roadway asphalted top layer of 29C70D IfcBuildingElementProxy ~ 130023193000000
superstructure
concrete_deck/ slab-like superstructure made 2AC3D1 IfcSlab 130011111100000
concrete_slab out of concrete with IfcBridgePart[ TypeEnum(
width/height > 5 Deck)]
concrete_beam mostly rectangular beams 20CAAA IfcBeam 130011121200000
made out of concrete, incl.
Piercaps
steel beam mostly with specific steel IfcBuildingElementProxy 130011131420000
shapes, like I-frame or C-
frame etc.
box_girder box girders made out of 2E88F6 IfcBeam 130011141000000
concrete, just girders without
horizontal slab on top
tendon steelcable to prestress a ED23ED IfcTendon 130021110000000
structure
foundation foundation of the bridge/ piers ~ AE11ED IfcFooting 130021200000000
etc. IfcBridgePart[ TypeEnum(
Foundation)]
piers vertical, load bearing E12752 IfcColumn 130011920000000
elements, like piers/columns IfcBridgePart[ TypeEnum(
Pier)]
bearing bearing between IfcBearing 130021500000000
superstructure and load
bearing elements, like
wingwalls/abutment or piers
rail rails around the bridge for 26284C If Railing 130022100000000
security of bridge
joint bridge expansion joint; gap IfcDiscreteAccessory 130021600000000
between roadway and street to
secure temperature
deformation between the
bridge and connecting street
caps not driveable edge of the 207EA0 IfcBeam 130021800000000
superstructure where the rails IfcBeam[TypeEnum(Edge
are mounted on and to secure beam)]
the superstructure before outer
impact
abutment concrete walls that secures the ~ C42BDD IfcWall 130011910000000
transition between bridge and IfcBridgePart[ TypeEnum(
connecting street, incl. Abutment)]
Ground incl. Transition of
forces to the ground from
bearings/superstructure
stairs stairs e.g. along the abutment 04FA3F IfcStairs 130016300000000
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Figure 3: Example of the manual annotated point cloud data (left) and approach with the RANSAC Shape Detection plugin (right) of
bridge 2 (Lu, Brilakis & Middelton, 2019)

just planes were chosen, due to the fact, that the main parts
of the bridge consist of planar areas. Furthermore,
advanced parameters must be set. The maximum distance
of points to the primitive (e =0,333) and the sampling
resolution (b = 0,666), that basically sets the maximum
distance of one point to the next point to be still counted
within the primitive. Moreover, the maximum normal
deviation angle (a=10°) in degree, that compares the
direction of the point normals to each other and finally the
overlooking probability (0,01), that secures that no better
primitive for the considered candidate is overlooked. For
a first segmentation try the default values for the advanced
parameters were used. The comparison of the manual
segmentation and the results of the RANSAC Shape
Detection plugin are shown in Figure 3. Due to a
minimum number of points a primitive has to include, the
resulting, segmented point clouds contain less points than
the ground truth. In the shown example 18,7 % of points
of the ground truth do not fit into a primitive with the
chosen parameters and get lost. Figure 3 shows good
results for planar areas as the roadways, piers or slabs.
Smaller, non-planar parts, as rails or bearings loose points
as well or get lost in total. By refining the inputs with a
parameter study the results of the RANSAC Shape
Detection plugin could be improved. This can add value
to the laborious and time-consuming work of manual
point cloud annotation.

Conclusion and Outlook

The proposed paper provides an overview of the related
work in the field of semantic segmentation of bridge PCD
for (semi-)automatic reconstruction and digitalization of
existing bridge infrastructure. Therefore, highly crucial,
open-source available datasets of PCD were researched
and listed. Furthermore, different scientific approaches
using heuristic and machine learning methods are focused
on, and the specific considered classes are highlighted. To
link the theoretical, digital field of semantic segmentation
of PCD with usability in practice, the standard manual
approach of German bridge inspection is analyzed.
Finally, a proposal for important bridge parts as classes
for the semantic segmentation of bridge PCD is
developed. These specific bridge parts are linked to
possible representations in the IFC schema and the
German ASB-Ing for manual bridge inspection.
Additionally, descriptions and rules for the different
classes are given. As an application example, the point
cloud of bridge 2 from the Cambridgeshire dataset is used
to show a possible semantic segmentation with the more
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detailed and proposed classes. Therefore, the point cloud
was both fully manually segmented, and the RANSAC
Shape Detection algorithm was used for segmentation.
The RANSAC Shape Detection provides good results for
the segmentation of bridge parts, with a loss of 18.7% of
points from the ground truth. Additionally, some labeling
work needs to be done after segmentation. By using the
listed classes for semantic segmentation of bridge PCD, a
common ground for the annotation of future datasets is
proposed. By focusing on the same classes, different
approaches can be more easily and thoroughly compared
with each other. Furthermore, the results will gain higher
relevance and value for practical use. In future research,
the various methods listed can be evaluated using the
proposed detailed classes to compare their accuracies.
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