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Abstract

Scan-to-BIM applications rely on point clouds obtained by
laser scan, which require expensive hardware and labori-
ous tasks. To address this issue, we introduce a NeRF-to-
BIM approach, exploiting recent advancements in com-
puter vision with Neural Radiance Fields (NeRF). NeRF
is a state-of-the-art (SOTA) for 3D scene reconstruction
from 2D images but lacks specific applications in the ar-
chitecture, engineering, and construction (AEC) domain.
We propose a 3-step approach: (1) 3D reconstruction of
buildings using NeRF. (2) Semantic segmentation by fine-
tuning pre-trained deep learning (DL) algorithm. (3) Con-
version from the semantic segmentation point cloud to
BIM. Finally, qualitative and quantitative analyses are per-
formed.

Introduction

The process of capturing the space as point cloud data
and translating the data into Building Information Mod-
eling (BIM) is generally called Scan-to-BIM. This pro-
cess is typically used in the architecture, engineering, and
construction (AEC) industry to create detailed, accurate,
and up-to-date representations of existing buildings. Es-
pecially in the construction industry, using as-built mod-
els can be a powerful collaborative tool for planning, qual-
ity control, and real-time progress tracking with team
members (Golparvar-Fard, Pefia-Mora & Savarese 2011,
Tserng et al. 2014, Matthews et al. 2015, Fobiri 2021, Fo-
biri et al. 2022). However, there are still challenges and
limitations when capturing point clouds and converting
them to BIM because the process requires experienced
professionals and heavy human intervention (Golparvar-
Fard, Bohn, Teizer, Savarese & Pefia-Mora 2011). There is
a growing interest in automating the Scan-to-BIM process
to address these issues. The process of converting point
cloud data to a BIM model can be divided into three key
aspects: data acquisition and pre-processing, object seg-
mentation, and reconstruction to BIM (Ma et al. 2020).

In the data acquisition step, laser scanning and photogram-
metry are currently widely used to create digital represen-
tations of physical buildings and sites. While laser scan-
ning allows for obtaining highly accurate data, it involves
laborious tasks and requires specialized skills and expen-
sive equipment. On the other hand, photogrammetry is
generally faster and more cost-effective than laser scanning
as it does not require specialized equipment. However, the
accuracy of photogrammetry is lower than laser scanning
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(Moon et al. 2019), and it is a complex process that re-
quires specialized software and expensive expertise.
After the point cloud data is collected, the point cloud is
segmented to classify specific objects. The segmentation
can be edge-based, region-growing, model-fitting, hybrid,
and machine learning(Grilli, Menna & Remondino 2017).
Once a point cloud has been segmented, each segment of
points is labeled to identify the class. Based on the as-
signed semantic labels for individual point cloud objects,
BIM objects can be modeled. The class labeling proce-
dure is typically achieved using one of three approaches:
supervised, unsupervised, and interactive (De Geyter et al.
2022).

Supervised learning algorithms are commonly used to
classify architectural and structural elements of buildings.
The use of deep learning (DL) methods for semantic seg-
mentation of 3D point clouds is also a growing research
topic. However, there are relatively few studies on deep
learning (DL) applied to buildings, which results in a lim-
ited amount of available datasets related to buildings.
The final step is the reconstruction of the BIM model from
a semantically segmented point cloud. The process of con-
verting point cloud data to BIM models involves simpli-
fying the data into a vector-based geometric model and
adding relevant BIM metadata, as point cloud data typi-
cally contains a high level of geometric detail. (Qu et al.
2014). This process is referred to as the Scan-to-BIM pro-
cess.

In 2020, NeRF was introduced (Mildenhall et al. 2020).
NeRF uses neural networks to create realistic view syn-
thesis on a collection of 2D images as input. NeRF has
demonstrated higher performance in capturing 3D objects,
especially in cases where photogrammetric techniques do
not allow satisfactory results to be achieved. (Condorelli
et al. 2021)

To address the data acquisition challenges in Scan-to-
BIM, such as the need for expensive hardware and labor-
intensive tasks, we propose a new approach called NeRF-
to-BIM. This method uses semantic segmentation algo-
rithms on point cloud data created with NeRF technology.
After implementing this approach, the results are evalu-
ated and the potential for obtaining a BIM representation
while reducing manual efforts is discussed.

Related Works

In this section, the related works for the following key steps
are discussed: (1) NeRF (Data acquisition), (2) Semantic



segmentation, (3) BIM reconstruction.

(1) NeRF (Data Acquisition)

NeRF was first introduced by Mildenhall et al. (2020) in
2020, a ground-breaking method that represents realistic
3D scenes from a sparse set of input collections of 2D im-
ages. This original NeRF algorithm had several disadvan-
tages, such as slow training caused by querying a deep
MultiLayer Perceptron (MLP) millions of times (Reiser
et al. 2021). In recent years, there has been significant re-
search in the computer vision community to improve upon
the original NeRF algorithm, with more than 50 papers be-
ing published on the topic in 2022 alone (Gao, Gao, He,
Lu, Xu & Li 2022).

While many new NeRF models are published, NVIDIA
and Luma Labs translated the research into practical appli-
cations to create 3D scenes easier. NVIDIA offers Instant-
NeRF (Miiller et al. 2022) as software, which features a
graphical user interface (GUI) allowing users to control vi-
sualization options. The Instant-NeRF algorithm shortens
rendering time through a technique called multi-resolution
hash grid encoding. This novel input encoding technique
produces high-quality output with a fast-running, compact
neural network. The Luma Al app was developed by Luma
Labs in 2022, simplifying the entire process of rendering
3D scenes using NeRF technology. From start to finish,
the entire process can now be managed be managed using
only a smartphone, even for 3D images captured casually
with a smartphone camera.

(2) Semantic segmentation on 3D point clouds

3D point clouds semantic segmentation classifies point
clouds into multiple regions. The classified points in the
same region can be derived with similar properties, essen-
tial for as-built BIM reconstruction. While semantic seg-
mentation in 2D image analysis has advanced, segmenta-
tion in point clouds remains challenging due to high redun-
dancy, uneven sampling density, and a scarcity of labeled
point cloud data (Gao, Pan, Li, Geng & Zhao 2022).

At this time, while there are annotated datasets such as
Replica (Straub et al. 2019) and Habitat-Matterport 3D
(HM3D) (Ramakrishnan et al. 2021), the Stanford Large-
Scale 3D Indoor Spaces (S3DIS) dataset (Xu et al. 2020)
is the most trained in various studies among the dataset
related to building. The S3DIS dataset comprises a large-
scale indoor environment, including six indoor areas with
271 rooms for a total of 695 million points. Each point in
the scene point cloud is annotated with one of the 13 se-
mantic categories, which are structural elements (ceiling,
floor, wall, beam, column, window, and door), furniture
(table, chair, sofa, bookcase, and board) and clutter for all
other elements. Given this shortage of datasets, the focus
is set on deep learning algorithms trained on the S3DIS
dataset.

PointNet (Qi, Su, Mo & Guibas 2017) is the first promis-
ing algorithm that feeds point clouds directly into the DL
architecture. This algorithm is a ground-breaking solution
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that addresses the challenges associated with large data in
a point cloud format. PointNet++ (Qi, Yi, Su & Guibas
2017) resolves the disadvantage of PointNet, which fails
to capture the local structure and generalize to complex
scenes. PointNeXt (Qian et al. 2022) improved training
strategies based on the classical PointNet++ through a sys-
tematic study of model training and scaling strategies. The
inverted residual bottleneck design and separable MLPs
into PointNet++ enable efficient and effective model scal-
ing. PointNeXt established a new state-of-the-art perfor-
mance with 74.9% mean Intersection-over-Union (IoU) on
S3DIS in September 2022.

In the AEC industry, semantic segmentation methods are
becoming a crucial area of focus for building implemen-
tation. The initial implementation of deep learning algo-
rithms is for parsing building facades (Corydon et al. 2016,
Liu et al. 2017) and urban scenes segmentation (Niemeyer
et al. 2016, Grilli, Barabas, Michalska-Smith & Allesina
2017, Weinmann et al. 2015, Hackel et al. 2016).
Following these studies, Murtiyoso et al. (2022) devel-
oped the implementation of a deep learning-based se-
mantic image segmentation method for photogrammet-
ric 3D reconstruction and classification workflows. Cao
& Scaioni (2022) proposed a pre-training method for 3D
building point cloud that learns from a large source dataset
and evaluates the proposed method by employing four
fully supervised networks as backbones. The end-to-end
deep learning method is proposed by Perez-Perez et al.
(2021), named Scan2BIM-NET. The method was trained
and tested for semantically segmenting the structural, ar-
chitectural, and mechanical components in point cloud
data. The study achieved an average accuracy of 86.13%
using 83 rooms from point cloud data representing real-
world industrial and commercial buildings.

As mentioned above, acquiring a labeled point cloud
dataset is challenging.The use of synthetic datasets created
from 3D models is gaining interest as a means of acquiring
training data for semantic segmentation. The dataset gen-
erated from a virtual environment can be produced with
lower costs and less manual effort for data creation.
Fedorova et al. (2021) constructed a field-specific syn-
thetic 3D data generation pipeline to tackle the problem
of insufficient 3D scanning and modeling datasets. This
framework is suitable for multiple deep learning tasks, in-
cluding geometric deep learning that requires direct 3D
supervision. However, the effort required for 3D model-
ing should also be taken into account. Ma et al. (2020)
investigates the viability of using synthetic point clouds
generated from BIM to train deep neural networks to per-
form semantic segmentation of point clouds on building
interiors. The performance increased by 7.1% IOU when
synthetic point clouds were used for training, compared to
training the classifier on the real data alone.

(3) Conversion from point cloud to BIM

The conversion process in the construction industry still
needs to be fully automated and the research on this topic



is in its infancy. (Wang & Xiong 2021). There are several
studies that propose different approaches to automate the
process.

Jung et al. (2016) proposes a methodology for creating a
3D wire-frame model of indoor surfaces. In this study,
two indoor scenes are captured using a laser scanner with
an accuracy range of +2mm @25m. The wall boundary
is traced from the point cloud projected onto 2D x-y co-
ordinates, and the boundary lines are extracted using the
least-squares method. The height is estimated using a
2D floor boundary map obtained through the incorpora-
tion of RANdom sample consensus (RANSAC). Armeni
et al. (2016) proposes a detection-based semantic pars-
ing method for large-scale building point clouds. In the
study, space dividers (i.e. walls) are first detected as the
boundaries of a room to parse a raw point cloud into dis-
joint spaces. To detect the wall from the point cloud, a
one-dimensional histogram of the density of points along
the x-axis is analyzed. Then, the wall feature is identified
with the signature of two peaks with an empty space in-
between. After this process, those spaces are parsed into
their semantic structural (e.g. floor, walls, etc.) and build-
ing (e.g. furniture) elements. Chen et al. (2019) identi-
fies and categorizes building elements from laser scans by
applying the deep learning method. The classified point
cloud is converted into bounding boxes and matched with
relevant BIM entities. Croce et al. (2021) presents a semi-
automatic approach to the 3D reconstruction from scanned
point clouds based on machine learning techniques. The
approach is reconstructing 3D geometry from point clouds
via the RANSAC algorithm included in the built-in option
of Cloud Compare software after generating semantically
labeled data. Bassier et al. (2020) implements the recon-
struction of the wall geometry from point clouds with 3D
and 2D reconstruction methods. The parameters, includ-
ing the orientation, thickness, location, and boundary of
the walls, were extracted based on the 3D point clusters
and histograms, respectively. The two methods detected
wall geometry with high precision.

Research Methodology

We propose a NeRF-to-BIM method, which is a 3-step ap-
proach (Figure 1): (1) 3D reconstruction of buildings us-
ing the Neural Radiance Fields (NeRF) algorithm. (2) Se-
mantic segmentation using pre-trained and fine-tuned deep
learning algorithms. (3) Conversion of the semantically
segmented point cloud into BIM. The aim of this study is
to verify the feasibility of the NeRF-to-BIM approach by
implementing it on simple structural objects consisting of
columns and beams to simplify the testing and evaluation
process.

(1) 3D reconstruction of buildings using NeRF

In this step, two NeRF-based applications, Instant NeRF
and Luma Al, are tested to create point clouds and evalu-
ate the performance of these applications. After generat-
ing the 3D scenes with these applications, the point cloud
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Figure 1: Framework of NeRF-to-BIM

is segmented and labeled as the ground truth with struc-
tural elements, such as floor, beam, column, and ceiling,
to evaluate and analyze the data.

(2) Semantic segmentation

In the semantic segmentation step, the PointNeXt algo-
rithm is used, a SOTA trained on the S3DIS dataset.
Presently, the S3DIS dataset is the most trained in the
3D point cloud segmentation field. However, the S3DIS
dataset used in this study needs to provide more quality
results since the structural features of the buildings dif-
fer from the interior features present in the S3DIS dataset.
Fine-tuning is performed on pre-trained deep learning
(DL) algorithms to address this minor dataset issue to ex-
tract robust features from unlabelled building data. When
the dataset is relatively small, fine-tuning is a fundamental
approach to improving the model’s performance by train-
ing a pre-trained model on a new dataset. In the AEC field,
synthetic point clouds generated from BIM are expected to
improve the network’s performance as a new dataset (Ma
et al. 2020). Therefore, the point cloud is tested using pre-
trained weights trained with S3DIS and then the PointNeXt
model is fine-tuned using labeled point clouds generated
from 3D models. To evaluate our approach, the semantic
segmentation accuracy is tested based on two different cap-
turing methods and two different trained datasets to eval-
uate the performance (Figure 2).

(3) Conversion from point cloud to BIM

After semantic segmentation, the classified building el-
ements are transformed into a vector-based geometric
model with BIM metadata (Qu & Sun 2015). In the Scan-
to-BIM process, as shown in the related works section,
the point cloud is captured using laser scanning in related
works and used fitting techniques such as least-squares and
RANSAC (Jung et al. 2016, Armeni et al. 2016, Croce
et al. 2021). Since these studies are based on highly ac-
curate point cloud data gained with the laser scanner, the
conversion method in this study must be properly selected
for the NeRF-to-BIM process by observing the feature of
the NeRF output.

Experimental Results

(1) Reconstruction of the 3D scenes using NeRF

The first step is to obtain a simple structural object from
2D pictures by applying Instant-NeRF and Luma Al. For
Instant-NeRF, 104 images captured with a smartphone
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Figure 2: Methodology of test

Figure 3: 3D model for training

Figure 4: Partial set of pictures for NeRF

Table 1: Feature comparison between NeRF and Laser scan

Method || Cost | Rebuild speed | Accuracy
NeRF 0* 20-60 s 10mm< @560mm
Laser scan $3,813 - $103,700(1) 20-30 min® 2mm @25m®®)

* Require smartphone for picture. Source (1) Bi et al. (2021) (2) Pei et al. (2022) (3) Jung et al. (2016)

were prepared (Figure 4). The pictures’ original resolu-
tions are 4,032 by 3,024 pixels. A higher picture resolu-
tion and Axis Aligned Bounding Box (AABB) scale result
in insufficient GPU memory, while a lower AABB scale
and picture resolution create scarce point clouds and lead
to more noise in the output. To be processed well with
NVIDIA GeForce RTX 3070 Laptop GPU, the pictures
were resized to 1,440 by 1,080 pixels and used 8 for the
AABB. The camera position and output results are shown
in Figure 5 and 6, respectively. There is excessive noise in
the background around the target object due to insufficient
photos in such areas, while Instant-NeRF generates higher-
quality beams and columns that were taken from multiple
angles.

In terms of the Luma Al application, the same object as
Instant-NeRF was captured. The application recognizes
the camera’s movement and position and automatically
captures pictures at a certain distance. The pictures are
sent to a web server, which returns the output after calcula-
tions. Figure 7 shows the output result of our object. Com-
pared to the output of Instant-NeRF, there are far fewer ar-
tifacts behind the surface, and the point cloud is smoother.
Table 1 compares NeRF and laser scanning methods.
NeRF reduces the time and cost of generating 3D represen-
tations, while laser scanning has higher accuracy. How-
ever, two main challenges have been identified for NeRF-
to-BIM. The first challenge is that NeRF creates points
in the middle of space and behind the surface of objects,
which does not occur when using laser scanning devices.
The second challenge is that the extent of light and shadow
affects the shape. NeRF creates points more accurately
in areas of darker colors, whereas it creates points more
sparsely in areas of lighter colors. In this case study, since
the concrete structure frame is painted with glossy white
paint, the output result of the ceiling and beams is partic-
ularly poor (Figure 6). The result was cropped for the se-
mantic segmentation process to exclude the noisy area.
Figure 8 demonstrates the dimensional accuracy by show-
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casing the size of the columns. The results indicate that
Luma Al produces dimensions that are approximately 100-
200mm smaller than their actual values, while Instant-
NeRF exhibits remarkable precision at the corners of the
columns. Luma Al technical support indicated that this
problem is caused by ARKit, which is a software devel-
opment kit (SDK) developed by Apple that enables the
creation of augmented reality (AR) applications for iOS
devices and recommended putting a scale marker in the
scene. Furthermore, both results show that the accuracy
is lower in the plane sides of the column compared to the
corner points. For Instant-NeRF, the measured distances
between the corner points are 557mm (-3mm) and 553mm
(-7mm), whereas the true value is 560mm. This difference
in accuracy may be attributed to the fact that corners can
be captured from multiple angles, while flat faces tend to
reflect light, resulting in a loss of detail. These results indi-
cate that NeRF output contains different accuracy levels of
each point in one point cloud data, whereas the point cloud
captured by laser scan produces a more consistently accu-
rate result. If the same fitting techniques used in previous
studies are utilized for the conversion to the BIM process,
it is expected that the performance will be lower since the
algorithms will include lower accuracy points. In other
words, to enhance the performance of NeRF-to-BIM, it is
the key to detect and select higher accuracy points for sim-
plified geometric models, excluding lower accuracy point
clouds.

(2) Applying semantic segmentation algorithm

To proceed with semantic segmentation training, six syn-
thetic point clouds were prepared using the built-in op-
tion of the Cloud Compare software by scaling the model
(shown in Figure 3) from 1.0 to 1.5. The data acquired in
Step 1 was labeled into four structural elements: beams,
columns, floors, and ceilings for evaluation. The two-
point cloud datasets obtained in step 1 were tested using
the PointNeXt algorithm with both pre-trained weights and
fine-tuned weights using the additional synthetic dataset.



Figure 5: The camera position
in 3D scene

Figure 6: Execution of
Instant-NeRF

Figure 9 illustrates the outputs tested on each training
method and ground truth. When comparing the results ob-
tained from the pre-trained deep learning model, the algo-
rithm misclassifies columns and beams as other elements
and fails to detect floors. On the other hand, the results
from the fine-tuned deep learning model show an improved
classification performance. Taking a closer look, table 2
shows the resulting accuracy percentage for each struc-
tural element in semantic segmentation. As can be seen
from the mean Intersection-over-Union (mloU) values, the
performance significantly improved after fine-tuning. The
Instant-NeRF point cloud results in lower performance for
beams and columns. This is likely due to the significant
amount of artifacts present around the borders between the
column, beam, and ceiling. The point cloud created with
Luma Al performed the best among our tests.

(3) Conversion from the semantic segmentation point
cloud to BIM

The results of step 2 indicate that Luma Al achieved the
best semantic segmentation performance. Even though it
generates a model with a different scale, the result of Luma
Al was used for the conversion process because of the
higher semantic segmentation performance and the cap-
tured larger area.

The conversion process for this case study should be tai-
lored in a different way from previous research, as the fo-
cus object and method of this research are different. As-
suming NeRF-to-BIM can be used on the construction site,
the standard grid-based column and beam structure for this
study was used. Considering the features of the NeRF out-
put as well, a four-step process is proposed: (1) Detect
and set up the levels based on the semantically segmented
point cloud of the floor and ceiling. (2) Set up the grid
by detecting the center points of columns from the sliced
horizontal sections. (3) Rotate the point clouds along the
grid system and identify the beam size from the sliced sec-
tion. (4) Reconstruct the BIM elements using the level and
grid system, as well as the detected element sizes. In the
first step, the floor and ceiling level is extracted from the
resulting outputs of the point cloud segmented as ’Floor’
and ’Ceiling’ elements. Upon observing the section of the
floor and ceiling point cloud height, the points were cre-
ated even underneath the surface of objects. Considering
tolerance and artifacts of NeRF output, it is assumed that a
one-dimensional histogram of the density of points along
the z-axis (as proposed by (Armeni et al. 2016)) would
perform better in detecting the floor level than the fitting
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Instant-NeRF Luma Al

Figure 7: Execution of
Luma Al

True Value:560mm

Figure 8: The comparison of
accuracy on column size

method, which would take into account tolerance and arti-
facts. By counting the number of Z-coordinates, the levels
of the floor and ceiling were extracted at 0.19 m and 2.16
m, respectively.

In the second step, the center points of columns from the
sliced horizontal section were extracted. In this case, the
slice area is set from the floor level + 0.5 m to 1.5 m. To
identify the center coordinates of columns, the points out-
side of the column are excluded with the same method in
step 1, which counts the number of the same (X, y) coor-
dinates and excludes the low number of (x, y) coordinates.
After cleaning the point cloud, the Open Source Computer
Vision Library (OpenCV) was used to detect the column
shape. OpenCV is an open-source software library for im-
age and video processing, including object detection and
recognition, face detection, motion detection, and image
segmentation. The detected column shapes are shown in
Figure 10. Using these center points, the grids were cre-
ated and rotated the whole point cloud alining the grids. In
this case, two columns were used to find grids, however,
when there are more columns, averaging and optimizing
multiple grids are required.

Finally, the height and size of the beam between columns
were detected by using the same method when the column
shapes were detected. The bottom level and size of the
beam were extracted as 1.59 m and (518mm, 570mm), re-
spectively. All extracted numbers, such as levels, grids,
size, and position of elements, were input to Dynamo and
exported into the Revit model as shown in Figure 11.

Limitation and ethical considerations

This study focuses on a simplified demonstration of the
NeRF-to-BIM process. The limitations of this research are
that this process is implemented on the limited size of the
column and beam building scene. There is a noted dif-
ficulty in acquiring data to implement the NeRF-to-BIM
process on a larger scale due to the requirement for high-
performance GPUs and the substantial amount of data gen-
erated. Additionally, the data transfer involved in the three-
step approach is performed manually, necessitating addi-
tional effort to establish a streamlined pipeline. Further-
more, the NeRF model’s quality significantly affects the
conversion process, particularly concerning the accuracy
of element shape and size extraction in areas where multi-
angle photographs are not available. Finally, data security
and confidentiality is also an issue to consider. The data
generated with NeRF should have proper confidentiality
measures to be restricted to only authorized persons with



Table 2: Semantic segmentation results (mloU: mean Intersection-over-Union)

Experiments | mloU | Ceiling | Floor Beam | Column
1 Instant-NeRF & Pre-train 2.46 9.84 0.00 0.00 0.00
2 Luma Al& Pre-train 24.19 47.27 49.47 0.00 0.00
3 Instant-NeRF & Finetune 35.19 30.86 74.94 10.28 24.68
4 Luma Al& Finetune 57.53 59.52 72.2 57.87 40.54

Instant NeRF

Pre-train Finetune

Luma Al

Finetune
Figure 9: Semantic segmentation results

Pre-train

Ceiling Level:
2,160mm

Beam: (2,241-5,553,
1, 60)

Column 2: (5,553, 2,282)
Column 1: (2,241, 2,282) 488x432
Floor Level 346x346

190mm

Figure 11: Excution to BIM

access to the information.

Conclusion and Future Work

This study proposed a novel framework for NeRF-to-BIM
instead of Scan-to-BIM to bring potential benefits to the
procedure of as-built modeling. The NeRF-to-BIM frame-
work was categorized into three steps: (1) Reconstruction
of the 3D scenes using NeRF, (2) 3D semantic segmen-
tation, and (3) Conversion to BIM. The goal of this study
was to establish a toy example in a simple structural model
to evaluate the feasibility of NeRF-to-BIM.

For generating point clouds with NeRF, Instant-NeRF and
Luma AI were used. While the Luma AI generated fewer
artifacts and smoother output than Instant-NeRF, Luma Al
produced a model with a different scale. Compared to
the laser scanning method, capturing time and expensive
equipment costs can be reduced.

In the semantic segmentation step, fine-tuning of the Point-
NeXt algorithm was executed with a synthesized point
cloud dataset generated from the 3D model. The perfor-
mance increased significantly compared to the case where
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Figure 10: Detected
column shapes

only pre-trained weights were applied. This result indi-
cates that more dataset related to building and synthetic
point cloud generated from BIM is the key to achieving
higher performance. Comparing Instant-NeRF and Luma
Al performance, Luma Al achieved higher performance
than Instant-NeRF.

In the conversion step, a four-step process is proposed: (1)
Detect and set up the floor and ceiling levels, (2) Set up
the grid using the detected center point of columns, (3)
Rotate the entire point clouds along the XY grid and iden-
tify the beam size, (4) Reconstruct the BIM elements. The
level & grid system, as well as the detected structural el-
ements, were translated to the BIM model. It should be
noted that these conversion steps are specifically designed
for building objects that feature columns and beams posi-
tioned along the grid lines, which intersect at a right angle.
The NeRF-to-BIM process still involves manual interven-
tion between three steps. To address the limitations and
challenges of the Scan-to-BIM method, an automated end-
to-end NeRF-to-BIM workflow is necessary. Therefore,
we identify this as an area for future work to advance our
study and to realize this approach’s potential benefits.
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