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Abstract
Current methods to create 3D models of roads are not 
scalable. Advances in photogrammetry mean that they 
have emerged as a realistic alternative to LiDAR for 
producing 3D spatial data. As photogrammetry is based 
on image data, methods developed in the area of computer 
vision can be utilised to segment or find relationships 
between assets in the point cloud. This could in turn be 
leveraged to generate 3D models. This paper presents the 
various advances in computer vision that can be applied 
to generate 3D models of the road surface, which could be 
used as a basis for creating a digital twin of a road.

Introduction
This paper is about how advances in the field of computer 
vision (CV) can be used to create Road Geometric Digital 
Twins (RGDT)s of road surfaces using Photogrammetry. 
In industry and research, the consensus is that a DT is a 
digital replica of a physical asset that accurately reflects 
the as-is status of the physical asset (Ariyachandra, 2021).
The road surface forms the basis for modelling other 
assets on the road. This is therefore the asset that will be 
the focus of the rest of this paper. This paper focuses on 
models of road surfaces that do not have any existing 3D 
models. Ancillaries to the road, such as street furniture are 
therefore not addressed. Photogrammetry is the science 
and technology of deriving 3D spatial data from a set of 
2D image data. Computer vision is the field within 
computer science that concerns itself with teaching 
machines to “see”. 
Information on asset condition and intuitive access to this 
data forms the basis for decision making relating to the 
maintenance and operations of roads (Flintsch & 
McGhee, 2009). However, it is common for this data to 
be outdated, in silos or stored in legacy databases. This 
makes them difficult to access, particularly in scenarios
where interdisciplinary collaboration is required (Shah, 
et al., 2017). This directly impacts the ability to take a 
responsive and coherent approach to planning. 
Development of a DT can allow the coordination of 
complex processes using a single digital resource (Jiao, et 
al., 2013; Khaddaj & Srour, 2016; Lindkvist, 2015). It 
allows for a database that can be intuitively and visually 
accessed. A key component of a DT is its 3D geometry. It
may serve as the interface between the data and the user. 
However, current industry practices to generate 3D 

representations of infrastructure assets are either too 
costly to be scalable or too low in detail to be used in 
common use cases relating to the built environment. 
Using visual data of the road to generate 3D models is 
currently an underutilized technique in the built 
environment industry. Sophisticated algorithms and 
Convolutional Neural Networks (CNNs) could be used to 
identify assets, their shapes, and their positions in a road 
scene. 
The next section outlines current modelling methods in 
industry and compares them against a set of user 
requirements. Areas that may benefit from the use of CV 
and photogrammetry are highlighted. An overview of the
relevant areas of CV and photogrammetry and how they 
have been used in previous research to create digital 
representations or road surfaces is given. Gaps in using 
CV for creating 3D models are then derived and 
summarised. Lastly, further research areas to advance this 
area are suggested.

Background
A DT can be used in a wide variety of applications within 
the Built Environment sector, such as visualising 
proposals, maintenance planning and use in simulations. 
Each use case will have unique requirements. The 
overarching requirements for a DT should allow for these 
requirements to be met. Broadly, these requirements can 
be listed as follows:

The model must…
…reflect the as-is condition of the road.
…display road assets at an appropriate level of 
detail for a given use case. 
…be object-based and able to store attribute 
information.
…be data light.
…be capable of accurately depicting larger 
stretches of road.
…be affordable to develop and make.

The first type of digital representation considered is large-
scale 3D maps such as Google Maps’ 3D view (Alphabet). 
The 3D model is a mesh created using photogrammetry. 
The mesh is then overlain with images used in the 
photogrammetry process. These maps are generated at a 
massive scale (Farr, et al., 2007). However, the level of 
detail of the model is low. The models are unsegmented 



meshes, meaning they are not object-based and cannot be 
used to store asset information. Large-scale 3D models 
are an excellent resource for high-level planning but fall
short in applications that require more detailed asset 
information.
Geospatial databases are another common form of digital 
representation used for roads. GIS programs, such as 
ArcGIS (Esri) and QGIS (open source), link data to a 
unique object that is graphically displayed. A wide variety 
of data formats, both open standards and proprietary, are 
supported. This includes object-based file formats. The 
majority of GIS is in 2D. In these cases, the nuances of a 
3D representation are lost (USC Spatial Sciences Institute, 
2021). 3D GIS has also been developed and is in use in 
industry. Some applications embed 3D models of specific 
assets as a data layer. Other applications can show entire 
city scenes in a 3D view. However, these models are very 
low in detail and do not extend to road surfaces. While 3D 
GIS attempts to portray asset information in a 3D space, 
it does not do so for roads at the required level of 
granularity.
Using Mobile Laser Scanners (MLS) is a common method 
in industry to create 3D representations. An MLS can 
collect a Point Cloud (PC), which can be combined with 
other data sources, such as images, to create a highly 
detailed and accurate 3D representation of a road scene.
Using an MLS has several advantages. The MLS can 
capture volumetric data that may not be visible on an RGB 
image. It is also robust against weather effects and 
occlusions (Farhadmanesh, et al., 2021). Companies that 
work within the infrastructure digitisation domain, such 
as Viatech (NO) and Trimble (US), provide commercial 
services for this process. However, these models are 
unsegmented and not object-based. It follows that no 
further information or attributes are stored in the model. 
Another issue of this type of system is the large file size 
and expensive data gathering process. Pre-processing and 
“cleaning” the PC can significantly reduce the data 
density and file size. However, there is a limit to how 
much the file size can be reduced without losing essential 
detail (Chen et.al, 2019; Tan & Li, 2019; Matsumoto 
et.al., 2019). While these types of models offer high levels 
of detail and accuracy, a more data-light and cost-
effective approach is required.
Creating models manually is still common within 
practice. This is especially true in situations where the 
required model needs to be highly detailed and object-
based. Models are created using a combination of Google 
Maps, GIS, old technical drawings, or design models as 
references. Additional data, such as PCs and, high-
resolution images can be collected from the site to further 
enrich the model. The final models are tailored to fulfil 
the EURs of a given project (DEGES, 2022). These 
models are expensive and labour intensive to produce. 
Due to this, the frequency of their use is limited.
Powerful 3D rendering engines and modelling tools 
developed for the games industry are being utilised for 
applications in the built environment sector. These models 
are also object-based, and a wide variety of file formats 

are supported. An increasing number of software vendors 
in the built environment industry are supporting the export 
of BIM files into game engines for visualisation purposes
(Mathworks, 2022; Witteveen+Bos, 2022; Loclab, 2022).
However, game engine-based 3D models are labour 
intensive to produce if using traditional approaches. 
Efforts have been made to streamline the modelling
process. One example of this is the use of an object library 
to represent common assets, such as a standard stop sign.
This removes the need to manually model these assets. 
Each instance of the 3D model is an object and can be 
enriched with attributes or other data required by the end 
user. These models rely on the object library, which must
be curated and created manually. Many assets, however, 
are not suited to this type of modelling and still require 
manual modelling. This is slow and expensive to do. 
Examples include large, complex assets that may be 
custom made for a project. The road surface itself is an 
example of this. The width of the road changes, lanes 
branch off and on and there are often irregularities such as 
bus stops or chicanes present. 

Levers to reduce costs
Many attributes of a company affect the viability of using 
RGDTs. This includes budget prioritisations, information 
silos within a company, management decisions and the 
cost of generating the RGDT itself. The rest of this paper 
focuses on the last aspect of this list. The specialised
equipment needed, the large size of data and the high 
number of skilled labour hours required means that it is 
often uneconomical to create an RGDT. Current methods 
for modelling a road surface are not practical for large-
scale use in industry. A scalable solution is therefore 
required.
Three main levers are considered to reduce this cost: The 
quality of the model, the cost of data collection and 
equipment and the cost of labour.  Quality should be fixed 
as they are set by the user requirements.  The cost of data 
collection alone often prohibits the creation of an RGDT. 
Reducing this high initial cost would lower the barrier to
entry. Photos, videos, and their derived data are already 
being effectively used in industry as a cost-effective 
alternative for laser-scanned PCs. The largest cost 
associated with creating an RGDT is the labour cost. This 
can be achieved by increasing the level of automation in 
creating an RGDT. 
One can leverage the image or video data to help increase 
automation. As PPCs are derived from images, it is 
possible to use the information found about the images to 
enhance the segmentation of the PPC. This has the 
potential to significantly improve segmentation results 
and computational efficiency. The next section will 
therefore explore the state of research in automating the
modelling of on-road assets using photo, video, and their 
derived data, Photogrammetric Point Clouds, (PPCs).

Photogrammetric point clouds
In addition to photogrammetry, there exists a wide variety 
of related technologies derived from it. The most common 



of these are Structure from Motion, Simultaneous 
Localisation and Mapping, and Stereovision. As 
photogrammetry is the underlying mechanism for these 
methods (Fraser, 2018), the overarching technique of 
photogrammetry will be referred to.
The basic principle of photogrammetry is triangulation. 
All features in a set of images are matched to their 
corresponding positions in the other images (Jain et.al., 
2017). Feature locations in space are reconstructed using 
two or more converging rays projected from the images. 
Figure 1 shows a schematic of how 2D coordinates in
images relate to a 3D coordinate in space. A dense PPC
can be reconstructed using this method (Forsyth & Ponce, 
2012). These reconstructed PPCs contain both spatial and 
colour information. However, they do not contain 
semantic information that distinguishes between objects
or asset categories (Chen et.al., 2019).
Previously, generating a PPC used to require large 
amounts of manual intervention (Brilakis et.al., 2011) to 
be a viable alternative to LiDAR. Improved 
photogrammetry techniques and the lower equipment 
costs compared to LiDAR have made photogrammetry a
more attractive choice than before (Farhadmanesh et.al., 
2021).
PPCs are, like LiDAR PCs, a spatial dataset. They can 
therefore benefit from the rich body of work done in the 
field of PC segmentation (Brilakis et.al., 2011). Some 
studies have applied 3D segmentation techniques 
developed for LiDAR on PPCs (Chen et.al, 2019). For 
instance, Tan & Li (2019) were able to find the geometry 
of the road surface and kerbs within 1cm of accuracy 
using region growing in a PPC. However, the limitation 
of PCs is still present. These include large file sizes and 
high computational requirements. Additionally, directly 
applying 3D PC segmentation techniques does not take 
advantage of the other information available in the images 
used to generate the PPC.  

Figure 1: Schematic of 2D correspondences and 3D rays. The 
intersection point between rays is the point of the feature in 

3D. (Shervais, 2016)

Object detection and image segmentation
In the context of a road scene, a method that can detect 
several objects in an image is required. Two fields of 
computer vision focus on identifying the placement and 
asset type of several objects in an image. These are Object 
Detection and Image Segmentation. 
Object detection concerns itself with identifying bounding 
boxes around multiple objects and assigning each 
individual object or set of objects a label. Image 
segmentation concerns itself with partitioning an image 
into multiple segments or regions. The main difference 
between image segmentation and object detection is that 
labels are assigned to every pixel instead of a bounding 
box. This means that the shape of an object is also 
recognised.
Over the years, CNN-based image segmentation has 
phased out traditional hand-crafted methods due to much 
better performance (Suleymanov and Kunze, 2018; Liang 
et al., 2020). CNNs are a class of Deep Learning (DL)
algorithms that takes an image as input. Each input image 
is passed through a series of convolution layers with 
trained weights. The final layer outputs the assigned
labels of the image.
CNNs are an active area of research. Further features have 
been added to CNN architectures to improve performance 
for segmenting roads. Some issues that still need to be 
addressed include the lack of generalisation, large 
computational loads in training (Tang et.al., 2021; Hou 
et.al., 2019), acquiring sufficient training data (Genova 
et.al, 2021) and occlusion in images (Wang et.al., 2019). 
It is important to keep these limitations in mind when 
utilising CNNs and image segmentation.
Some studies have projected LiDAR PCs and PPCs into a
2D image to take advantage of segmentation technologies. 
These are called raster-based models. In raster-based 
methods, a point’s intensity and range data are converted 
into a raster format, creating a 2D image. 
CV algorithms or CNNs are then used to segment and 
label the points, as done in Jung et.al. (2019) and Li et.al. 

Figure 2: Differences between the three main types of image 
segmentation. (Kirillov et.al., 2019)



(2021). This has several advantages such as lowering the 
computational demand of the segmentation task 
(Suleymanov et.al, 2019), compared to directly 
segmenting PCs. However, raster-based models must be 
applied to a PC. A PPC must therefore first be generated 
using image data. After the PPC is created, it would then 
have to be projected back into a 2D image for 
segmentation. This is inefficient.
A more computationally efficient way to segment a PPC 
is to utilise pixel labels in pre-segmented images to label 
each 3D point (Zhang et.al. 2019; Li et.al., 2019;
Golpavar-Fard et.al., 2015; Vineet et.al., 2015). Every 
point in the PPC has correspondences over one or more 
images. These labels are migrated from the 2D images to 
their corresponding points in the PPC. In some cases, a 
point may correspond to several labels. The final label can 
be selected through various methods. These include a 
simple voting system (Golpavar-Fard et.al., 2015), ray 
casting labels from images to the 3D model (Vineet et.al., 
2015), and probabilistic methods, such as Bayesian 
progressive label migration (Zhang et.al., 2019). In some 
cases, the PPCs have been converted into grid voxel maps 
(Li et.al., 2018; Yang et.al., 2017; Kundu et.al., 2014) for 
further computational savings. 
Fusing methods using image segmentation with pure PC 
segmentation methods has been attempted. Zhong et.al. 
(2017) labelled a PPC after acquiring semantic labels for 
the images using a CNN. This achieved a mean IoU of 
67.56% and point-wise accuracy of 80.13%. In this work, 
the LiDAR PC was also collected and segmented. The 
segmented PC and PPC were then fused together to 

Figure 3: Labelling of PPC. Labelling a PC using a segmented 
image means that one doe does not need to perform 3D 

segmentation. (Cheng et.al., 2019)

improve the segmentation results. However, it was found 
that the improvement from fusing these two PPCs was
negligible (<1%), for all evaluation parameters, compared 
to directly segmenting through a voting process.

Incorporating road asset relationships
One feature of roads is that they are inherently structured 
and hierarchical in nature. Assets are placed in predictable 
locations relative to each other. It is possible to use this
prior knowledge to improve the detection and 
segmentation of these assets.
One attempted method is to split a PC into specific regions 
of interest (ROIs) and only search for certain assets within 
this ROI (Li et. al., 2021). However, an asset may be 
present in an ROI it has not been assigned to, meaning that 
it will not be recognised. This may explain why the 
median IoU score across all asset classes was 71.34% in 
Li et.al. (2021), which is comparable with methods that 
do not first find ROIs.
Prior knowledge can be used to fill in occluded parts of an 
image. For instance, Suleymanov et.al. (2019) used the 
assumption of a kerb being continuous to fill in missing 
kerb sections in a partially occluded scene. The described 
method had robust results, with an F1 score of 0.97 for a 
test dataset that combined both occluded and non-
occluded scenes. However, this assumption is often not 
true. For instance, there may be discontinuities in a kerb 
due to a traffic crossing etc. In these cases, it would be 
wrong to assign those spaces as being a kerb.
The two hand-crafted methods described above hold 
assumptions that may not generalise to many 
configurations. While they perform well under certain 
scenarios, there is a need for more flexibility in describing 
road asset relationships. 
Conditional Random Fields (CRFs) are a type of 
probabilistic graph model that takes neighbour prediction 
context into account in the current prediction. CRFs can 
be jointly implemented with the segmentation process. 
(Vineet et.al., 2015; Kundu et.al., 2014). However, these 
methods have been phased out in favour of CNN-based 
approaches. In more recent works, CRFs are used at the 
end of CNN segmentation pipelines to enforce semantic 
(Wang et.al., 2019; Yang et.al., 2017) and spatial (Li 
et.al., 2019; Zhang et.al., 2019) consistency on a pre-
segmented image or model. Methods that incorporate a 
CRF as a final process usually see a 2-3% improvement 
in the average IoU of the segmented model. 
Other methods have utilised the hierarchical nature of 
roads more explicitly. These models are based on the idea 
that an object can be a collection of parts and rely on 
object detection, rather than image segmentation. 
Bounding boxes for each individual part can be found and 
identified. These can be combined into larger bounding 
boxes representing the whole object (Davies, 2022). 
Latent Hierarchical Parts Based (LHPB) models are an 
extension of these models specifically developed to 
interpret road scenes (Venkateshkumar et.al., 2015). They 
provide a framework for interpreting a scene using a tree 
structure, as shown in fig.4. The strong constraints 



imposed by the tree structure enable the model to search 
for the correct configurations of objects in a scene. This 
allows errors at the bottom level of detection to be 
corrected when placed in the larger context of a road.
This was done in Victor et.al. (2021). They used an LHPB 
model to generate approximate 3D models. A single 
image was used as an input and processed using the 
methods described in Venkateshkumar et.al. (2015), 
yielding an image with objects organized in a hierarchical 
structure. Depth information of the image was found and 
corrected for perspective projection. After the position 
and asset type of objects in the image were found, an 
approximate match of the object is placed in the model 
from an object library. However, due to the limited 
number of assets covered, the resulting models are not 
detailed enough to be used in engineering applications. 
Additionally, this study only considers short stretches of 
road and the perspective projection can only be applied to 
straight roads. As this method has only been applied to 
single 2D images, it is unclear if this method can be 
applied to a structured image set (video) or a PPC.
Mapping road markings can be used to create a 3D model.
They provide valuable information about the position and 
types of markings present on the road. Usually, CNNs are 
used on an image or set of images to generate a depth map 
that is then projected into a 2D view. Image segmentation 
is then used to find road markings on the road surface. 
(Liu et.al., 2020).

Figure 4: Road scene and hierarchical decomposition Road 
scenes can be split into a hierarchy. (Venkateshkumar

et.al.,2015)

Another method used to infer road layout was presented 
in Jang et.al. (2022). The relationship between the vehicle 
poses and road markings was represented using a graph.
This was used to identify road markings that appeared in
consecutive images as well as inference of markings
occluded by other vehicles. These methods were able to 
generate parametric layouts of complicated road scenes, 
such as junctions. The road markings and their 
relationship to one another were found rather well, 
exceeding 80% in accuracy and F1-score. However, their 
positional accuracy was relatively low. The mean IoU was 
typically 40-60%. This is likely due to the use of a CNN-
generated depth map to project the images into 3D instead 
of photogrammetry-based methods. There would be a 
“mismatch” between the two volumetric models.
While their performance on longer stretches of road is
unknown, they present a promising start to interpreting 
more complex road layouts.

Conversion to object-oriented 3D model 
While many technologies in CV may help identify the 
assets in a road scene, a separate process is needed to 
convert these into an object-oriented model. The efforts in 
doing this are currently rather dispersed as the goal of the 
studies attempting this do not concern themselves with 
generating an RGDT.  These studies can help inform the 
areas most important to focus on going forward. 
The centreline of the road serves as a backbone for 
describing the positions of other assets on or on the sides 
of the road. Roads are not simple linear structures but are 
composed of a series of interwoven linear features: Lanes 
merge and unmerge, and junctions split into separate 
roads. Flexibility is therefore required to accurately 
describe a road’s layout and features (Suleymanov, 2019). 
There is a rich body of literature concerning itself with 
extracting road centrelines and road trajectories. These 
studies consistently report precision and recall values 
>90% in complex road scenes (Shao et.al., 2021; Zhang 
et.al., 2018; Sironi et.al., 2014). 
Some studies have attempted to include converting found 
lines into open-data formats. Using raster-based methods 
Prochazka et.al. (2019) identified markings and extracted 
them as polyline representation, representing the lane 
boundaries of the road. However, the identification
process fails in more complicated road scenarios as the 
spanning trees grow in complexity. Due to this, this 
method is not viable for more complex road layouts. 
One could also directly extract parameters, such as road 
width, from a segmented PPC. This was done in Li et.al. 
(2021). A width estimation algorithm was used to directly 
extract road widths. The algorithm requires the user to 
input the number of width measurements to take and the 
length of the road section to search on. Lines, each 
representing one measurement, are evenly spaced,
crossing the road, along the length of the road section. The 
length of each line is minimized to be perpendicular to the 
tangent of the road curvature. While robust for short 
stretches of road where the lane configuration is fixed, this 



method is not scalable for longer stretches of road. the 
number of redundant measurements would be high. 
Essential measurements would also be missed in other 
places where the road width may change dramatically in 
a short period (junctions, merging lanes etc.).
In recent years, more work has been done to make BIM 
for transport infrastructure reach the same maturity as the 
building industry (Barbosa, et al., 2017). IFC-Road is a 
schema that is currently in development under this 
project. Due to the recentness of this schema, there have 
been very few studies that attempt to extract road model 
parameters that are suitable to be converted into that 
format. In fact, to the author’s knowledge, no studies that 
use image-derived data to generate IFC-compliant models 
for road surfaces exist.
The spatial nature of PPCs means that methods developed 
using LiDAR PCs can be applied to them. In the context 
of generating an Ifc model, road trajectories and 
centrelines can be found for either the road as a whole or 
for each individual lane. Soilán et.al. (2020) developed a 
semi-automated method to extract the alignment and 
centreline of road lanes. In this work, the input was a 
LiDAR PC, and the goal was to automatically generate an 
IFC-compliant file. The road surface was found through 
region growing. The road markings are then found using 
Euclidian distance clustering based on the intensity 
values. This information was used to generate an Ifc 
model. In this work 20% of the road had to be manually 
edited, taking 69% of the total modelling time. In 
particular, the authors noted that the method struggles to 
identify the alignment of curved road sections and road 
markings denoting merging lanes. 
Justo et. al. (2021) extended this work and used a 
modified approach. The approach to finding the 
alignments and centrelines was therefore simplified. The 
number of lanes was treated as fixed and known. This 
removed road markings that do not strictly follow the 
trajectory of the road, for example, due to lane merging 
etc. A very slight decrease in manual modelling time was 
recorded, taking 65% of the time to model 20% of the 
road. While no numerical values are provided, visual 
inspection reveals that the alignments that were 
automatically found were also more accurate. However, 
the shortfalls of the previous work were not addressed. 
While a promising start, the authors also recognise it as a 
scaffolding for future work.
It is interesting to compare the work done on finding road 
alignments to that of rail. Following up on their previous 
work, Soilán et.al. (2021) also developed a method to find 
the centreline for rail tracks and export these into IFC-
Rail. The rail tracks were segmented according to height 
and not intensity. Rail tracks have a constant width, and 
the sleepers are also of a consistent shape. These factors 
had a major impact on the result. While the methods 
developed for roads are described as semi-automatic, the 
method for rail is described as fully automatic. 
Additionally, the found alignment for rail had an error of 
only < 3%. It can be concluded that factors that contribute 
to uniformity in the road profile, such as turns and lane 

merging, are a major roadblock to fully automating the 
generation of Ifc-compliant RGDTs. In the next section, 
other challenges are also discussed and future areas of 
research are suggested.

Discussion
Many methods can be borrowed from CV that could be 
applied to creating 3D models of road surfaces. However, 
as these technologies have not been developed for use in 
the built environment sector nor tailored to any of the use 
cases therein, at the current state, they cannot be directly 
used to create object-oriented 3D models for DTs.
For instance, road surface segmentation methods are 
usually not sufficiently generalised. Current methods rely 
on assumptions that are designed for very specific cases.
For instance, there are no methods that can generate 
models of long stretches of road that are at least a few km 
long in a computationally realistic way. All the methods 
reviewed had difficulties in situations where the road 
layout was more complex, such as at a crossing or in a 
place where lanes merge. This is a major issue as most 
roads contain these types of features. Additionally, a
limited amount of asset types can be reliably found.
Existing studies only extract a limited number of asset 
types. There is certainly a tension between scalability and 
model complexity.
It is also unknown if and to what degree state-of-the-art 
methods for segmenting and mapping the road surface can 
improve current segmentation methods or to what scale of 
road this can be applied. Many of the technologies 
presented have also not been applied to use on road 
surfaces yet. For instance, road marking maps have not 
been generated using PPCs. CRFs that purely define the 
relationship between assets on the road surface have not 
been attempted and it is unknown if LHPB models can be 
effectively applied to PPCs, on non-straight roads or on
long stretches of road.
Current methods also struggle to reliably extract road 
surface parameters on road sections with an ununiform 
layout, and then store them in an object-oriented format.
Even with an ideal segmented PC, a significant amount of 
development is needed to extract geometric parameters 
from these PCs.
Lastly, using image segmentation to label PCs is 
completely dependent on how well the image is 
segmented. Image segmentation and object detection are
currently much more advanced than 3D segmentation.
Further exploring the applications of this technology in
the context of creating 3D models, therefore, seems like a 
worthwhile pursuit. 

Conclusion
Traditional methods for creating 3D models of roads 
either do not meet the user requirements of a DT or are 
too expensive to be a scalable solution. Using images and 
videos as a data source for creating a 3D model can greatly 
reduce data collection costs. Utilising this type of data 
also allows for the application of CV techniques to help 
identify and label the PPC generated from the image data.



Overall, there are challenges both to identifying the 
modellable assets in the input data and to converting these 
into a 3D model file format for final use. While current 
efforts have made a promising start, they have not had 
generating an RGDT as their final goal. The technology 
needs to be further tailored for use in the built 
environment industry. This could in turn contribute to the 
development of a DT that may assist various stakeholders 
to make more informed decisions. In turn, contributing to 
future-proofing road networks. 
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