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Abstract

Vision-based single-stage construction entity activity
recognition methods that simultaneously analyze
spatiotemporal information have been gaining popularity
within the construction domain. However, a main
disadvantage of these methods is their relatively low per-
frame performance. Thus, necessitating additional post-
processing to link the per-frame detection results and
construct the corresponding action tubes. To address this
problem, this study proposes DIGER, which stands for
knowledge Dlstillation of temporal Gradient data for
Excavator activity Recognition. DIGER is built upon the
You Only Watch Once activity recognition method and
improves its performance by designing an auxiliary
backbone to exploit the complementary information
present in the temporal gradient data using knowledge
distillation. The proposed method achieved an activity
recognition accuracy of 93.6%, compared to the YOWO
performance of 87.9% (5.7% improvement), on a large
custom dataset of 1,060 videos.

Introduction

Conventionally, monitoring the activities of excavators
and other earthmoving equipment on construction sites is
done manually by on-site superintendents. However,
manual monitoring can be very taxing, and prone to
inaccuracies particularly on large construction sites (Chen
et al., 2020, Roberts and Golparvar-Fard, 2019).
Consequently, over the years many automated monitoring
routines have been developed to provide project managers
with crucial information on productivity and safety (Chen
et al., 2020).

Automated activity recognition frameworks proposed in
the construction domain can be broadly divided into non-
vision-based and vision-based methods (Chen et al., 2020;
Jung et al., 2022). Non-vision-based methods use various
sensors, such as Global Positioning System (GPS)
(Pradhananga and Teizer, 2013) or Ultra-Wideband
(UWB) (Zhang et al., 2012) to determine activities based
on equipment type, location, and movement information.
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However, due to the inherent limitations of location data,
these methods may not accurately detect a wide range of
activities. Furthermore, sensor installation can be
expensive and time-consuming.

Traditional Computer Vision (CV)-based automated
monitoring methods typically relied on manually
designed features to extract useful information for activity
recognition from images and videos (Gong et al., 2011;
Soltani et al., 2017; Zhu et al., 2017). However,
advancements in deep learning techniques have shown
their superiority over traditional hand-crafted methods in
various applications such as object detection (Redmon et
al., 2016) and activity recognition (Donahue et al., 2015).
Thus, leading to a corresponding shift in the use of deep
learning-based techniques in the construction domain.

Convolutional Neural Networks (CNNs) are the
fundamental component in most CV-based deep learning
methods. In recent years, numerous 3D CNN-based
methods for recognizing construction equipment
activities have been proposed. 3D CNN-based methods
incorporate the spatiotemporal data extraction into a
single architecture, leading to more efficient and effective
information extraction. Lou et al. (2020) proposed a
multi-stage framework in which workers were first
detected using the You Only Look Once (YOLOV3)
network. The detected workers were then tracked in
consecutive frames and their activities were classified
using a 3D CNN architecture. Wang et al. (2021) also
proposed a multi-stage framework using object detection
and multiple-object tracking for progress monitoring of
precast wall installation. In this method, the detected and
tracked walls were considered installed if their
displacement was less than a certain threshold after a
given time interval. Although these frameworks can
potentially extract more informative spatiotemporal
features using 3D CNN architectures, their multi-stage
approach still limits their accuracy. The main limitations
of multi-stage methods include not being fully optimized,
and the propagation of errors from earlier stages to the
later ones, which results in the degradation of the



performance of the entire framework (Jung et al., 2022;
Torabi et al., 2022).

In the CV domain, many single-stage activity recognition
methods have been proposed, which alleviate the above-
mentioned limitations. For instance, Tran et al. (2015)
proposed one of the first end-to-end activity recognition
methods using a 3D CNN-based architecture named C3D
for simultaneous extraction of spatiotemporal data. Diba
et al. (2017) proposed the Temporal 3D CNN (T3D)
method employing 3D convolutional kernels with
variable temporal length in their design to recognize short,
mid, and long-term activities. To further improve
performance, some works have proposed utilizing
multiple modalities for activity recognition. For example,
Simonyan and Zisserman (2014) proposed a two-stream
method comprising of spatial and temporal networks to
process RGB frames and optical flow data to extract
appearance and motion features, respectively. Wang et al.
(2016) proposed the Temporal Segment Network (TSN)
by combining a spatial CNN for processing of the RGB
data and a temporal CNN for processing the temporal
gradient (TG) data, which is the difference between
consecutive RGB frames.

Although incorporating TG or optical flow data
modalities may enhance activity recognition, their use
requires more computation to extract and process the
additional modalities. To this end, some studies have
leveraged knowledge distillation to improve model
performance (Stroud et al., 2020; Xiao et al., 2022).
Knowledge distillation refers to the transfer of
information from a typically larger and more complex
model to a smaller model to improve its performance
while retaining the computational efficiency and ease of
deployment (Gou et al., 2021). In the context of activity
recognition, the knowledge transfer can also come from
other sources of information such as TG and optical flow
modalities. For instance, Stroud et al. (2020) proposed the
Distillation 3D Network (D3D) consisting of two separate
CNNs for processing RGB and optical flow data. To
enhance the performance of the RGB CNN, the authors
employed knowledge distillation to transfer knowledge
from the optical flow network to its RGB counterpart.

Recently, inspired by the advances in the CV domain,
some single-stage activity recognition methods have also
been proposed in the construction domain. For instance,
Jung et al. (2022) proposed a 3D CNN-based single-stage
method for simultaneous detection of multiple
construction equipment and recognizing their activities by
using a 3D attention module and feature pyramid network
in a single-stream architecture. Torabi et al. (2022) also
proposed a single-stage method based on the You Only
Watch Once (YOWO) method called YOWOS3 for joint
detection and classification of construction workers’
activities by improving the 2D backbone of the YOWO
method. Despite the advantages, the main limitation of
these methods is their relatively low per-frame activity
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recognition performance. Therefore, requiring additional
post-processing to link the per-frame detection results and
construct the corresponding action tubes. Thereby,
placing a major computational bottleneck on the real-time
applicability of these methods.

To overcome the abovementioned limitation, the
objective of this work is to improve the per-frame
performance of the YOWO activity recognition method,
hence eliminating the need for the post-processing linking
stage. To this end, this work proposes DIGER, which
stands for knowledge Dlstillation of temporal Gradient
data for Excavator activity Recognition. To improve
activity recognition, an auxiliary backbone is designed to
incorporate the complementary information present in the
TG data using knowledge distillation. It should be noted
that the TG and knowledge distillation are employed only
during training, with the TG backbone discarded during
inference. As a result, no extra computation or delay is
required during inference.

Proposed Framework

The overall framework of the proposed method is shown
in Figure 1. DIGER is comprised of two main
components: (I) the original YOWO architecture
including the 2D CNN and 3D CNN RGB backbones and
the Channel Fusion and Attention Module (CFAM), and
(IT) the 3D CNN TG backbone and the modules added to
perform knowledge distillation, such as Multi-Layer
Projection (MLP) and the knowledge distillation loss
function. As a result, the architecture of the proposed
method consists of three branches. Two 3D CNN
branches, which are used for processing of the RGB and
TG data, and one 2D CNN branch which is used to
process the last frame of the input clip to improve the
localization accuracy. During training, knowledge
distillation is used to transfer the information learned by
the TG network to its RGB counterpart, thus improving
its performance. A detailed description of each of these
components and the training procedure is presented in the
following sections.

YOWO

YOWO (Kopiiklii et al., 2021) is a spatiotemporal activity
recognition and localization method, which uses two
branches in its architecture (Figure 1(I)). The 3D CNN
branch extracts the spatiotemporal information from the
input clips, while the 2D CNN branch is used to extract
more accurate spatial features from the last frame of the
input clip. YOWO uses the Darknet19 network in the 2D
CNN branch, which is the backbone of the YOLOvV2
(Redmon and Farhadi, 2017) object detection method.
Since the Darknet19 network takes images as input, the
shape of the input is of the form [C X H x W], where C is
equal to 3 RGB channels and H and W are the height and
width of the input frame, respectively. The shape of the
output feature map is of the form [C' X H' x W'], where
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C' is the number of output channels, H' = H/32, and
w' =Ww/32.

The ShuffleNetV2 2.0 (Kopiikli et al., 2019) network is
used as the backbone in the 3D CNN branch. The input to
this Branch is a clip of the form [C X D X H X W], where
D is the number of frames in the input clip, and C, H, and
W are the frame dimensions similar to the input to the 2D
CNN  branch. Furthermore, the design of the
ShuffleNetV2_2.0 backbone is modified in YOWO
(Kopiiklii et al., 2021) to result in an output of the form
[C"x D" x H' x W'], where C" is the number of output
channels, D' =1, H' = H/32, and W' =W /32. By
default, the output of the 3D CNN branch is 4-
dimensional, while the output of the 2D CNN branch is 3-
dimensional. Considering that the outputs of these two
branches are combined before being input into the CFAM

module, the size of their corresponding outputs should be
compatible. As a result, the 3D CNN branch is designed
to have H' = H/32, W' = W /32, and a reduced depth
component (D' = 1), which can be dropped and hence
become three-dimensional in effect.

The main component providing the performance boost for
the YOWO model is the CFAM module, which operates
on the output of the 2D CNN and 3D CNN branches. To
this end, the outputs of these two branches are
concatenated along the channel dimension before being
input into the CFAM module to include both the
spatiotemporal and the refined spatial information. The
CFAM module uses attention mechanism to capture the
inter-channel dependencies. Finally, YOWO uses the
focal loss (Lin et al., 2017) for activity classification and
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Figure 1. Overall framework of the proposed DIGER method

the smooth L; loss (Girshick, 2015) for bounding box
regression.

Temporal Gradient

In this work, a separate 3D CNN branch is added to the
original YOWO model to process and extract features
from the TG data and consequently improve the activity
recognition performance of the model. TG is obtained by
calculating the difference between two RGB frames in a
video and represents the dynamic changes in the temporal
information. When selecting a backbone for processing
the TG modality, two factors should be considered.
Firstly, the TG modality primarily captures dynamic
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changes rather than spatial information, so the backbone
should be designed to prioritize the extraction of temporal
information. Secondly, integrating a smaller auxiliary
backbone for extracting temporal information can
improve efficiency while allowing the larger backbone to
focus on the extraction of spatial information
(Feichtenhofer et al., 2019; Xiong et al., 2021). In this
work, the ShuffleNetV2 0.25 network was chosen as the
TG backbone due to its relatively small size, with about
0.64 x 10° parameters compared to the 5.56 x 10°
parameters of the ShuffleNetV2 2.0 network used as the
3D CNN RGB backbone. Table 1 presents the details of
the architectures of the two networks along with the



output sizes of different blocks for an input clip of size
3x16%224x224 ([C x D x H x W1).

Table 1. Architecture of the 3D RGB and TG backbones

Layer block Output size
ShuffleNetV2 2.0 ShuffleNetV2 0.25
Stem_block 24x8x56%56 24x8x56%56
block 1 224x4x28%28 32x4x28x28
block 2 488x2x14x14 64x2x14x14
block 3 976x1x7x7 128x1x7x7
Final block 2048x1x7x7 256x1x7x7

As stated carlier, the 3D CNN RGB and TG backbones
extract complementary information from the different
modalities of the same input clip. In order to prevent any
potential divergence in their respective training procedure
from affecting the semantics of the extracted features, an
approach similar to YOWO was adopted in this work.
This involved training the TG backbone in conjunction
with the 2D CNN backbone and the CFAM module.
However, the TG backbone is mainly concerned with
extracting temporal information, while the 2D CNN
backbone is designed to extract spatial information. As a
result, to allow the effective and efficient extraction of the
desired information by both backbones, a stop gradient
operation is applied on the 2D CNN backbone to prevent
the TG data from affecting it. The stop gradient operation
is a mechanism used to prevent the backpropagation of
gradients through a given branch and consequently,
prevent the updating of the affected weights. In this case,
a stop gradient operation was applied to the 2D CNN
backbone to prevent the gradients generated during the
training of the TG backbone from affecting its weights.
Thus, ensuring that the 2D CNN backbone is only trained
in conjunction with the 3D CNN RGB backbone.

Knowledge Distillation

The utilization of an additional backbone and the
increased computational demands of the TG data may
result in slower inference performance. To overcome this
challenge, knowledge distillation is used in this work to
transfer the knowledge learned by the TG backbone to the
corresponding 3D CNN RGB backbone during training,
while the TG backbone is discarded during inference.
There are numerous different approaches to perform
knowledge distillation. However, assigning a loss value to
measure the dissimilarity between the output of the
corresponding blocks of the two networks is the most
common. In this work, the cross-entropy loss is used to
measure the dissimilarity.

It should be noted that, performing knowledge distillation
in the high dimensional space of the output of different
blocks would require a large amount of data for training
of the model to converge. To address this problem, Multi-
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Layer Projection (MLP) is used to map the outputs of the
different blocks to a lower dimensional projection space
for calculating the loss function. In this regard, the
dimension of the projection space plays a vital role in the
effectiveness of the knowledge transfer approach, and
consequently, the convergence of the knowledge
distillation loss. It should be noted that separate MLP
layers are utilized for each block involved in knowledge
distillation. Figure 1 (II) gives a comprehensive
illustration of the different modules used in knowledge
distillation for each block of the two networks.

Finally, one crucial aspect of the knowledge distillation
approach is to prevent a degenerate loop in which the 3D
CNN RGB backbone learns from and then later teaches
the TG backbone. To this end, a stop gradient operation is
used to prevent the TG backbone from receiving any
gradient (as explained above) from the knowledge
distillation loss. This ensures the gradients would only
flow in the direction of the 3D CNN RGB backbone.
Furthermore, given that the 3D CNN RGB backbone has
more spatial information than the TG backbone, the use
of'the stop gradient would enable the TG backbone to only
focus on the extraction of fine-grained motion features
and not to be disturbed by the RGB model.

Experiments

Dataset Description

The video clips used in creating the custom dataset used
in this work were manually collected from various sources
including videos posted on websites such as YouTube,
and also videos used in similar research works, which
were made publicly available (Roberts and Golparvar-
Fard, 2019). Each video clip contains one or more
excavators performing three types of activities: digging,
swinging, and loading the trucks. To add to the diversity
of the collected dataset, the videos are collected from 25
different construction sites, incorporating various site
conditions, such as different camera angles, illuminations,
occlusions, weather conditions, and video resolutions.
Table 2 provides the statistics of the collected dataset.
Some video clips contain more than one excavator with
each excavator involved in a different activity. As a result,
there is discrepancy between the sum of the number of
frames and clips reported for each individual activity, and
the total reported values in Table 2.

Table 2. Statistics of the collected dataset

Activity Number of Number of Average clip

type video clips frames length (sec)
Digging 295 64,436 7.28
Swinging 476 51,441 3.60
Loading 321 51,632 5.36
Total 1,060 163,295 5.13




Implementation Details

In this work, Stochastic Gradient Descent (SGD)
algorithm with the momentum value of 0.9 is used as
optimizer during training. The learning rate is linearly
warmed-up in the first five epochs followed by a half-
period cosine annealing learning rate scheduling strategy
without restarts (Loshchilov and Hutter, 2016). All
models are trained with a batch size of 128 on three RTX
A6000 GPUs in Ubuntu 20.04 and Python 3.8
environment and PyTorch 1.12. 80% of the videos in the
dataset were randomly selected for training, 10% were
selected for validation, and the remaining 10% were used
for testing. The two ShuffleNetV2 x 3D CNN networks
were pre-trained on the large-scale Kinetics-600 dataset
(Carreira et al., 2018). All layers of these networks are
fine-tuned on the excavator dataset using their
corresponding RGB and TG data modalities. The 2D
CNN network Darknetl9 is pre-trained on the COCO
dataset (Lin et al., 2015). All layers of the 2D CNN
network are also fine-tuned on the excavator dataset.

Experimental Results

Table 3 presents the results of the proposed DIGER
method for activity recognition on the test dataset, along
with the results of the original YOWO method for
comparison. It should be noted that these results present
the per-frame performance of both methods without the
post-processing linking stage. The reported classification
accuracy indicates the activity recognition performance of
the model. To further investigate the effectiveness of the
proposed DIGER method, Table 3 also presents the effect
of various design choices in performing knowledge
distillation on the final model performance. It can be seen
that in all cases, adding the TG backbone and utilizing
knowledge distillation improves the activity recognition
performance of the model compared to the original
YOWO model.

Table 3 also shows the impact of different number of
blocks used for knowledge distillation on the performance
of the model for different sizes of the projection space
dimension. It can be seen that changing the dimension of
the projection space in which knowledge distillation loss
is calculated has a significant impact on the final
performance of the model for all combination of
distillation blocks (Table 3). In particular, a projection
space size of 64 appears to be too small to distinguish
between the mappings of the outputs of different blocks
of the two networks for different input data, leading to
ineffective knowledge transfer. Conversely, a projection
space size of 512 results in increased number of
parameters and a larger projection space, making it
challenging for the model to transfer knowledge
effectively given the amount of available training data.
The optimal results are obtained with projection spaces of
size 128 or 256, depending on the number of blocks used
for knowledge distillation. It can be seen in Table 3 that
the best performance is achieved by using three blocks for
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knowledge distillation in a projection space of size 128,
resulting in a 93.6% activity recognition accuracy, which
corresponds to a 5.7% improvement over the original
YOWO.

Table 3. Comparison of the per-frame performance for YOWO

and DIGER
. Projection  Classification
Model Distill blocks - mJension acouracy (%)
YOWO - --- 87.9
64 88.6
. 128 91.1
Final block 256 018
512 89.6
64 87.8
DIGER Final block, 128 88.4
block 3 256 91.5
512 88.0
) 64 90.2
E{f)‘i‘ll;glo‘:k’ 128 93.6
block_Z, 256 914
B 512 88.6

Interestingly, the results in Table 3 demonstrate that while
the model performance slightly declines when including
two blocks for knowledge distillation, including three
blocks leads to the best activity recognition performance.
It should be noted that obtaining improved performance
when including more blocks in knowledge distillation is
consistent with the results reported in previous studies
(Xiao et al.,, 2022). However, the reason for the
inconsistency in the improvement when including two
blocks can be attributed to the structure of the
ShuffleNetV2 x backbone used in this work. In
particular, the inclusion of earlier blocks is intended to
enforce the similarity between the two networks at
different semantic stages of feature extraction. However,
there is only one 3D CNN layer between block 3 and the
Final block (Table 1). As a result, there is not much
difference between the semantics of the extracted features
of these two blocks in the ShuffleNetV2 x backbone.
Thus, the additional number of parameters of the MLP
module for needed the second knowledge distillation
block outweighs the minor benefits of its inclusion.

Conclusions and Future Work

This study proposes DIGER, a novel method for
automated excavator activity recognition on construction
sites.  DIGER is built upon the YOWO activity
recognition method and improves its performance by
employing the TG data modality and knowledge
distillation. The proposed method improves the activity
recognition accuracy by designing an auxiliary backbone
to process the complementary information present in the
TG data modality and transfering its knowledge using
knowledge distillation. DIGER achieved excellent
performance on a large custom dataset of 1060 videos,
with an activity recognition accuracy of 93.6% compared
to the YOWO performance of 87.9% (5.7%



improvement). It should be noted that TG data and
knowledge distillation are only used during training. As a
result, the proposed method can be deployed in real-time
applications without any extra computation or delay
during inference. Furthermore, it should be noted that
while in this study only excavator activities are
considered, similar improvements can be expected using
the proposed approach to recognize the activities of other
types of construction equipment as well.

Considering the current challenges in the development of
a general construction activity recognition method, a
possible direction for further research can focus on
improving the localization accuracy of the YOWO model,
in addition to the activity recognition accuracy improved
in this work. Improving the localization will enable the
development of activity recognition methods for
simultaneous detection of the activities of multiple
construction entities on a per-frame basis. Such a system
is essential for facilitating automated interaction between
different construction entities. For instance, the
interaction between workers and construction equipment,
which requires accurate localization to ensure workers’
safety when working in close proximity of heavy
equipment.
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