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Abstract

Mobile cranes are essential equipment in construction
sites due to their high flexibility and mobility. However,
the existing sensing or monitoring methods have
limitations in monitoring mobile cranes on sites.
Recently, the advent of 4D point cloud (4DPC)
technology with a unique spatial-temporal data structure
has shown potential in addressing these issues. In this
paper, we present a 4DPC monitoring approach, which
includes a set of prototype devices and a rule-based object
detection method. We conducted a proof-of-concept test
to monitor the hoisting process of two H-beams in a
footbridge construction project. The rule-based object
detection method successfully detected the target beams
in the collected six-hour 4DPC data. In the future, we
expect more efficient and robust 4DPC sensing devices
and processing methods for proactive crane motion
prediction and optimization in a time-dynamic site
environment.

Introduction

Cranes are critical equipment for hoisting and
transporting heavy objects in the construction industry. In
recent years, numerous efforts have been made to
monitoring methods for crane-related activities in both
academia and industry. The first reason is safety, because
crane lifting is complex and risky on construction sites.
Cheng and Teizer (2011) found that many crane-related
safety incidents are associated with restricted visibility,
e.g., sight occlusion, poor weather, or lighting conditions.
Crane-related accidents usually cause casualties and
significant economic losses, so extra measures must be
taken. In addition, monitoring data could be visualized to
help operators reduce workload and improve work
efficiency, and the construction time is thus reduced.
Productivity assessment may be another reason for the
necessity of crane-related activities monitoring. Based on
the assessment result, further optimization work could be
done for the productivity improvement of the crane-
related construction process.

There are two common types of cranes, i.e., mobile cranes
and tower cranes. The most significant difference between
them is that one is mobile, and the other one is not. Due
to its fixed location and working range, monitoring or
sensing devices are constantly installed on the tower
crane. However, most existing monitoring methods are
challenging to implement on mobile cranes. Potential
reasons are the high mobility and flexibility of the mobile
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crane. Therefore, how to achieve practical and convenient
monitoring for mobile cranes is still an unresolved issue.

With increasing focus on-site safety of the construction
industry and the emerging demand of digital construction
sites, developing a practical monitoring approach for
mobile cranes has become increasingly necessary and
urgent. In order to improve the situation, some
technologies, e.g., CCTV camera (Fang, et al., 2018)s and
IoT devices (Mijwil, et al., 2023), that are used in other
monitoring scenarios, are tried for monitoring or tracking
objects for the mobile crane during the lifting process.
However, the feasibility is not high for most methods. For
example, CCTV cameras, the most widely used tool to
monitor activities in construction sites, always lack depth
information, making it challenging to accurately capture
objects’ spatial position (Chen, et al., 2017). In addition,
quantization errors are widely reported to be the
shortcoming of conventional image-based video due to its
grid-based geometric representation. Sensitivity to light
conditions and the difficulty of multi-source data fusion
also make it unsuitable for monitoring mobile crane in
various complex environments. Second, IoT devices are
other type of tools for sensing objects on sites. IoT devices
are easy to locate, but various errors are widely reported.
Meanwhile, IoT devices cannot achieve dynamic detail
detection, such as rotation, which are significant for some
tracking purposes. Extra installation procedures for each
object will decrease productivity and increase risk, and
using many IoT devices would increase the cost. In
addition, the interaction of tracked objects and dynamic
environment cannot be easily reflected. Thirdly, the
Depth-RGB camera is also often reported to monitor or
track objects in sites potentially, but its short detection
distance restricts its application in outdoor scenarios.

Point clouds, a three-dimensional collection of data points
or coordinates, provide a new data form to produce high-
quality 3D reconstructions of the world (e.g.
reconstructing building information model in construction
site (Chen & Xue, 2023)). They provide more information
than two-dimensional pictures and are insensitive to light.
However, point clouds always refer to 3D point clouds
and the application of 3D point clouds is limited in
capturing some static objects due to only spatial
information contained in the data (Mirzaei, et al., 2022).
The advent of the 4D point cloud, consisting of three
dimensions and time information, has expanded the
application of the point cloud into a dynamic world (Silva,
etal., 2022). 4D point cloud (4DPC), a form of time-series
3D point clouds, is a rich data source demonstrating how



objects move against the background. 4DPC has unique
advantages against other motion tracking technologies,
e.g., various Internet of Things (IoT) and Al cameras
(Liang & Xue, 2022):
a) Real-time environment (including objects and
background) updating
b) Highly precise geometry updates
c¢) Higher adaptability in  poor
environments
d) Innate localization and mapping information
e) Innate capability of multi-/many-device data
fusion to eliminate visual blind spots
f) Lower cost, minimal infrastructure
requirements, lower carbon footprints
g) Remote, non-destructive sensing

visibility

4DPC is a novel enabling data source that facilitates
precise 4D motion tracking. In contrast to conventional
camera/loT, our methods have three characteristics:

i.  High-definition 4D motion data (cm-s-level
accuracy);
il. Precise depth information in a far range (up to
500m);
iii. Simultaneous motion tracking of multiple
objects; and
iv. Low cost of devices and easy operating.
Related works

Crane monitoring

In past research, numerous efforts have been put into
developing computer-aided crane monitoring systems.
Their primary purpose is to improve the efficiency and
safety of crane operations and reduce operator workload.
As listed in Table 1, this study reviews related to research,
and the purpose, contribution, research focus, target crane
type, methodology, and limitation are summarized. The
research generally has three types of goals, i.e. crane pose
estimation (Zhang, et al., 2012; Lee, et al., 2012; Zhong,

etal., 2014; Yang, et al., 2014; Roberts, et al., 2017), load
sway and rotation estimation (Fang, et al., 2018; Fang, et
al., 2016; Chian, et al., 2022), and object detection in
workspace (Li, et al., 2013; Chen, et al., 2017). Although
both crane monitoring and object detection are
investigated to help operators operate the crane in blind
areas in the study by Price et al. (2021), the two functions
are relatively separated and not well integrated into a
system.

Meanwhile, two types of sensing methods, i.e., sensor-
based and vision-based, are used in these studies. For the
former, different sensors are serving for different sensing
goals. In specific, the UWB system, consisting of several
sensors and multiple tags, is used to estimate the crane
pose in the study by Zhang et al. (Zhang, et al., 2012), but
it is not practical due to various errors from different
sources and too many sensors required for full coverage
of activity range. Li et al. try to use GPS and RFID to
obtain positioning data of both site workers and the crane,
and using multiple tags and receivers decreases its
practicality. Zhong et al. (Zhong, et al., 2014) combined a
Wireless Sensor Network (WSN) and the Internet of
Things (IoT) to monitor the status of tower crane groups
to avoid collisions, but the interactions of tower cranes
with environment are not considered. Fang et al. (2016)
use a series of encoder and IMU sensors to monitor the
load object and visualize in the virtual platform. Except
for extensive use of sensors, another problem is the
dynamic change of the environment cannot be reflected
by a limited number of sensors. For the latter, CCTV
cameras or UAV camera are used to estimate crane pose
(Lee, etal.,2012; Yang, et al., 2014; Roberts, et al., 2017),
monitor load (Fang, et al., 2018) (Chian, et al., 2022), and
detect object (Chen, et al., 2017). The common limitation
stems from the data, such as not containing depth
information or sensitivity to lighting conditions and color.
In addition to shared drawbacks, UAV's endurance,
stability, and safety are also criticized.

Table 1 Summarization of related literature

Purpose and contribution  Research focus  Sensing method Crane type Limitation Source
1) the installation space and device
cost of several sensors and multiple
tags would be a problem
Develop a UWB-based . .
2) the accuracy in an ideal
system to track crane . .
. environment (open space) is 10cm,
boom movement, and crane pose Mobile . . (Zhang, et
. L UWB and it may be worse in unordered
estimate crane pose near estimation crane sites al., 2012)
real-time for collision ) S )
avoidance 3) trajectory estimation is relatively
rough since it is based on linear
interpolation extrapolation of only
two points
) 1) too many kinds of sensors
ngelpp a tower crane Video camera increase the complexity of the
navigation system to l_wlp crane pose & Tower proposed system (Lee, et al.,
operators operate with estimation crane . . 2012)
Sensors 2) virtual environment (BIM model)

blind spots

cannot BIM model cannot fully
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represent the as-is site condition

Not limited

1) too many tags, receivers, and
other units are used;

Identify unauthorized . Lo GPS toa 2) installation complexity and high .
work or entrance of object detection in . . . . (Li, et al.,
o & specific cost would hinder its practical
personnel within a pre- the workspace .o 2013)
defined risk zone RFID type of application;
Crane  3) gjgnal strength is also a possible
issue
Develop a Safety
Management System to WSN 1) only the main body of the crane
monitor the status of crane pose & Tower is considered, but the site situation (Zhong, et
tower crane groups and estimation loT crane is usually more complex al., 2014)
avoid collisions
1) large range view needs to be
covered, and the resolution of the
Understand construction object will become lower, so the
activity by tracking the crane pose Video camera Tower recognition accuracy will fluctuate (Yang, etal,
pose of the tower crane estimation crane due to many factors, such as llght 2014)
condition
2) the recognition result is general
1) The pre-reconstructed site cannot
Develop real-time pro- Encoder sensors reflect the dynamically changing
active safety assistance load sway and Mobile site conditions (Fang, et al.,
for mobile crane rotation estimation & crane 2) A large number of sensors are 2016)
lifting operations IMU sensor required to sense the movement of
the crane in real time
Detect and Cla_s31fy 1) The endurance and stability of
Cranes for monitoring crane pose Tower . (Roberts, et
crane-related safety estimation UAV crane drones are obstagles'to the practical al., 2017)
hazards application
1) positioning accuracy (0.1-0.4m)
TLS in the ideal test environment is
Update real-time 3D crane object detection in & Mobile relatively high (Chen, et al.,
workspace the workspace . crane 2 signal synchronization of camera 2017)
Video camera and LiDAR is complicated, and the
error is relatively large
Nottl;rglted 1) only the 2D location of the load
Track crane load sway loe}d sway anq Video camera  specific coulfl be identified (Fang, et al,
rotation estimation type of 2) errors hlghly depend on the 2018)
crane quality of the image
1) sensor-part: positioning system
has a high reliance on data from
noisy encoders; large crane
crane pose Sensors, deflection
estimation Camera,
Detect workers near the & IMU Tower Cal?séd by the loa.di lee%ds to errors (Price, et al.,
crane load ’ crane  2) Vvision-part: positioning errors are 2021)
load sway and & widely reported during irregular
rotation estimation TLS lighting conditions and when the
surrounding environment contains
objects that have a similar color to
the load
Develop a novel method 1) the estimation accuracy heavily
to detect load sway and . Tower  relies on many factors, such as the (Chian, et al.,
. T Video camera . 7 . .
and track the crane load rotation estimation crane quality of training data since it is 2022)
fall zone based on deep learning

#:UWB: Ultra Wideband; GPS: Global Positioning System; RFID: Radio-Frequency Identification; WSN: Wireless Sensor Network;
1oT: Internet of Things; IMU: Inertial Measurement Unit; UAV: Unmanned Aerial Vehicle; TLS: Terrestrial Laser Scanners.
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In summary, existing sensor-based sensing methods in the
literature showed the following drawbacks:

1) Deploying and maintaining sensors in every
object onsite is complex and time-consuming,
which may affect productivity of the
construction process;
sensors are composed of many components
susceptible to damage, and low reliability may
hind its practice;
many high-precision sensors are expensive, and
the use of numerous sensors on-site may increase
the cost;
sensor technologies are sensitive to signal
interference and may not adapt to the complex
construction site with many existing physical
obstacles (e.g., existing buildings and
equipment);
it is difficult for sensors to capture the whole
environment with dynamical change, and hence
the interaction between tracking objects with the
existing site environment cannot be captured;
Synchronization and visualization of multi-
source data increase the practice complexity of
sensor technologies.

Meanwhile, current vision-based sensing methods have
other limitations:

1) Depth information is not contained in 2D image,
and hence vertical position information cannot
be precisely captured;
video errors caused by irregular lighting
conditions and similar colors make it unreliable
in daily use;
3D laser scanning by TLS only captures the site
geometry at the time of scanning, and hence site
condition cannot be dynamically reflected in
real-time;

Multi-angle view fusion has not been well
resolved, which hinders its broad practice.

4DPC

Point clouds, a three-dimensional collection of data points
or coordinates, provide more information than two-
dimensional pictures and are insensitive to light (Bhople
et al,, 2021). Conventional static point clouds have
already been widely used in many research and industrial
domains, such as surveying, electricity, construction, and
industry, due to their excellent ability to represent our
three-dimensional world. In the construction industry, the
3D point cloud is currently used for various aims such as
as-built building reconstruction and digital twin city (Wu,
et al., 2021; Xue, et al., 2019; 2020). It should be noted
that the applications of 3D point clouds are limited in
capturing non-moving or assumingly non-moving
objects.

2)

3)

4)

5)

6)

2)

3)

4)

As a window into our ever-evolving 3D environment,
4DPC are widely used in robotics and augmented reality
systems. Point cloud sequences play an important role in
understanding environmental changes and supporting
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interactions with the world that are difficult to describe
with 2D images or static 3D point clouds due to their
ability to record movements in physical space. In order to
more accurately simulate the world, respond to changes in
the environment, and interact with it, an intelligent agent
must handle this kind of data with great precision.

4DPC has gained popularity for some reasons. First, the
ability to comprehend a changing 3D world is essential for
robotic agents and various other applications. 4DPC has
enabled many innovative studies, such as how a plant
grows (Li, et al.,, 2013) and high-definition human
motions (Fan, et al., 2021), as shown in Figure 1. In
addition, various identification tasks, such as calculating
a moving object's acceleration or identifying human
activities, benefit from temporal data sequences longer
than two frames (Fan, et al., 2021). 4D point cloud has
also been widely utilized in robotic SLAM, autonomous
driving, and video-assisted training of athletes.
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Fi; lgure 1 Example 4DPC-enabled studles. (a) how plant grows
(Li, et al., 2013)—permission requesting, (b) high-definition
human motions (Fan, et al., 2021)—permission requesting

In contrast to grid-based RGB video, where points
regularly emerge over time, point cloud video displays
irregularities and lacks order along the spatial dimension.
Therefore, numerous efforts have been engaged in
processing the 4DPC data. Two existing methods, i.e.,
voxelization-based (Choy, et al., 2019) and point-set-
based, explored by many researchers to process 4DPC
data.

Case study

Case description

A pilot study was conducted on an infrastructure project
in Hong Kong, as shown in Figure 4. The case project was
the 3rd Sassoon Road footbridge project that links a new
Campus building to the student residents across Sassoon
Road. Two major steel tie-beams were hoisted and
installed in the mid-night of 28 June 2022, and Figure 2
shows the site condition before hoisting, the hoisting
process of component 1, the completed status of the
component 1 hoisting, and completed status of two
components hoisting, respectively. This project uses a
mobile crane since it is a temporary infrastructure project
and the road is only temporarily closed for construction at
night.



The case project had characteristics and requirements in expensive glass curtain walls. A collision during the

hoist efficiency, collision risk, and personnel safety. First, hoisting process will cause economic losses. Therefore,
the process needs to be completed swiftly before dawn to effective measures should be taken to reduce the potential
resume day traffic from the temporary close of the road. collision risk. Furthermore, the workers working on other
As the most important and challenging work in this processes on-site may have entered the risky zone where
project, hoisting efficiency will directly affect the the hoisted objects may fall due to negligence of steel
construction time. In addition, there were already building beam at high height during the hoisting process.

works on both sides of the road, and the facades are

|

Figure 2 construction site condition of case study

~ 4! floor
\

4DPC devices and setup { 40PC devie 17,

To address the limitations mentioned in Sec. 2.1, this
study proposes and validates a scheme that 4DPC
technology is used to achieve the goal of monitoring all
crane-related activities in real-time, including estimating
crane pose, tracking load, and detecting objects on sites.
To achieve that, a novel 4DPC sensing equipment for
collecting high-definition 4D motion data from
construction environments is developed in this study. The
target spatial accuracy is cm-level, while the temporal Y\ 4DPC deice
accuracy is 0.5s-level. As shown in Figure 3(b), the device Ground floor™ W )
has four essential modules, %'e" (D Livox Mld_7,0 sensor, Figure 3 (a) Installation illustration of 4DPC devices on site;
(ID) controller (Raspberry Pi 4), (II) LED monitor, (IV) (b) Components of our 4DPC device: ([) Livox Mid sensor, (1)

USB drive. The Livox Mid-70 has 70.4° circular fov, 5 controller (Raspberry Pi 4), (lll) LED monitor, (IV) USB drive
cm minimum detection range, and 2 ¢cm range precision.

Raspberry Pi 4 controller transmits 4DPC data to remote Methods
server via WiFi/4G/USB. The proof-to-concept test of the
device is conducted in the pilot study. In order to cover
the whole site, two LiDAR devices in Figure 3 (b) were
installed on different locations, i.e., one is in the ground
floor and the other is in the 4" floor (shown in Figure construction scenario; hence, deep learning is not
3(a)), to ?ollect 6 hours of 4DPC data (format: lvx; size: applicable. Therefore, a rule-based object detection
80MB/min). method on 4DPC data is proposed to monitor target
components in real time effectively. As shown in Figure
4, a cyclic processing workflow is determined:

1) 4DPC data input: Each frame of data is input in
chronological order;

2) Background removal: using random sample
consensus (RANSAC) algorithm (Schnabel, et
al., 2007) is used to detect and delete plane of
existing ground and walls

3) Clustering: using DBSCAN clustering
algorithm (Ester, et al., 1996) to cluster the
remaining point cloud.

The most popular processing methods of 4DPC in existing
research are based on deep learning. The impetus for this
trend is mainly based on the large amount of data that can
be collected. In this study, we only collected 1
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4) First round match: judging whether the point
cloud clustering results match the objects with
known geometric dimensions. If all known
components match, go to step 7. If not, continue
to step 5.

crop point cloud: using bounding box of
previous frame to crop the whole point cloud
(based on the assumption that there will be no
large displacement of the member in a very short
time-0.5s)

6) Second round match: judging whether the crop

5)

| 4DPC data fusion of ‘
multi-source

Time series
4DPC data

‘ Background removal |
o [T 1
‘ DBSCAN clustering |

t=0.5 & boo1=ng

Manual segmentation Object geometry?

it>0.5 & bool1=no

Crop point cloud based on
defied bounding box
in previous 0.5 second

Using result of

previous frame Object geometry?

and create corresponding bounding box
for corresponding component

Save related point cloud segmentation result

result of point cloud match the objects with
known geometric dimensions. If known

components match, go to step 7. If not, the result
of the previous frame will be assigned to the
current frame (based on the assumption that
there will be no large displacement of the
member in a very short time-0.5s).

7) Result saving: Saving related point cloud
segmentation  results and  creating a
corresponding  bounding box  for  the

corresponding component
The program ends when all the time series data are
processed.

Point cloud
clustering result

e

//’” L-pc: length of point cloud clustering
///L-pc W-pc: w!dth of point cloud clusteri‘ng
H-pc: height of point cloud clustering

L-object: length of object
W-object: width of object
H-object: height of object

W-objecf

Object geometry? Yes or No

If L-object + tolerance > L-pc > L-object - tolerance ? Yes or No |
If W-object + tolerance > W-pc > W-object - tolerance? Yes or Noj
If H-object + tolerance > H-pc > H-object - tolerance? Yes or No:

1

All yes

}

Bool1 = Yes

Figure 4 logic flow of rule-based detection method for time series 4DPC data

Preliminary results and discussion

As shown in Figure 5, the two steel beam components can
be precisely detected in more than 95% of the time using
the rule-based method described in Sect 3.3. The 4DPC
data processing time per minute is within 1Is.

Figure 5(a), (b), (¢), and (d) illustrate the motion detection
result of two beams from two views at different times, and
different typical statuses of beams, i.e., remaining on the
transport vehicle, being placed on the ground, hoisting in
the air, are all covered, or completing hoisting. However,
there are also some time frames that beams cannot be
tracked. Detailed analysis suggests the ineffective capture
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is that the point cloud data is too sparse or no data points
exist due to small sensing area of components at specific
view angles, long sensing distances, or some physical
obstacles. These problems can be attributed to the limited
number of 4DPC devices used in this pilot study and the
low point cloud density provided by Livox. Increasing the
number of LiDAR devices and using advanced LiDAR
devices providing higher point cloud density would
improve the robustness of 4DPC data. Obtaining the
spatial-temporal information of beams will help further
achieve a set of proactive motion prediction and
optimization applications. In addition, it could facilitate



the productivity assessment of mobile cranes, and future
improvement may be based on these data records.

Limitation

While this study's proposed method effectively captures
targeted objects, its rule-based approach is limited to the
specific scenario in which it was tested. Therefore, future
research is necessary to explore its actual deployment

and extended application in different conditions.
Furthermore, the rule-based method can only detect

known objects since rules must be set with prior
knowledge of components. Also, due to the angle of the
equipment installation, the object cannot be fully
scanned, which limits the reflection of the true detailed
geometry of the component. Detailed modeling requires
additional effort. Finally, it should be noted that the
4DPC data collected from two devices was registered
manually, which is a time-consuming process and
hinders its application in mobile situations..

01 hour-00 minute-54 second - Left view | 01 hour-00 minute-54 second - Right view
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Figure 5 typical detection result of 4DPC data

Conclusion and future work

This paper evaluated the existing studies focusing on
sensing or monitoring crane-related activities, including
estimating crane pose, tracking load, and detecting objects
in workspace. Meanwhile, the limitation of sensor-based
and vision-based sensing methods are analyzed and
summarized. In order to overcome shortcoming of
existing methods, a state-of-art 4DPC sensing and
monitoring method is proposed. A rule-based object
detection method is developed with two prototype devices
of 4DPC sensing, and a proof-to-concept test was
conducted on a footbridge construction project. In the
pilot study, two 4DPC devices covered the whole
construction site for 6 hours. The promising preliminary
results suggested that target beam components were
precisely captured in different statuses. The spatio-
temporal data series obtained from the tracking results
could generally satisfy the goal of monitoring load.

There are three directions for future works. One is to
develop more efficient and robust methods, such as some
ML-based methods (Zhang, et al., 2019; Liang & Xue,
2023), to match or detect objects from the collected data.
Another is to explore a set of proactive motions prediction
and optimization applications. The last is to integrate
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obtained spatial-temporal information of all objects and
workers to achieve dynamic site management.
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