
 2023 European Conference on Computing in Construction 
40th International CIB W78 Conference 

 

Heraklion, Crete, Greece 
July 10-12, 2023 

 
ENHANCING SINGLE-STAGE EXCAVATOR ACTIVITY RECOGNITION VIA 

KNOWLEDGE DISTILLATION OF TEMPORAL GRADIENT DATA 
 

Ali Ghelmani, Amin Hammad 

Concordia Institute for Information Systems Engineering, Concordia University, Montreal, Canada 
ali.ghelmanirashidabad@concordia.ca 

amin.hammad@concordia.ca 
 
 
 
 

Abstract 
Vision-based single-stage construction entity activity 
recognition methods that simultaneously analyze 
spatiotemporal information have been gaining popularity 
within the construction domain. However, a main 
disadvantage of these methods is their relatively low per-
frame performance. Thus, necessitating additional post-
processing to link the per-frame detection results and 
construct the corresponding action tubes. To address this 
problem, this study proposes DIGER, which stands for 
knowledge DIstillation of temporal Gradient data for 
Excavator activity Recognition. DIGER is built upon the 
You Only Watch Once activity recognition method and 
improves its performance by designing an auxiliary 
backbone to exploit the complementary information 
present in the temporal gradient data using knowledge 
distillation. The proposed method achieved an activity 
recognition accuracy of 93.6%, compared to the YOWO 
performance of 87.9% (5.7% improvement), on a large 
custom dataset of 1,060 videos. 

Introduction 
Conventionally, monitoring the activities of excavators 
and other earthmoving equipment on construction sites is 
done manually by on-site superintendents. However, 
manual monitoring can be very taxing, and prone to 
inaccuracies particularly on large construction sites (Chen 
et al., 2020; Roberts and Golparvar-Fard, 2019). 
Consequently, over the years many automated monitoring 
routines have been developed to provide project managers 
with crucial information on productivity and safety (Chen 
et al., 2020). 

Automated activity recognition frameworks proposed in 
the construction domain can be broadly divided into non-
vision-based and vision-based methods (Chen et al., 2020; 
Jung et al., 2022). Non-vision-based methods use various 
sensors, such as Global Positioning System (GPS) 
(Pradhananga and Teizer, 2013) or Ultra-Wideband 
(UWB) (Zhang et al., 2012) to determine activities based 
on equipment type, location, and movement information. 

However, due to the inherent limitations of location data, 
these methods may not accurately detect a wide range of 
activities. Furthermore, sensor installation can be 
expensive and time-consuming. 

Traditional Computer Vision (CV)-based automated 
monitoring methods typically relied on manually 
designed features to extract useful information for activity 
recognition from images and videos (Gong et al., 2011; 
Soltani et al., 2017; Zhu et al., 2017). However, 
advancements in deep learning techniques have shown 
their superiority over traditional hand-crafted methods in 
various applications such as object detection (Redmon et 
al., 2016) and activity recognition (Donahue et al., 2015). 
Thus, leading to a corresponding shift in the use of deep 
learning-based techniques in the construction domain. 

Convolutional Neural Networks (CNNs) are the 
fundamental component in most CV-based deep learning 
methods. In recent years, numerous 3D CNN-based 
methods for recognizing construction equipment 
activities have been proposed. 3D CNN-based methods 
incorporate the spatiotemporal data extraction into a 
single architecture, leading to more efficient and effective 
information extraction. Lou et al. (2020) proposed a 
multi-stage framework in which workers were first 
detected using the You Only Look Once (YOLOv3) 
network. The detected workers were then tracked in 
consecutive frames and their activities were classified 
using a 3D CNN architecture. Wang et al. (2021) also 
proposed a multi-stage framework using object detection 
and multiple-object tracking for progress monitoring of 
precast wall installation. In this method, the detected and 
tracked walls were considered installed if their 
displacement was less than a certain threshold after a 
given time interval. Although these frameworks can 
potentially extract more informative spatiotemporal 
features using 3D CNN architectures, their multi-stage 
approach still limits their accuracy. The main limitations 
of multi-stage methods include not being fully optimized, 
and the propagation of errors from earlier stages to the 
later ones, which results in the degradation of the 



performance of the entire framework (Jung et al., 2022; 
Torabi et al., 2022). 

In the CV domain, many single-stage activity recognition 
methods have been proposed, which alleviate the above-
mentioned limitations. For instance, Tran et al. (2015) 
proposed one of the first end-to-end activity recognition 
methods using a 3D CNN-based architecture named C3D 
for simultaneous extraction of spatiotemporal data. Diba 
et al. (2017) proposed the Temporal 3D CNN (T3D) 
method employing 3D convolutional kernels with 
variable temporal length in their design to recognize short, 
mid, and long-term activities. To further improve 
performance, some works have proposed utilizing 
multiple modalities for activity recognition. For example, 
Simonyan and Zisserman (2014) proposed a two-stream 
method comprising of spatial and temporal networks to 
process RGB frames and optical flow data to extract 
appearance and motion features, respectively. Wang et al. 
(2016) proposed the Temporal Segment Network (TSN) 
by combining a spatial CNN for processing of the RGB 
data and a temporal CNN for processing the temporal 
gradient (TG) data, which is the difference between 
consecutive RGB frames.  

Although incorporating TG or optical flow data 
modalities may enhance activity recognition, their use 
requires more computation to extract and process the 
additional modalities. To this end, some studies have 
leveraged knowledge distillation to improve model 
performance (Stroud et al., 2020; Xiao et al., 2022). 
Knowledge distillation refers to the transfer of 
information from a typically larger and more complex 
model to a smaller model to improve its performance 
while retaining the computational efficiency and ease of 
deployment (Gou et al., 2021). In the context of activity 
recognition, the knowledge transfer can also come from 
other sources of information such as TG and optical flow 
modalities. For instance, Stroud et al. (2020) proposed the 
Distillation 3D Network (D3D) consisting of two separate 
CNNs for processing RGB and optical flow data. To 
enhance the performance of the RGB CNN, the authors 
employed knowledge distillation to transfer knowledge 
from the optical flow network to its RGB counterpart. 

Recently, inspired by the advances in the CV domain, 
some single-stage activity recognition methods have also 
been proposed in the construction domain. For instance, 
Jung et al. (2022) proposed a 3D CNN-based single-stage 
method for simultaneous detection of multiple 
construction equipment and recognizing their activities by 
using a 3D attention module and feature pyramid network 
in a single-stream architecture. Torabi et al. (2022) also 
proposed a single-stage method based on the You Only 
Watch Once (YOWO) method called YOWO53 for joint 
detection and classification of construction workers’ 
activities by improving the 2D backbone of the YOWO 
method. Despite the advantages, the main limitation of 
these methods is their relatively low per-frame activity 

recognition performance. Therefore, requiring additional 
post-processing to link the per-frame detection results and 
construct the corresponding action tubes. Thereby, 
placing a major computational bottleneck on the real-time 
applicability of these methods. 

To overcome the abovementioned limitation, the 
objective of this work is to improve the per-frame 
performance of the YOWO activity recognition method, 
hence eliminating the need for the post-processing linking 
stage. To this end, this work proposes DIGER, which 
stands for knowledge DIstillation of temporal Gradient 
data for Excavator activity Recognition. To improve 
activity recognition, an auxiliary backbone is designed to 
incorporate the complementary information present in the 
TG data using knowledge distillation. It should be noted 
that the TG and knowledge distillation are employed only 
during training, with the TG backbone discarded during 
inference. As a result, no extra computation or delay is 
required during inference.  

Proposed Framework 
The overall framework of the proposed method is shown 
in Figure 1. DIGER is comprised of two main 
components: (I) the original YOWO architecture 
including the 2D CNN and 3D CNN RGB backbones and 
the Channel Fusion and Attention Module (CFAM), and 
(II) the 3D CNN TG backbone and the modules added to 
perform knowledge distillation, such as Multi-Layer 
Projection (MLP) and the knowledge distillation loss 
function. As a result, the architecture of the proposed 
method consists of three branches. Two 3D CNN 
branches, which are used for processing of the RGB and 
TG data, and one 2D CNN branch which is used to 
process the last frame of the input clip to improve the 
localization accuracy. During training, knowledge 
distillation is used to transfer the information learned by 
the TG network to its RGB counterpart, thus improving 
its performance. A detailed description of each of these 
components and the training procedure is presented in the 
following sections. 

YOWO 
YOWO (Köpüklü et al., 2021) is a spatiotemporal activity 
recognition and localization method, which uses two 
branches in its architecture (Figure 1(I)). The 3D CNN 
branch extracts the spatiotemporal information from the 
input clips, while the 2D CNN branch is used to extract 
more accurate spatial features from the last frame of the 
input clip. YOWO uses the Darknet19 network in the 2D 
CNN branch, which is the backbone of the YOLOv2 
(Redmon and Farhadi, 2017) object detection method. 
Since the Darknet19 network takes images as input, the 
shape of the input is of the form , where  is 
equal to 3 RGB channels and  and  are the height and 
width of the input frame, respectively. The shape of the 
output feature map is of the form , where 



is the number of output channels, , and 

The ShuffleNetV2_2.0 (Köpüklü et al., 2019) network is 
used as the backbone in the 3D CNN branch. The input to 
this Branch is a clip of the form , where

is the number of frames in the input clip, and , , and 
are the frame dimensions similar to the input to the 2D 

CNN branch. Furthermore, the design of the 
ShuffleNetV2_2.0 backbone is modified in YOWO 
(Köpüklü et al., 2021) to result in an output of the form 

, where is the number of output 
channels, , , and . By 
default, the output of the 3D CNN branch is 4-
dimensional, while the output of the 2D CNN branch is 3-
dimensional. Considering that the outputs of these two 
branches are combined before being input into the CFAM 

module, the size of their corresponding outputs should be 
compatible. As a result, the 3D CNN branch is designed 
to have , , and a reduced depth 
component ( ), which can be dropped and hence 
become three-dimensional in effect.

The main component providing the performance boost for 
the YOWO model is the CFAM module, which operates 
on the output of the 2D CNN and 3D CNN branches. To 
this end, the outputs of these two branches are 
concatenated along the channel dimension before being 
input into the CFAM module to include both the 
spatiotemporal and the refined spatial information. The 
CFAM module uses attention mechanism to capture the 
inter-channel dependencies. Finally, YOWO uses the 
focal loss (Lin et al., 2017) for activity classification and

Figure 1. Overall framework of the proposed DIGER method

the smooth loss (Girshick, 2015) for bounding box 
regression. 

Temporal Gradient
In this work, a separate 3D CNN branch is added to the 
original YOWO model to process and extract features 
from the TG data and consequently improve the activity 
recognition performance of the model. TG is obtained by 
calculating the difference between two RGB frames in a 
video and represents the dynamic changes in the temporal 
information. When selecting a backbone for processing 
the TG modality, two factors should be considered. 
Firstly, the TG modality primarily captures dynamic 

changes rather than spatial information, so the backbone 
should be designed to prioritize the extraction of temporal 
information. Secondly, integrating a smaller auxiliary 
backbone for extracting temporal information can 
improve efficiency while allowing the larger backbone to 
focus on the extraction of spatial information
(Feichtenhofer et al., 2019; Xiong et al., 2021). In this 
work, the ShuffleNetV2_0.25 network was chosen as the 
TG backbone due to its relatively small size, with about

parameters compared to the 
parameters of the ShuffleNetV2_2.0 network used as the 
3D CNN RGB backbone. Table 1 presents the details of 
the architectures of the two networks along with the 
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output sizes of different blocks for an input clip of size 
3×16×224×224 ( . 

Table 1. Architecture of the 3D RGB and TG backbones 

Layer block Output size 
ShuffleNetV2_2.0  ShuffleNetV2_0.25 

Stem_block 24×8×56×56 24×8×56×56 

block_1 224×4×28×28 32×4×28×28 

block_2 488×2×14×14 64×2×14×14 

block_3 976×1×7×7 128×1×7×7 

Final_block 2048×1×7×7 256×1×7×7 

As stated earlier, the 3D CNN RGB and TG backbones 
extract complementary information from the different 
modalities of the same input clip. In order to prevent any 
potential divergence in their respective training procedure 
from affecting the semantics of the extracted features, an 
approach similar to YOWO was adopted in this work. 
This involved training the TG backbone in conjunction 
with the 2D CNN backbone and the CFAM module. 
However, the TG backbone is mainly concerned with 
extracting temporal information, while the 2D CNN 
backbone is designed to extract spatial information. As a 
result, to allow the effective and efficient extraction of the 
desired information by both backbones, a stop gradient 
operation is applied on the 2D CNN backbone to prevent 
the TG data from affecting it. The stop gradient operation 
is a mechanism used to prevent the backpropagation of 
gradients through a given branch and consequently, 
prevent the updating of the affected weights. In this case, 
a stop gradient operation was applied to the 2D CNN 
backbone to prevent the gradients generated during the 
training of the TG backbone from affecting its weights. 
Thus, ensuring that the 2D CNN backbone is only trained 
in conjunction with the 3D CNN RGB backbone.  

Knowledge Distillation 
The utilization of an additional backbone and the 
increased computational demands of the TG data may 
result in slower inference performance. To overcome this 
challenge, knowledge distillation is used in this work to 
transfer the knowledge learned by the TG backbone to the 
corresponding 3D CNN RGB backbone during training, 
while the TG backbone is discarded during inference. 
There are numerous different approaches to perform 
knowledge distillation. However, assigning a loss value to 
measure the dissimilarity between the output of the 
corresponding blocks of the two networks is the most 
common. In this work, the cross-entropy loss is used to 
measure the dissimilarity.  

It should be noted that, performing knowledge distillation 
in the high dimensional space of the output of different 
blocks would require a large amount of data for training 
of the model to converge. To address this problem, Multi-

Layer Projection (MLP) is used to map the outputs of the 
different blocks to a lower dimensional projection space 
for calculating the loss function. In this regard, the 
dimension of the projection space plays a vital role in the 
effectiveness of the knowledge transfer approach, and 
consequently, the convergence of the knowledge 
distillation loss. It should be noted that separate MLP 
layers are utilized for each block involved in knowledge 
distillation. Figure 1 (II) gives a comprehensive 
illustration of the different modules used in knowledge 
distillation for each block of the two networks. 

Finally, one crucial aspect of the knowledge distillation 
approach is to prevent a degenerate loop in which the 3D 
CNN RGB backbone learns from and then later teaches 
the TG backbone. To this end, a stop gradient operation is 
used to prevent the TG backbone from receiving any 
gradient (as explained above) from the knowledge 
distillation loss. This ensures the gradients would only 
flow in the direction of the 3D CNN RGB backbone. 
Furthermore, given that the 3D CNN RGB backbone has 
more spatial information than the TG backbone, the use 
of the stop gradient would enable the TG backbone to only 
focus on the extraction of fine-grained motion features 
and not to be disturbed by the RGB model. 

Experiments 
Dataset Description 
The video clips used in creating the custom dataset used 
in this work were manually collected from various sources 
including videos posted on websites such as YouTube, 
and also videos used in similar research works, which 
were made publicly available (Roberts and Golparvar-
Fard, 2019). Each video clip contains one or more 
excavators performing three types of activities: digging, 
swinging, and loading the trucks. To add to the diversity 
of the collected dataset, the videos are collected from 25 
different construction sites, incorporating various site 
conditions, such as different camera angles, illuminations, 
occlusions, weather conditions, and video resolutions. 
Table 2 provides the statistics of the collected dataset. 
Some video clips contain more than one excavator with 
each excavator involved in a different activity. As a result, 
there is discrepancy between the sum of the number of 
frames and clips reported for each individual activity, and 
the total reported values in Table 2.  

Table 2. Statistics of the collected dataset 

Activity 
type 

Number of 
video clips 

Number of 
frames 

Average clip 
length (sec) 

Digging 295 64,436 7.28 

Swinging 476 51,441 3.60 

Loading 321 51,632 5.36 

Total 1,060 163,295 5.13 



Implementation Details 
In this work, Stochastic Gradient Descent (SGD) 
algorithm with the momentum value of 0.9 is used as 
optimizer during training. The learning rate is linearly 
warmed-up in the first five epochs followed by a half-
period cosine annealing learning rate scheduling strategy 
without restarts (Loshchilov and Hutter, 2016). All 
models are trained with a batch size of 128 on three RTX 
A6000 GPUs in Ubuntu 20.04 and Python 3.8 
environment and PyTorch 1.12. 80% of the videos in the 
dataset were randomly selected for training, 10% were 
selected for validation, and the remaining 10% were used 
for testing. The two ShuffleNetV2_x 3D CNN networks 
were pre-trained on the large-scale Kinetics-600 dataset 
(Carreira et al., 2018). All layers of these networks are 
fine-tuned on the excavator dataset using their 
corresponding RGB and TG data modalities. The 2D 
CNN network Darknet19 is pre-trained on the COCO 
dataset (Lin et al., 2015). All layers of the 2D CNN 
network are also fine-tuned on the excavator dataset.  

Experimental Results 
Table 3 presents the results of the proposed DIGER 
method for activity recognition on the test dataset, along 
with the results of the original YOWO method for 
comparison. It should be noted that these results present 
the per-frame performance of both methods without the 
post-processing linking stage. The reported classification 
accuracy indicates the activity recognition performance of 
the model. To further investigate the effectiveness of the 
proposed DIGER method, Table 3 also presents the effect 
of various design choices in performing knowledge 
distillation on the final model performance. It can be seen 
that in all cases, adding the TG backbone and utilizing 
knowledge distillation improves the activity recognition 
performance of the model compared to the original 
YOWO model. 

Table 3 also shows the impact of different number of 
blocks used for knowledge distillation on the performance 
of the model for different sizes of the projection space 
dimension. It can be seen that changing the dimension of 
the projection space in which knowledge distillation loss 
is calculated has a significant impact on the final 
performance of the model for all combination of 
distillation blocks (Table 3). In particular, a projection 
space size of 64 appears to be too small to distinguish 
between the mappings of the outputs of different blocks 
of the two networks for different input data, leading to 
ineffective knowledge transfer. Conversely, a projection 
space size of 512 results in increased number of 
parameters and a larger projection space, making it 
challenging for the model to transfer knowledge 
effectively given the amount of available training data. 
The optimal results are obtained with projection spaces of 
size 128 or 256, depending on the number of blocks used 
for knowledge distillation. It can be seen in Table 3 that 
the best performance is achieved by using three blocks for 

knowledge distillation in a projection space of size 128, 
resulting in a 93.6% activity recognition accuracy, which 
corresponds to a 5.7% improvement over the original 
YOWO. 
Table 3. Comparison of the per-frame performance for YOWO 

and DIGER 

Model Distill blocks Projection 
dimension 

Classification 
accuracy (%) 

YOWO --- --- 87.9 

DIGER 
 

Final_block 

64 88.6 
128 91.1 
256 91.8 
512 89.6 

Final_block, 
block_3 

64 87.8 
128 88.4 
256 91.5 
512 88.0 

Final_block, 
block_3, 
block_2 

64 90.2 
128 93.6 
256 91.4 
512 88.6 

Interestingly, the results in Table 3 demonstrate that while 
the model performance slightly declines when including 
two blocks for knowledge distillation, including three 
blocks leads to the best activity recognition performance. 
It should be noted that obtaining improved performance 
when including more blocks in knowledge distillation is 
consistent with the results reported in previous studies 
(Xiao et al., 2022). However, the reason for the 
inconsistency in the improvement when including two 
blocks can be attributed to the structure of the 
ShuffleNetV2_x backbone used in this work. In 
particular, the inclusion of earlier blocks is intended to 
enforce the similarity between the two networks at 
different semantic stages of feature extraction. However, 
there is only one 3D CNN layer between block_3 and the 
Final_block (Table 1). As a result, there is not much 
difference between the semantics of the extracted features 
of these two blocks in the ShuffleNetV2_x backbone. 
Thus, the additional number of parameters of the MLP 
module for needed the second knowledge distillation 
block outweighs the minor benefits of its inclusion. 

Conclusions and Future Work 
This study proposes DIGER, a novel method for 
automated excavator activity recognition on construction 
sites. DIGER is built upon the YOWO activity 
recognition method and improves its performance by 
employing the TG data modality and knowledge 
distillation. The proposed method improves the activity 
recognition accuracy by designing an auxiliary backbone 
to process the complementary information present in the 
TG data modality and transfering its knowledge using 
knowledge distillation. DIGER achieved excellent 
performance on a large custom dataset of 1060 videos, 
with an activity recognition accuracy of 93.6% compared 
to the YOWO performance of 87.9% (5.7% 



improvement). It should be noted that TG data and 
knowledge distillation are only used during training. As a 
result, the proposed method can be deployed in real-time 
applications without any extra computation or delay 
during inference. Furthermore, it should be noted that 
while in this study only excavator activities are 
considered, similar improvements can be expected using 
the proposed approach to recognize the activities of other 
types of construction equipment as well. 

Considering the current challenges in the development of 
a general construction activity recognition method, a 
possible direction for further research can focus on 
improving the localization accuracy of the YOWO model, 
in addition to the activity recognition accuracy improved 
in this work. Improving the localization will enable the 
development of activity recognition methods for 
simultaneous detection of the activities of multiple 
construction entities on a per-frame basis. Such a system 
is essential for facilitating automated interaction between 
different construction entities. For instance, the 
interaction between workers and construction equipment, 
which requires accurate localization to ensure workers’ 
safety when working in close proximity of heavy 
equipment.   
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