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Abstract

Current methods to create 3D models of roads are not
scalable. Advances in photogrammetry mean that they
have emerged as a realistic alternative to LiDAR for
producing 3D spatial data. As photogrammetry is based
on image data, methods developed in the area of computer
vision can be utilised to segment or find relationships
between assets in the point cloud. This could in turn be
leveraged to generate 3D models. This paper presents the
various advances in computer vision that can be applied
to generate 3D models of the road surface, which could be
used as a basis for creating a digital twin of a road.

Introduction

This paper is about how advances in the field of computer
vision (CV) can be used to create Road Geometric Digital
Twins (RGDT)s of road surfaces using Photogrammetry.
In industry and research, the consensus is that a DT is a
digital replica of a physical asset that accurately reflects
the as-is status of the physical asset (Ariyachandra, 2021).
The road surface forms the basis for modelling other
assets on the road. This is therefore the asset that will be
the focus of the rest of this paper. This paper focuses on
models of road surfaces that do not have any existing 3D
models. Ancillaries to the road, such as street furniture are
therefore not addressed. Photogrammetry is the science
and technology of deriving 3D spatial data from a set of
2D image data. Computer vision is the field within
computer science that concerns itself with teaching
machines to “see”.

Information on asset condition and intuitive access to this
data forms the basis for decision making relating to the
maintenance and operations of roads (Flintsch &
McGhee, 2009). However, it is common for this data to
be outdated, in silos or stored in legacy databases. This
makes them difficult to access, particularly in scenarios
where interdisciplinary collaboration is required (Shah,
et al., 2017). This directly impacts the ability to take a
responsive and coherent approach to planning.
Development of a DT can allow the coordination of
complex processes using a single digital resource (Jiao, et
al., 2013; Khaddaj & Srour, 2016; Lindkvist, 2015). It
allows for a database that can be intuitively and visually
accessed. A key component of a DT is its 3D geometry. It
may serve as the interface between the data and the user.
However, current industry practices to generate 3D
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representations of infrastructure assets are either too
costly to be scalable or too low in detail to be used in
common use cases relating to the built environment.
Using visual data of the road to generate 3D models is
currently an underutilized technique in the built
environment industry. Sophisticated algorithms and
Convolutional Neural Networks (CNNs) could be used to
identify assets, their shapes, and their positions in a road
scene.

The next section outlines current modelling methods in
industry and compares them against a set of user
requirements. Areas that may benefit from the use of CV
and photogrammetry are highlighted. An overview of the
relevant areas of CV and photogrammetry and how they
have been used in previous research to create digital
representations or road surfaces is given. Gaps in using
CV for creating 3D models are then derived and
summarised. Lastly, further research areas to advance this
area are suggested.

Background

A DT can be used in a wide variety of applications within
the Built Environment sector, such as visualising
proposals, maintenance planning and use in simulations.
Each use case will have unique requirements. The
overarching requirements for a DT should allow for these
requirements to be met. Broadly, these requirements can
be listed as follows:

The model must...

e ...reflect the as-is condition of the road.

e .. .display road assets at an appropriate level of
detail for a given use case.
...be object-based and able to store attribute
information.
...be data light.
...be capable of accurately depicting larger
stretches of road.
...be affordable to develop and make.

The first type of digital representation considered is large-
scale 3D maps such as Google Maps’ 3D view (Alphabet).
The 3D model is a mesh created using photogrammetry.
The mesh is then overlain with images used in the
photogrammetry process. These maps are generated at a
massive scale (Farr, et al., 2007). However, the level of
detail of the model is low. The models are unsegmented



meshes, meaning they are not object-based and cannot be
used to store asset information. Large-scale 3D models
are an excellent resource for high-level planning but fall
short in applications that require more detailed asset
information.

Geospatial databases are another common form of digital
representation used for roads. GIS programs, such as
ArcGIS (Esri) and QGIS (open source), link data to a
unique object that is graphically displayed. A wide variety
of data formats, both open standards and proprietary, are
supported. This includes object-based file formats. The
majority of GIS is in 2D. In these cases, the nuances of a
3D representation are lost (USC Spatial Sciences Institute,
2021). 3D GIS has also been developed and is in use in
industry. Some applications embed 3D models of specific
assets as a data layer. Other applications can show entire
city scenes in a 3D view. However, these models are very
low in detail and do not extend to road surfaces. While 3D
GIS attempts to portray asset information in a 3D space,
it does not do so for roads at the required level of
granularity.

Using Mobile Laser Scanners (MLS) is a common method
in industry to create 3D representations. An MLS can
collect a Point Cloud (PC), which can be combined with
other data sources, such as images, to create a highly
detailed and accurate 3D representation of a road scene.
Using an MLS has several advantages. The MLS can
capture volumetric data that may not be visible on an RGB
image. It is also robust against weather effects and
occlusions (Farhadmanesh, et al., 2021). Companies that
work within the infrastructure digitisation domain, such
as Viatech (NO) and Trimble (US), provide commercial
services for this process. However, these models are
unsegmented and not object-based. It follows that no
further information or attributes are stored in the model.
Another issue of this type of system is the large file size
and expensive data gathering process. Pre-processing and
“cleaning” the PC can significantly reduce the data
density and file size. However, there is a limit to how
much the file size can be reduced without losing essential
detail (Chen et.al, 2019; Tan & Li, 2019; Matsumoto
et.al., 2019). While these types of models offer high levels
of detail and accuracy, a more data-light and cost-
effective approach is required.

Creating models manually is still common within
practice. This is especially true in situations where the
required model needs to be highly detailed and object-
based. Models are created using a combination of Google
Maps, GIS, old technical drawings, or design models as
references. Additional data, such as PCs and, high-
resolution images can be collected from the site to further
enrich the model. The final models are tailored to fulfil
the EURs of a given project (DEGES, 2022). These
models are expensive and labour intensive to produce.
Due to this, the frequency of their use is limited.
Powerful 3D rendering engines and modelling tools
developed for the games industry are being utilised for
applications in the built environment sector. These models
are also object-based, and a wide variety of file formats
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are supported. An increasing number of software vendors
in the built environment industry are supporting the export
of BIM files into game engines for visualisation purposes
(Mathworks, 2022; Witteveen+Bos, 2022; Loclab, 2022).
However, game engine-based 3D models are labour
intensive to produce if using traditional approaches.
Efforts have been made to streamline the modelling
process. One example of this is the use of an object library
to represent common assets, such as a standard stop sign.
This removes the need to manually model these assets.
Each instance of the 3D model is an object and can be
enriched with attributes or other data required by the end
user. These models rely on the object library, which must
be curated and created manually. Many assets, however,
are not suited to this type of modelling and still require
manual modelling. This is slow and expensive to do.
Examples include large, complex assets that may be
custom made for a project. The road surface itself is an
example of this. The width of the road changes, lanes
branch off and on and there are often irregularities such as
bus stops or chicanes present.

Levers to reduce costs

Many attributes of a company affect the viability of using
RGDTs. This includes budget prioritisations, information
silos within a company, management decisions and the
cost of generating the RGDT itself. The rest of this paper
focuses on the last aspect of this list. The specialised
equipment needed, the large size of data and the high
number of skilled labour hours required means that it is
often uneconomical to create an RGDT. Current methods
for modelling a road surface are not practical for large-
scale use in industry. A scalable solution is therefore
required.

Three main levers are considered to reduce this cost: The
quality of the model, the cost of data collection and
equipment and the cost of labour. Quality should be fixed
as they are set by the user requirements. The cost of data
collection alone often prohibits the creation of an RGDT.
Reducing this high initial cost would lower the barrier to
entry. Photos, videos, and their derived data are already
being effectively used in industry as a cost-effective
alternative for laser-scanned PCs. The largest cost
associated with creating an RGDT is the labour cost. This
can be achieved by increasing the level of automation in
creating an RGDT.

One can leverage the image or video data to help increase
automation. As PPCs are derived from images, it is
possible to use the information found about the images to
enhance the segmentation of the PPC. This has the
potential to significantly improve segmentation results
and computational efficiency. The next section will
therefore explore the state of research in automating the
modelling of on-road assets using photo, video, and their
derived data, Photogrammetric Point Clouds, (PPCs).

Photogrammetric point clouds

In addition to photogrammetry, there exists a wide variety
of related technologies derived from it. The most common



of these are Structure from Motion, Simultaneous
Localisation and Mapping, and Stereovision. As
photogrammetry is the underlying mechanism for these
methods (Fraser, 2018), the overarching technique of
photogrammetry will be referred to.

The basic principle of photogrammetry is triangulation.
All features in a set of images are matched to their
corresponding positions in the other images (Jain et.al.,
2017). Feature locations in space are reconstructed using
two or more converging rays projected from the images.
Figure 1 shows a schematic of how 2D coordinates in
images relate to a 3D coordinate in space. A dense PPC
can be reconstructed using this method (Forsyth & Ponce,
2012). These reconstructed PPCs contain both spatial and
colour information. However, they do not contain
semantic information that distinguishes between objects
or asset categories (Chen et.al., 2019).

Previously, generating a PPC used to require large
amounts of manual intervention (Brilakis et.al., 2011) to
be a viable alternative to LiDAR. Improved
photogrammetry techniques and the lower equipment
costs compared to LiDAR have made photogrammetry a
more attractive choice than before (Farhadmanesh et.al.,
2021).

PPCs are, like LIDAR PCs, a spatial dataset. They can
therefore benefit from the rich body of work done in the
field of PC segmentation (Brilakis et.al., 2011). Some
studies have applied 3D segmentation techniques
developed for LIDAR on PPCs (Chen et.al, 2019). For
instance, Tan & Li (2019) were able to find the geometry
of the road surface and kerbs within lcm of accuracy
using region growing in a PPC. However, the limitation
of PCs is still present. These include large file sizes and
high computational requirements. Additionally, directly
applying 3D PC segmentation techniques does not take
advantage of the other information available in the images
used to generate the PPC.
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Figure 1: Schematic of 2D correspondences and 3D rays. The
intersection point between rays is the point of the feature in
3D. (Shervais, 2016)

Object detection and image segmentation

In the context of a road scene, a method that can detect
several objects in an image is required. Two fields of
computer vision focus on identifying the placement and
asset type of several objects in an image. These are Object
Detection and Image Segmentation.

Object detection concerns itself with identifying bounding
boxes around multiple objects and assigning each
individual object or set of objects a label. Image
segmentation concerns itself with partitioning an image
into multiple segments or regions. The main difference
between image segmentation and object detection is that
labels are assigned to every pixel instead of a bounding
box. This means that the shape of an object is also
recognised.

Over the years, CNN-based image segmentation has
phased out traditional hand-crafted methods due to much
better performance (Suleymanov and Kunze, 2018; Liang
et al., 2020). CNNs are a class of Deep Learning (DL)
algorithms that takes an image as input. Each input image
is passed through a series of convolution layers with
trained weights. The final layer outputs the assigned
labels of the image.

CNNss are an active area of research. Further features have
been added to CNN architectures to improve performance
for segmenting roads. Some issues that still need to be
addressed include the lack of generalisation, large
computational loads in training (Tang et.al., 2021; Hou
et.al., 2019), acquiring sufficient training data (Genova
et.al, 2021) and occlusion in images (Wang et.al., 2019).
It is important to keep these limitations in mind when
utilising CNNs and image segmentation.

Some studies have projected LiDAR PCs and PPCs into a
2D image to take advantage of segmentation technologies.
These are called raster-based models. In raster-based
methods, a point’s intensity and range data are converted
into a raster format, creating a 2D image.

CV algorithms or CNNSs are then used to segment and
label the points, as done in Jung et.al. (2019) and Li et.al.

(c) instance segmentation (d) panoptic segmentation

(a) image

(b) semantic segmentation

Figure 2: Differences between the three main types of image
segmentation. (Kirillov et.al., 2019)



(2021). This has several advantages such as lowering the
computational demand of the segmentation task
(Suleymanov et.al, 2019), compared to directly
segmenting PCs. However, raster-based models must be
applied to a PC. A PPC must therefore first be generated
using image data. After the PPC is created, it would then
have to be projected back into a 2D image for
segmentation. This is inefficient.

A more computationally efficient way to segment a PPC
is to utilise pixel labels in pre-segmented images to label
each 3D point (Zhang etal. 2019; Li etal., 2019;
Golpavar-Fard et.al., 2015; Vineet et.al., 2015). Every
point in the PPC has correspondences over one or more
images. These labels are migrated from the 2D images to
their corresponding points in the PPC. In some cases, a
point may correspond to several labels. The final label can
be selected through various methods. These include a
simple voting system (Golpavar-Fard et.al., 2015), ray
casting labels from images to the 3D model (Vineet et.al.,
2015), and probabilistic methods, such as Bayesian
progressive label migration (Zhang et.al., 2019). In some
cases, the PPCs have been converted into grid voxel maps
(Liet.al., 2018; Yang et.al., 2017; Kundu et.al., 2014) for
further computational savings.

Fusing methods using image segmentation with pure PC
segmentation methods has been attempted. Zhong et.al.
(2017) labelled a PPC after acquiring semantic labels for
the images using a CNN. This achieved a mean IoU of
67.56% and point-wise accuracy of 80.13%. In this work,
the LiDAR PC was also collected and segmented. The
segmented PC and PPC were then fused together to

Raw image

semantic segmentation

(b)

(c) semantic map
Figure 3: Labelling of PPC. Labelling a PC using a segmented
image means that one doe does not need to perform 3D
segmentation. (Cheng et.al., 2019)
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improve the segmentation results. However, it was found
that the improvement from fusing these two PPCs was
negligible (<1%), for all evaluation parameters, compared
to directly segmenting through a voting process.

Incorporating road asset relationships

One feature of roads is that they are inherently structured
and hierarchical in nature. Assets are placed in predictable
locations relative to each other. It is possible to use this
prior knowledge to improve the detection and
segmentation of these assets.

One attempted method is to split a PC into specific regions
of interest (ROIs) and only search for certain assets within
this ROI (Li et. al., 2021). However, an asset may be
present in an ROI it has not been assigned to, meaning that
it will not be recognised. This may explain why the
median IoU score across all asset classes was 71.34% in
Li et.al. (2021), which is comparable with methods that
do not first find ROIs.

Prior knowledge can be used to fill in occluded parts of an
image. For instance, Suleymanov et.al. (2019) used the
assumption of a kerb being continuous to fill in missing
kerb sections in a partially occluded scene. The described
method had robust results, with an F1 score of 0.97 for a
test dataset that combined both occluded and non-
occluded scenes. However, this assumption is often not
true. For instance, there may be discontinuities in a kerb
due to a traffic crossing etc. In these cases, it would be
wrong to assign those spaces as being a kerb.

The two hand-crafted methods described above hold
assumptions that may not generalise to many
configurations. While they perform well under certain
scenarios, there is a need for more flexibility in describing
road asset relationships.

Conditional Random Fields (CRFs) are a type of
probabilistic graph model that takes neighbour prediction
context into account in the current prediction. CRFs can
be jointly implemented with the segmentation process.
(Vineet et.al., 2015; Kundu et.al., 2014). However, these
methods have been phased out in favour of CNN-based
approaches. In more recent works, CRFs are used at the
end of CNN segmentation pipelines to enforce semantic
(Wang et.al., 2019; Yang et.al., 2017) and spatial (Li
et.al., 2019; Zhang et.al., 2019) consistency on a pre-
segmented image or model. Methods that incorporate a
CREF as a final process usually see a 2-3% improvement
in the average IoU of the segmented model.

Other methods have utilised the hierarchical nature of
roads more explicitly. These models are based on the idea
that an object can be a collection of parts and rely on
object detection, rather than image segmentation.
Bounding boxes for each individual part can be found and
identified. These can be combined into larger bounding
boxes representing the whole object (Davies, 2022).
Latent Hierarchical Parts Based (LHPB) models are an
extension of these models specifically developed to
interpret road scenes (Venkateshkumar et.al., 2015). They
provide a framework for interpreting a scene using a tree
structure, as shown in fig.4. The strong constraints



imposed by the tree structure enable the model to search
for the correct configurations of objects in a scene. This
allows errors at the bottom level of detection to be
corrected when placed in the larger context of a road.
This was done in Victor et.al. (2021). They used an LHPB
model to generate approximate 3D models. A single
image was used as an input and processed using the
methods described in Venkateshkumar et.al. (2015),
yielding an image with objects organized in a hierarchical
structure. Depth information of the image was found and
corrected for perspective projection. After the position
and asset type of objects in the image were found, an
approximate match of the object is placed in the model
from an object library. However, due to the limited
number of assets covered, the resulting models are not
detailed enough to be used in engineering applications.
Additionally, this study only considers short stretches of
road and the perspective projection can only be applied to
straight roads. As this method has only been applied to
single 2D images, it is unclear if this method can be
applied to a structured image set (video) or a PPC.
Mapping road markings can be used to create a 3D model.
They provide valuable information about the position and
types of markings present on the road. Usually, CNNs are
used on an image or set of images to generate a depth map
that is then projected into a 2D view. Image segmentation
is then used to find road markings on the road surface.
(Liu et.al., 2020).

(a) Road scene with scene description
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(b) Hierarchical decomposition of the scene in (a)

Figure 4: Road scene and hierarchical decomposition Road
scenes can be split into a hierarchy. (Venkateshkumar
et.al.,2015)
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Another method used to infer road layout was presented
in Jang et.al. (2022). The relationship between the vehicle
poses and road markings was represented using a graph.
This was used to identify road markings that appeared in
consecutive images as well as inference of markings
occluded by other vehicles. These methods were able to
generate parametric layouts of complicated road scenes,
such as junctions. The road markings and their
relationship to one another were found rather well,
exceeding 80% in accuracy and F1-score. However, their
positional accuracy was relatively low. The mean loU was
typically 40-60%. This is likely due to the use of a CNN-
generated depth map to project the images into 3D instead
of photogrammetry-based methods. There would be a
“mismatch” between the two volumetric models.

While their performance on longer stretches of road is
unknown, they present a promising start to interpreting
more complex road layouts.

Conversion to object-oriented 3D model

While many technologies in CV may help identify the
assets in a road scene, a separate process is needed to
convert these into an object-oriented model. The efforts in
doing this are currently rather dispersed as the goal of the
studies attempting this do not concern themselves with
generating an RGDT. These studies can help inform the
areas most important to focus on going forward.

The centreline of the road serves as a backbone for
describing the positions of other assets on or on the sides
of the road. Roads are not simple linear structures but are
composed of a series of interwoven linear features: Lanes
merge and unmerge, and junctions split into separate
roads. Flexibility is therefore required to accurately
describe a road’s layout and features (Suleymanov, 2019).
There is a rich body of literature concerning itself with
extracting road centrelines and road trajectories. These
studies consistently report precision and recall values
>90% in complex road scenes (Shao et.al., 2021; Zhang
et.al., 2018; Sironi et.al., 2014).

Some studies have attempted to include converting found
lines into open-data formats. Using raster-based methods
Prochazka et.al. (2019) identified markings and extracted
them as polyline representation, representing the lane
boundaries of the road. However, the identification
process fails in more complicated road scenarios as the
spanning trees grow in complexity. Due to this, this
method is not viable for more complex road layouts.

One could also directly extract parameters, such as road
width, from a segmented PPC. This was done in Li et.al.
(2021). A width estimation algorithm was used to directly
extract road widths. The algorithm requires the user to
input the number of width measurements to take and the
length of the road section to search on. Lines, each
representing one measurement, are evenly spaced,
crossing the road, along the length of the road section. The
length of each line is minimized to be perpendicular to the
tangent of the road curvature. While robust for short
stretches of road where the lane configuration is fixed, this



method is not scalable for longer stretches of road. the
number of redundant measurements would be high.
Essential measurements would also be missed in other
places where the road width may change dramatically in
a short period (junctions, merging lanes etc.).

In recent years, more work has been done to make BIM
for transport infrastructure reach the same maturity as the
building industry (Barbosa, et al., 2017). IFC-Road is a
schema that is currently in development under this
project. Due to the recentness of this schema, there have
been very few studies that attempt to extract road model
parameters that are suitable to be converted into that
format. In fact, to the author’s knowledge, no studies that
use image-derived data to generate [IFC-compliant models
for road surfaces exist.

The spatial nature of PPCs means that methods developed
using LiDAR PCs can be applied to them. In the context
of generating an Ifc model, road trajectories and
centrelines can be found for either the road as a whole or
for each individual lane. Soilan et.al. (2020) developed a
semi-automated method to extract the alignment and
centreline of road lanes. In this work, the input was a
LiDAR PC, and the goal was to automatically generate an
IFC-compliant file. The road surface was found through
region growing. The road markings are then found using
Euclidian distance clustering based on the intensity
values. This information was used to generate an Ifc
model. In this work 20% of the road had to be manually
edited, taking 69% of the total modelling time. In
particular, the authors noted that the method struggles to
identify the alignment of curved road sections and road
markings denoting merging lanes.

Justo et. al. (2021) extended this work and used a
modified approach. The approach to finding the
alignments and centrelines was therefore simplified. The
number of lanes was treated as fixed and known. This
removed road markings that do not strictly follow the
trajectory of the road, for example, due to lane merging
etc. A very slight decrease in manual modelling time was
recorded, taking 65% of the time to model 20% of the
road. While no numerical values are provided, visual
inspection reveals that the alignments that were
automatically found were also more accurate. However,
the shortfalls of the previous work were not addressed.
While a promising start, the authors also recognise it as a
scaffolding for future work.

It is interesting to compare the work done on finding road
alignments to that of rail. Following up on their previous
work, Soilan et.al. (2021) also developed a method to find
the centreline for rail tracks and export these into IFC-
Rail. The rail tracks were segmented according to height
and not intensity. Rail tracks have a constant width, and
the sleepers are also of a consistent shape. These factors
had a major impact on the result. While the methods
developed for roads are described as semi-automatic, the
method for rail is described as fully automatic.
Additionally, the found alignment for rail had an error of
only <3%. It can be concluded that factors that contribute
to uniformity in the road profile, such as turns and lane
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merging, are a major roadblock to fully automating the
generation of Ifc-compliant RGDTs. In the next section,
other challenges are also discussed and future areas of
research are suggested.

Discussion

Many methods can be borrowed from CV that could be
applied to creating 3D models of road surfaces. However,
as these technologies have not been developed for use in
the built environment sector nor tailored to any of the use
cases therein, at the current state, they cannot be directly
used to create object-oriented 3D models for DTs.

For instance, road surface segmentation methods are
usually not sufficiently generalised. Current methods rely
on assumptions that are designed for very specific cases.
For instance, there are no methods that can generate
models of long stretches of road that are at least a few km
long in a computationally realistic way. All the methods
reviewed had difficulties in situations where the road
layout was more complex, such as at a crossing or in a
place where lanes merge. This is a major issue as most
roads contain these types of features. Additionally, a
limited amount of asset types can be reliably found.
Existing studies only extract a limited number of asset
types. There is certainly a tension between scalability and
model complexity.

It is also unknown if and to what degree state-of-the-art
methods for segmenting and mapping the road surface can
improve current segmentation methods or to what scale of
road this can be applied. Many of the technologies
presented have also not been applied to use on road
surfaces yet. For instance, road marking maps have not
been generated using PPCs. CRFs that purely define the
relationship between assets on the road surface have not
been attempted and it is unknown if LHPB models can be
effectively applied to PPCs, on non-straight roads or on
long stretches of road.

Current methods also struggle to reliably extract road
surface parameters on road sections with an ununiform
layout, and then store them in an object-oriented format.
Even with an ideal segmented PC, a significant amount of
development is needed to extract geometric parameters
from these PCs.

Lastly, using image segmentation to label PCs is
completely dependent on how well the image is
segmented. Image segmentation and object detection are
currently much more advanced than 3D segmentation.
Further exploring the applications of this technology in
the context of creating 3D models, therefore, seems like a
worthwhile pursuit.

Conclusion

Traditional methods for creating 3D models of roads
either do not meet the user requirements of a DT or are
too expensive to be a scalable solution. Using images and
videos as a data source for creating a 3D model can greatly
reduce data collection costs. Utilising this type of data
also allows for the application of CV techniques to help
identify and label the PPC generated from the image data.



Overall, there are challenges both to identifying the
modellable assets in the input data and to converting these
into a 3D model file format for final use. While current
efforts have made a promising start, they have not had
generating an RGDT as their final goal. The technology
needs to be further tailored for use in the built
environment industry. This could in turn contribute to the
development of a DT that may assist various stakeholders
to make more informed decisions. In turn, contributing to
future-proofing road networks.
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