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Abstract 
Structural visual inspection documentation is essential for 
monitoring, maintaining, rehabilitating, and reinforcing 
structures. Close-Range Photogrammetry (CRP) and 
Terrestrial Laser Scanners (TLS) are cutting-edge 
technologies that are commonly used in surveying. In this 
article, these technologies were integrated to capture a 
railway bridge. The lower deck and lateral deck surfaces 
were captured using TLS, while the upper deck, track and 
laterals of the deck were captured using CRP-UAV 
photogrammetry. Post-processing techniques allowed the 
fusion of TLS and CRP models to produce a precise 3D 
model of the entire railway bridge deck. 

Introduction 
Railway infrastructure is crucial for economic growth, 
low-carbon emission, and energy-efficient transport. 
Framed on the railway infrastructure, bridges, and 
viaducts face problems due to aging, overloading, lack of 
maintenance, and poor inspection. To remain competitive 
in comparison to other means of transport, digitalization 
in railway infrastructure is a crucial aspect, particularly in 
what concerns the structural condition assessment. The 
traditional human-dependent inspection methods are 
typically costly and time-consuming. Advances in 
robotics and remote sensing technologies provide non-
destructive, contact-free ways to capture the 3D state of 
the infrastructure and improve inspection efficiency. 
Digital three-dimensional reconstruction models are 
representations of assets that may be developed using 
active or passive vision systems. In general, active 
systems employ their own source of illumination for 
measurements, whereas passive systems use ambient light 
in the scene (Popescu et al., 2019). Each method has 
benefits and limitations in terms of resolution, speed, and 
scene depth. In a hybrid system, the benefits of both 
systems may be combined. 
Active systems are then divided into two types: methods 
based on triangulation (Atif & Lee, 2017; El-etriby, 2015; 
Spectra, 2019) and Time-of-Flight based technologies 
(ToF) (Foix et al., 2011; Görüm, 2019; Zhong et al., 
2019). Passive approaches include Multi View Stereo 
(MVS) and Structure-from-Motion (SfM) technologies. 
Overall, the emphasis has been placed on LiDAR and 
SfM. LiDAR is simply an extension of the notions of the 

ToF sensor. It measures the time it takes for the reflected 
light to return when a laser is used to illuminate the target 
item; however, the laser emitter and receiver are placed in 
the same sensor. To deal with occlusion issues, terrestrial 
LiDAR, also known as Terrestrial Laser Scanning (TLS), 
requires a complex setup and must scan an object from 
many locations. This approach has proven its worthiness 
in surveying applications for instance in landslide 
characterization (Görüm, 2019; Zhong et al., 2019). 
LiDAR has the advantage of precisely measuring any 
target volume for geometry monitoring. This approach, 
however, is more costly, has a higher cost, is time-
consuming, and laborious when compared to passive 
systems, making it less suitable for geometry monitoring.  
Passive systems implement the multiple point of object 
view , using imaging cameras and geometry to reconstruct 
the scene, covering all digital photogrammetry techniques 
(Chiabrando et al., 2013). The process of reconstructing a 
3D scene using Close-Range Photogrammetry (CRP) 
includes camera calibration, sequential image acquisition, 
feature correspondences, geometry, dense matching, 
surface modeling and texture matching (Khaloo et al., 
2018; Popescu et al., 2019). SfM generates a 3D model of 
the target by combining a series of 2D images acquired by 
a sensor camera at various locations and estimating the 
relative camera’s positions and orientations (Siddique et 
al., 2021). To merge the images and build the 3D model, 
corresponding points in the images are retrieved and 
matched. Depending on the camera sensor used, the 3D 
point cloud contains color and intensity information. 
Essentially, triangulation can compute the 3D coordinates 
of each point in the scene if they are shared by two or more 
photographs of known camera position and orientation. In 
the case of unknown position and orientation, there is a 
geometric restriction that must be satisfied to estimate 
them, called epipolar constraint (Khaloo et al., 2018; 
Masoumian et al., 2022). In contrast with active systems, 
which require more time for acquisition and the direct 
result is the point cloud, SfM requires less time for 
acquiring the images; but needs more time for 
reconstruction (Popescu et al., 2019). The point resolution 
achieved from SfM may be comparable to laser 
triangulation. However, it depends on the camera’s 
resolution and number of images used for 3D modelling.  
The advent and evolution of new technologies, such as 
TLS and CRP-based on Unmanned Aerial Vehicles 



(UAV), aid in the acquisition of data, which leads to 
accurate and exact 3D representations of complex objects 
after processing. Even if numerous multi-surveys are 
used, no single sensor can provide comprehensive 
information on large and complex items. The combination 
of TLS and CRP-based on UAV techniques 
(Chatzistamatis et al., 2018; Luhmann et al., 2020) 
enables the creation of models of complex objects by 
employing each technology using specific settings that 
provide the best operating performance. The raw data 
received from these technologies may be used to produce 
point-clouds dense enough to provide a digital 
representation of the real object. 
Popescu et al. (2019) assessed the performance of three 
imaging methods for 3D geometric modelling of existing 
concrete railway bridges: TLS, CRP-based on UAV, and 
infrared scanning integrated in a 3D camera. The findings 
showed that all the tested approaches can be used to 
produce 3D models, although at varying degrees of 
completeness. TLS and photogrammetry produced 
substantially denser data than infrared scanning. Denser 
point clouds improve visualization but need more 
processing time and storage. They conclude that 
photogrammetry is the best technology regarding cost-
efficiency. Khaloo et al. (2018) created a 3D model of a 
bridge using CRP-based on UAV technique. This 
methodology enables inspection surveys as well as the 
precise anomalies monitoring. The results are compared 
to models created using TLS. The findings show that the 
UAV inspection approach surpassed TLS in terms of 
completeness and resolution, giving superior 3D models 
with the precision needed to fix problems and satisfy the 
infrastructure managers’ demands. TLS has the advantage 
of capturing consistent point clouds without needing 
specialized engineering knowledge, if stable positioning 
and mutual overlaps are guaranteed. On the other hand, 
CRP-based on UAV can measure remote locations not 
accessible by TLS or terrestrial images and can fill gaps 
in point clouds if parts of objects are only visible from one 
measurement system. The high resolution of images 
compared to LiDAR can result in a higher quality textured 
3D model.  
Luhmann et al. (2020) and Chatzistamatis et al. (2018) 
developed a hybrid technique combining UAV 
photogrammetry and LiDAR to build an accurate 3D 
model of a historic church envisaging the damage 
assessment. However, the high precision of TLS in 
scanning civil engineering assets suggest it has a higher 
accuracy (geometry) than CRP-based on UAV. Currently, 
there is no work available on the application of hybrid 
processing techniques on railway bridges.  
The data acquisition for railway bridges has a unique 
aspect in comparison to buildings concerning the UAV 
photogrammetry, namely the requirement of an upward 
camera to collect images under the bridge's deck. The 
number of UAVs with this specification is quite restricted. 
On the other hand, a TLS sensor does not have this 
limitation since it has ground support under a bridge and 
works within the data acquisition range. However, for 

security considerations, it is usually not permitted to 
operate over the deck. 
Thus, this work intends to give innovative contributions 
to the thematic of the structural condition assessment of 
concrete railway bridges using advanced reality capture 
technologies, with special emphasis on the following 
aspects: 
- The development of a reality capture framework in 
railway bridges employing a hybrid vision system, for 
which pratically no applications were found in the 
existing bibliography. Typically, the railway environment 
presents significant challenges to reality capture due to 
rigorous safety requirements as well as limited 
accessibility to bridge components and railway corridor. 
- The establishment of a precise geometric and high-
quality 3D image-based model of the condition state of an 
existing railway bridge using a CRP-based UAV and 
TLS, leveraging the capability of both technologies. 

Methodology 
The proposed methodology for railway bridge inspection 
uses a fusion of both active and passive vision systems to 
collect data, and is divided in four phases, as depicted in 
Figure 1.   
The first phase, recognition and preparation, requires the 
collection of project details and a review of the target 
structure’s inspection history. This phase also involves 
visiting the site to identify any potential risks, selecting 
technical staff and equipment such as TLS and UAV, and 
creating an acquisition plan that outlines procedures and 
permissions required.  
In a second phase, data acquisition, a precision 
topographic survey of the structure’s control points 
should be performed. This step is crucial for 
georeferencing and calibrating the point cloud data. 
Control points must be placed along the entire structure 
and can be marked with auxiliary targets or using 
significant points of the structure. The coordinates of 
these control points are obtained using GNSS receivers 
with RTK support and an electronic theodolite. To 
conclude phase two, the point cloud is captured using TLS 
and images are captured using an UAV. The TLS must 
meet specific requirements to provide high-quality point 
clouds and images, while the UAV shall preferably have 
high autonomy, obstacle proximity sensors, RTK 
positioning accuracy, and high-resolution cameras. Both 
data acquisitions must be done as close to the structure as 
possible for higher image resolution and should be 
performed safely. 
The third phase, digital railway bridge, involves aligning 
the TLS point clouds and reconstructing a 3D geometric 
model of the structure using SfM techniques on 
georeferenced images captured by the UAV. The derived 
point cloud should be registered and exported to the 
desired format, with the removal of neighboring objects 
or background noise. 
Finally, the fourth phase involves the condition 
assessment of the railway bridge by specialized experts. 
Surface anomalies can be easily visualized, and a virtual 



inspection is performed over the digital model of the 
railway bridge. Also, the final report is created.

Technologies
This section discusses the technologies used for the reality 
capture adopting a data fusion process based on active and 
passive vision systems. In terms of hardware, TLS 
(active) and CRP-UAV (passive) devices were used, 
whereas the dedicated required software is discussed.
The TLS employed was BLK360 from Leica Geosystems. 
It has an integrated spherical imaging system and 
thermography panoramic sensor system. It allows to take 
photos and point clouds, which are then transferred by
Wi-Fi protocol to a mobile device running Leica Cyclone 
Field 360 or locally saved to be later synchronized with 
Leica Cyclone Register 360. It is important to note that 
the Leica does not permit data to be synchronized outside
Leica’s software solutions. Leica Cyclone Field 360 is a 
mobile device app available for iOS and Android 
platforms, that is used to collect data from the LiDAR and 
process it into Leica Cyclone Register 360. The software
manages the scanner’s capture settings, examines scans
and images data, and includes capabilities like tagging 
measurements, text, or audio files. The desktop solution 
for point cloud processing is Leica Cyclone Register 360, 
which gets the point cloud data either collected from the 
mobile app or scanning device and performs the
synchronization by sharing the same IP address and 
network Port. This desktop software allows the user to 
handle projects with hundreds of scans without reducing 
performance and includes capabilities such as automated 
alignment (registration), measuring, and noise clean-up.
In terms of UAVs, the DJI Mavic 2 Enterprise Advanced 
(M2EA) equipped with a ½” CMOS sensor and a true 

focal length of 9 mm from DJI company, was used. This 
UAV includes a camera with enhanced quality, is lighter, 
and can avoid obstructions, allowing a safer flight. The 
outputs desired in this phase are images covering all 
structural components from all directions to be able to 
reconstruct the full structure. Being a passive vision 
system, it does not generate point clouds automatically. 
As a result, the photos captured by the UAV mounted 
sensor are used to perform a SfM technique for point 
clouds generation.
SfM technique may be used with a variety of commercial 
and open-source software packages capable of 
reconstructing scenes. ContextCapture, Pix4Dmapper, 
Agisoft Photoscan, and Recap are some examples of 
commercial software. The commercial software used for 
point cloud data fusion was ContextCapture from 
Bentley. It enables hybrid processing for the development 
of meshes, dense point cloud, orthophoto, as well as some 
AI detection tools that combine the best of both 
technologies, the versatility and convenience of high-
resolution images, reinforced by the increased precision 
of point clouds.

Case Study
For the application of the methodology developed to 
railway bridge inspection, an extremity module of the 
west access viaduct to the Pirâmides bridge in Aveiro, in 
Portugal, inserted in the railway extension of access to the 
port of Aveiro, is the object of study. The module consists
of four 25-m continuously supported spans for a total 
length of 100 m.
The bridge deck has a U-shaped cross section, with the 
bottom slab being 0.45 m thick in the center part, and 0.40 
m thick at either laterals and connecting two main 
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Figure 1: Methodology for railway bridge virtual visual inspection



prestressed girders of 1.60 m high and 0.60 m wide. Each 
girder has a 0.60 m wide and 0.50 m height cantilever on 
the deck's wings serving as walkways.

Figure 2: Extremity module of the west access viaduct to the 
Pirâmides bridge in Aveiro, in Portugal

Data Acquisition
The railway bridge was marked with 50 Ground Control 
Points (GCPs) and 8 Automatic Tie Points (ATPs) for 
georeferencing and photogrammetry, respectively. These 
targets were placed mostly on the columns and deck
directly on the concrete surface, as shown in Figure 3. The 
GCPs were measured using topographic support, while 
the ATPs allowed for automated image detection in 
ContextCapture.

Figure 3: GCP and ATP marked over the railway bridge
The laser scanning was performed in high density mode, 
which results in a point spacing of 5 mm at a distance of 
10 m. A complete scan, including panoramic image 
capture, takes about 5 min in this specific mode. Figure 4
shows the LiDAR system in operation. Table 1 provides
an overview about the collected data.

Figure 4: LiDAR system in operation
The registration was done manually, followed by an 
optimization using the Iterative Closest Point (ICP) 
algorithm. The ICP algorithm is a traditional approach for 
rigid registration. It alternates between nearest point query 
in the target set and distance minimization between 
related points, and it is guaranteed to converge to a locally 
optimum alignment. The final registration had an average 

mean error of about 17 mm. Figure 5 shows the registered 
point cloud with the scan stations distribution.

Table 1: Laser Scan data

Parameter BLK360

Stations 113
3D points (bill.) 2.9

Scan duration (h) 12
Mean resolution (mm) 9

Registration precision (mm) 17
Data Size (GB) 60.1

Figure 5: TLS station distribution (in red)
The M2EA has a maximum flight time of around 30 min 
and was operated by an experienced pilot in a stop-and-
go mode, which allowed for stable image recording. A 
flight path with nadir photographs and oblique views was 
performed. Figure 6 shows the UAV in operation. Table 
2 provides a summary of the essential flight data.

Figure 6: UAV in operation

In general, the image quality from the UAV flights was 
good in terms of sharpness and exposure, as demonstrated 
in Figure 7. However, some of the images were 
overexposed, especially on surfaces with high contrast, 
particularly the lower bridge deck surface. Despite this, 
the photogrammetric processing went smoothly, which 
can be verified by the good image quality.

Figure 7: Sample images from the aerial survey
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Table 2: UAV data

Parameter M2EA

Images 3533
Focal length (mm) 9
Sensor size (mm) 6.4
Flight duration (h) 8

`Ground coverage (ha) 2.77
Mean GSD (mm/px) 1.04
Data size JPEG (GB) 45.9

Results
The data processing result in both a dense point cloud
(Figure 8a) and a texture mapping (Figure 8b). Texture
map allows to incorporate components in the scene 
reconstruction that are smaller than the distance between 
points in the dense point cloud. To carry out data fusion, 
a high-performance computer is necessary. In this case, 
an Intel i7-11700 8-core with 32 GB RAM and a Nvidia 
GeForce RTX 3090 24GB graphics card were used.
The model generated using TLS data in Context Capture 
encompasses the lateral and bottom deck parts of the 
railway bridge and features a high Level Of Accuracy 
(LOA) including the reconstruction of the catenary wires. 
However, the texture may not be as visually appealing 
compared to the results produced using high resolution 
images (Figure 9a). In contrast, the model created in 
Context Capture using UAV image data encompasses the 
lateral and upper deck components and presents a high 
level of texture detail (Figure 9b).

a) b)
Figure 8: Outputs: a) dense point cloud b) texture map

As a result, the goal was to develop a model that 
incorporates both types of data collection to create a 
fusion with information about the entire deck. LiDAR 
technology provided a detailed point cloud of the railway 
bridge’s lateral and bottom deck portions, as well as the 
ground beneath the deck with mean resolution of 9 mm,
equivalent to LOA30, while photogrammetry technology 
produced highly detailed lateral and upper deck portions
with mean resolution (GSD) of 1.04 mm/px, 
corresponding to LOA40.
The integration of information from both collection 
techniques has been proven to be highly effective, with 
the potential to build a coherent georeferenced model. To 
validate the geometric survey, a comparison between the 
design (as-designed) and real geometry (as-is) of the 
deck’s cross-section was performed as presented in Figure 
10 with mean absolute error (MAE) calculated to be 2.73
mm, which shows the accuracy of the methodology and 
technologies used in this study. Figure 11 show the 
achieved results using Context Capture software, and 

some close images are presented in Figure 12 . It is 
important to highlight that the results of this study have 
significant implications for the industry, as they provide a 
powerful tool for surveying and monitoring large 
infrastructure projects such as railway bridges. 

a)

b)
Figure 9: Model of Span's Railway Bridge: a)TLS data 

b)CRP-based on UAV data

Figure 10: Cross-section comparison of the as-designed (top) 
and as-is (bottom)

Such a digital model could be used further for inspection 
purposes to identify single and multiple anomalies, 
typically related to concrete cracks and delamination; loss 
of material, water damage; corrosion, and degradation of 
bearings. All experimental information can be used 
further for the development, updating, and validation of 
numerical models of the bridges under service trains, 
envisaging the development of a reliable and accurate 



Digital Twin (DT). DT allows a dynamic representation 
of the bridge, which includes a management model that 
acts as a link between the physical and virtual 
counterparts (Adibfar & Costin, 2022; Chiachío et al., 
2022; Jeong et al., 2016). Alternatively, visual inspection 
or structural repair can be considered, although they 
require offline involvement (VanDerHorn & Mahadevan, 
2021). A functional DT should be capable of simulation, 
learning, and management (Chiachío et al., 2022) and 
allow practical applications for Bridge Management 
Systems (BMS) (Jiang et al., 2021).

Figure 11: Reality capture of the extremity module of the west 
access viaduct to the Pirâmides bridge in Aveiro, in Portugal

Figure 12: Example images of 3D state output

Conclusions
This research article detailed all the procedures and 
challenges faced in conducting a survey and 3D modeling 
of a railway bridge through the integration of TLS and 
UAV-photogrammetry technologies. The aim was to 
generate a precise and realistic 3D representation of the 
railway infrastructure to be used on structural inspection 
and assessment of surface damages. The TLS method was 
used to collect data on the bridge’s lower and lateral deck
surfaces, while the UAV mounted camera was used to 
characterize the upper surface and laterals of the deck. 
The integration of the TLS and photogrammetric models, 
which is possible due to recent advancements in 
processing algorithms, resulted in a highly accurate 3D 
model of the entire railway bridge deck. As future 
investigations, the authors propose several areas for 
further research, including evaluating automat-ed UAV 
flights, automating tie points to speed up the registration 
process, and incorporating artificial intelligence for local 

automated damage identification. These research efforts 
aim to improve the accuracy and efficiency of the survey 
and 3D modeling of railway bridges using TLS and CRP-
based UAV technology.
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