
2023 European Conference on Computing in Construction
40th International CIB W78 Conference

Heraklion, Crete, Greece
July 10-12, 2023

A COMPARATIVE EVALUATION OF CATBOOST DECISION TREES AND EXPERT 
INTUITION TO PREDICT DURATIONS IN THE PREDESIGN PHASE 

Svenja Lauble1, Dominik Steuer1, and Shervin Haghsheno1

1Karlsruher Institute of Technology (KIT), Karlsruhe, Germany 
.

Abstract
Construction projects are often subject to scheduling 
errors caused by uncertainty and systematic planning 
fallacies. In the research, different statistical and 
predictive models were tested to predict the duration of a
construction project. However, the results of these
predictions were not yet been compared with the 
estimations derived by a human expert. This paper 
evaluates the prediction accuracy of CatBoost and expert 
intuition to predict the duration of public construction 
projects in the predesign phase. The authors use a dataset 
of the city of New York (USA) with 367 projects. Both 
expert intuition and CatBoost are compared with the 
performance indicators Mean Absolute Error (MAE) and
absolute preference. The results show high outliers in the 
expert intuition, while the CatBoost indicates more 
consistent predictions. From a practical perspective, 
especially in uncertain situations, the CatBoost has 
advantages.

Introduction
Time schedules of construction projects are planned 
according to the work break-down structure. With this, the 
project is hierarchically broken down in its subtasks,
resulting in schedules of different granularities. The first 
schedule defining project phases is the basis for the 
following schedules and has therefore a significant 
importance to the project’s success. In the predesign 
phase, not much information about the corresponding 
project is available. Consequently, experts often plan the 
duration based on their knowledge and experiences in 
individual project phases.
During their realization, many real-world projects show 
that the milestones of the planned construction phases
cannot be met (Potts 2005; Magnussen and Olsson 2006). 
These deviations result in time pressure, increased costs,
quality loss, conflicts, and claims (Braimah and Ndekugri 
2008). To reduce the deviations between the planned and 
realized durations, analytical models are a highly 
investigated topic in research. However, the results of 
their prediction were not yet juxtaposed with the 
estimations derived by a human expert. This is necessary 
to demonstrate the added value of analytical models to 
practitioners and to show a targeted use of analytical 
models as well as expert intuition. According to 
Kahneman and Tversky (1977) experts often tend to
underestimate durations. They merely use an ‘internal 
view’ rather than looking back at historic projects 
finalized in the past. The target of analytical models’ is to 

predict the durations of project phases objectively based 
on historical data to reduce time deviations.
In the first project stage, when not much information is 
available, the question arises whether analytical models 
yield a higher prediction accuracy than experts’ intuition. 
Based on a real-world dataset we compare the prediction 
accuracy of both expert intuition and CatBoost. CatBoost
is a tool for gradient boosting on decision trees that can be 
used for machine learning and predictive analytics.
Lauble (2022) shows the promising prediction accuracy 
of a CatBoost in comparison to other decision trees for 
predicting durations in construction projects. The higher 
accuracy and better performance are due to the ability to 
handle categorical features more efficiently, its 
implementation of an ordered boosting technique, and its 
effectiveness in dealing with imbalanced datasets. In 
general, decision trees use a tree-like model of decisions 
and their possible consequences to classify input data into 
one or more categories. 
In the next step, we identify situations in which experts or 
analytical models should be preferred. With these 
situational drivers’ managers and their schedulers can 
make use of the best decision-making process, expert 
intuition, or analytical model in the right situation. To 
compare and evaluate both decision-making processes,
the following paper relies on five parts.
First, we summarize related work defining expert intuition 
and analytical models. Further on, relevant analytical 
models to predict construction project durations during
the predesign phase are identified and categorized. 
Second, we develop an approach that compares the 
prediction accuracy of expert and analytical models as
well as identifies situational drivers. 
Third, we execute this approach on a real-world dataset 
and analyze the results with two performance metrics: the 
mean absolute error (MAE) and the number of cases in 
which one of the two decision-making processes is
preferred. We further train a classification model that 
distinguishes the two decision-making processes to 
identify situational drivers for both.
Fourth, we summarize the experimental results and derive 
implications for practitioners based on these results. Here, 
we first show the high number of outliers in the 
predictions by the experts. In contrast, when comparing 
the number of cases for a preference, we can show a much 
smaller gap between both. To better understand the 
situations in which expert intuition fails in comparison to 
the CatBoost model and in which the Catboost shows its 
advantages, we train and evaluate a classification model. 



This model presents a preference for a CatBoost in cases 
of high project changes and in an unstable environment. 
Fifth, we derive a conclusion. The results of the first part 
conclude a collaboration of model and expert to reduce 
the planning fallacies of the expert. Lastly, we address a 
higher weighting of the CatBoost for the mentioned 
specific situations.

Related Work
In the following, we elaborate on relevant work regarding
the advantages of expert intuition and analytical models 
in general, as well as analytical models for predictions in 
the predesign phase.

Expert Intuition and Analytical Models
In general, it can be differentiated into two types of 
decision-making processes, intuitive and analytical. 
Intuition follows unknown and not controllable thinking 
behaviors based on experts’ experiences and knowledge 
(Braun and Benz 2015). Analytical models, in contrast,
result from known and rational structures (Kahneman 
2003). 
With intuition, experts can deal with ambiguity (Scherm 
et. al 2016). Multiple authors plead for using intuition,
especially in situations with high uncertainty, to get a 
rough understanding of the solution with minimal effort 
(Huang 2019, Jakoby 2019). 
However, intuitive decisions are subject to the risk of 
situational bias. The ‘self-serving bias’ states, that past 
achievements are overestimated. According to the 
‘confirmation trap’ information that is not consistent with 
one's beliefs is excluded from the decision. Lastly, 
individuals cannot assess whether their experience is 
based on a small sample with unreliable data. They would 
rather trust small samples with unanimous data than small 
sample sets with non-unanimous data. This results in a 
wrong understanding of patterns in data (the 
‘overconfidence effect’). (Kahneman 1977) 
Therefore, multiple authors choose intuitive decisions 
only if there is not enough information available and quick 
decisions have to be made (Kahneman 2003, Bonabeau 
2003, Davenport 2007, Huang 2019). In situations where 
a lot of information is available, individuals often do not 
have the capabilities to optimally analyze this 
information. However, computational capabilities can 
execute this and assist in an objective decision-making 
especially in complex situation. This research area is 
summarized under data-driven analytics. For data-driven 
analytics, good data management structures are necessary. 
The better the database is, the better the resulting solutions 
are. Davenport and Harris (2007) differentiate between 
four sequential levels of data analytical models: statistical 
analysis, extrapolations, predictive models, and 
optimizations. In all these levels, correlations are made to 
gain an objective result and thereby reduce the situational 
bias. With its levels, more insights are gained, which 
results in a higher competitive advantage for the company 
using these analytical methods.

Analytical Models to Predict Durations in the 
Predesign Phase
In Table 1, we summarize the identified analytical 
methods to predict durations for the predesign phase with 
exemplary references. The references are categorized 
according to the levels of Davenport and Harris (2007).
Optimizations are left out in Table 1 (e.g., Zheng (2004) 
with a genetic algorithm, Kalhor (2011) with an ant
colony model, Jung (2016) with a tabu search, or Kumar 
(2011) with simulated annealing). These models are based
on more detailed information that was not available in the 
predesign phase. 

Table 1: Analytical methods to predict construction project 
durations (Lauble and Haghsheno 2022) 

Level Method and Reference

Statistical 
analysis

Relativ Importance Index    
(Meng 2012)

Correlations (Walker 1995)
Extrapolations Linear Regressions       

(Bromilow 1969)
Fuzzy systems (Wu 1994)

Box Jenkins (Agapiou 1998)
Monte Carlo Simulation      

(Moret 2016)
Predictive 

models
Artificial Neural Networks    
(Lam 2016, Bhoka 1999)

Decision Trees (Lauble 2022)
AI ensemble (Erdis 2013)

Zheng (2004) exemplary work concentrates on time-cost 
optimizations for the process steps for the structural 
works. Following the level of the highest competitive 
advantage are predictive models. 
The Australian researcher Bromilow developed in 1969 
one of the first models to predict the construction 
duration. His linear regression equation is:

T describes the time (in working days), K is a constant 
describing the general level of time performance, C are
the costs of the project according to the contract (in a
million USD), and B is a constant reflecting the sensitivity



of time to cost. Linear regression in general is a statistical
modeling technique that aims to find the linear 
relationship between a dependent variable and one or 
more independent variables. Based on this equation, other 
models with limited variables were developed. These 
models are therefore easy to simulate and interpret.
In contrast, Artificial Neural Networks (ANNs) show 
better results by analyzing even weak correlations in big 
datasets compared to linear regressions (Chen and Huang
2006; Dissanayaka et al. 1999; Lam and Olalekan 2016;
Petruseva et al. 2012; Wang et al. 2016). ANNs are a type 
of machine learning model that is inspired by the structure 
and function of biological neurons and can be used to 
learn complex patterns and relationships in data.
However, the results of ANNs are generally not 
comprehensible to the scheduler and his clients, as they 
follow a ‘black box’ approach.
Lauble (2022) shows with an experiment on two real-
world datasets that decision trees as part of machine 
learning perform better in comparison to linear 
regressions and ANNs. Especially the prediction accuracy
of the CatBoost model can be highlighted. Here, for a
dataset of residential buildings in San Francisco (USA),
the MAE (see formula 2) is for the linear regression 16 
days and for the ANN 150 days higher as the MAE of the 
CatBoost model. The decision tree not only performs 
better, but it also shows advantages regarding 
explainability and opening the ‘black box’ to its users. In 
general, decision trees can handle missing attributes well 
(Sheh 2017), include categories in the prediction, and 
show good results even with limited data. Therefore, in 
the following, the authors train the model with CatBoost.

Approach 
In the following, we outline our approach which consists 
of a distinction between expert intuition and a machine 
learning model, the CatBoost. Figure 1 displays an 
overview of the entire process pipeline to identify cases 
and drivers for a preference.
To determine the error by the expert and CatBoost the raw 
dataset is filtered. To determine the quality of expert 
intuition, the first project version displays the prediction 
by the expert as starting point of the planning. We assume 
this estimation is done by humans. Then the first project 
version is compared with the final project version to 
measure the error of prediction by the expert. To train the 
CatBoost model, the last version of each project is used.
This data is splitted with a ratio of 80/20. 80 percent of the 
data serves to train the model with the target of regression. 
The test dataset (20 percent) serves as the basis for 
analyzing the prediction accuracy of CatBoost. Further 
on, a cross-validation of k=3 was chosen. Cross-
validation is done to assess the generalizability and 
robustness of a machine learning model by testing its 
performance on multiple independent subsets of the data. 
The prediction error of CatBoost is the difference between
the predicted duration of the training model and the 
realized duration. Now, the prediction error of the 
CatBoost model and expert intuition can be compared.

Figure 1: Pipeline of the experimental setup

Further on, now situations can be distinguished in which 
expert intuition or the CatBoost model is preferred. By 
documenting this per prediction, a classification model is
trained to automatically differentiate in both situations. 
With this model, a prediction should be made about which 
mode (expert or CatBoost) should be chosen to select the 
prediction with the smallest error. Based on this model, 
drivers are identified that support the classification. These 
identified drivers can serve as assessment standards to 
consult a CatBoost model and weight predictions of
expert intuition and the CatBoost.

Experimental Setup
In the following, we describe the experimental setup with 
the used dataset, evaluation metrics, and details on the 
implementation.

Data

Our experiment is based on real-world industry data for 
the city of New York, United States of America (USA).
The full data set is available online (City of New York).
The dataset consists of 2,400 public construction projects 
with 14 comparable project features, including the start of 
design and the realized or expected finalization of the 
project. The projects are documented at different time 
stamps, starting at the design phase and ending at the 
handover to the client. The first project version was 
documented in 1993, and the last expected finalization is 
in 2032. Therefore, the first and last project versions are 
filtered. The first project version reflects the expert’s
intuition, and the last version serves as the basis for the 



model’s training. After filtering, the data set consists of 
367 projects. The 14 project features are:
● Documentation date (date)
● Project category (name, e.g., streets and roadways, 

schools, parks)
● Municipality of construction site (name)
● Administrative authority (name)
● Client agency (name)
● Phase at the beginning (name)
● Current phase (name)
● Design start (date)
● Budget prediction (in USD)
● Last budget change (in USD)
● Total budget changes (in USD)
● Predicted realization (date)
● Last change of the predicted duration (in days)
● Total duration changes (in days) 

We further present the main properties of the feature “total 
duration” in Table 2.

Table 2: Description of the predicted duration

Initial 
prediction

Final 
realization

Average 
duration

2.291 days 2.723 days

Standard 
deviation of 
the duration

1.153 days 1.250 days

Minimum 476 days 656 days

0.25-Quantil 1.584 days 1.902 days

Median 2.241 days 2.447 days

0.75-Quantil 2.558 days 3.172 days

Maximum 8.830 days 10.049 days

By comparing the initial prediction with the realized 
duration, planning fallacies can be identified. In all 
measuring points, the initial prediction is underestimated. 
The average initial duration differs, by 431 days from the 
realized duration. Also, the standard deviation gets higher 
with the ongoing project status. 
The dataset is further enriched with 65 external data points
each. These data points were selected with the goal of 
describing the economy and politics in New York, USA. 
Among other things, these include key figures on
inflation, corruption, the innovation index, and the 
number of building permits. The full list of features is 
displayed in Table 3. 

Table 3: Integrated external features to describe the economic 
and political situation for the dataset (F-1 to F-12 from OECD

and F-13 to F-65 from Global Economy)

Nr. Feature

F-1      Investment in fixed assets % of gross fixed 
capital formation (GFCF)

F-2
F-3
F-4
F-5
F-6
F-7
F-8
F-9

F-10
F-11
F-12
F-13
F-14
-F-15
F-16
F-17
F-18
F-19
F-20
F-21
F-22
F-23
F-24
F-25
F-26
F-27
F-28
F-29
F-30
F-31
F-32
F-33
F-34
F-35
F-36
F-37
F-38
F-39
F-40
F-41
F-42
F-43
F-44
F-45

Real GDP forecast annual growth rate (%)
Employment in construction thousand persons

Hours worked hours/worker
Inflation (CPI) annual growth rate (%)

Prices of houses long-term average = 100
Built-up area square meters per capita

Consumer confidence index (CCI) (0-200)
Business confidence index (BCI) (0-200)

Population millions
Employed population millions of people

Price level index OECD = 100
Capital investment billion USD

Exchange rates Units of local currency per USD
Unemployment rate percent

Employment rate percent
Government spending billion USD

Investment forecast Ratio of total invest to GDP
Competitiveness - WEF Index (1) 1-7

Competitiveness - WEF index (2) 0-100
Shadow economy Percent of GDP

Control of corruption -2.5 weak; 2.5 strong
Political stability index -2.5 weak; 2.5 strong

Short-term political risk 1=low, 7=high
Medium/long-term political risk 1=low, 7=high

Internet users, percent of population percent
Quality of roads 1=low, 7=high

Innovation index 0-100
Information technology exports, % of exports

Bank loans % of GDP
Number of listed companies Number

Innovation index 0-100
Index of property rights 0-100

Freedom from corruption index 0-100
Fiscal freedom index 0-100

Entrepreneurial freedom index 0-100
Labor freedom index 0-100

Monetary freedom index 0-100
Trade freedom index 0-100
Trade freedom index 0-100

Financial freedom index 0-100
Economic freedom, total index 0-100

Health expenditure per Kop USD per inhabitant
Death rate per 1000 persons

Poverty Percent of Population



F-46
F-47
F-48
F-49
F-50
F-51
F-52
F-53
F-54
F-55
F-56
F-57
F-58
F-59
F-60
F-61
F-62
F-63
F-64
F-65

Public expenditure on education percent of GDP
Globalization index 0-100

Economic globalization index 0-100
Political globalization index 0-100
Social globalization index 0-100
Percentage of world population

Percentage of world GDP Percent
Percentage of world exports Percent
Percentage of world imports Percent
Value added by industry billion USD
Value added by services billion USD

Quantity index of local suppliers 1=low, 7=high
Happiness index 0=unhappy, 10=happy

Human development index 0 - 1
Land area square kilometers

House price index  % change; base year = 100
Building permits Number

Real residential property prices, annual % change
Consumer price index (CPI) percentage change

Government spending

These features are integrated for the year the design of the 
construction project started to include the economic and 
political starting situations. It is assumed that this will be 
included in a consideration. In total, this results in a total 
of 79 features per project.

Evaluation Metrics
We evaluate the experiment with two metrics, the number 
of preferred cases for a prediction by expert intuition or 
the CatBoost model and the mean absolute error (MAE) 
to measure the prediction error. 
The MAE serves as a metric to compare the absolute 
prediction error. It is more robust to outliers than other 
metrics such as Mean Squared Error (MSE) or Root Mean 
Squared Error (RSME). This is because MAE measures 
the average absolute difference between predicted values

and actual values (Hyndmann et al. 2006), rather than 
the squared or square root of the difference, which can 
give more weight to larger errors.. The MAE measures 
absolute quality.

The number of preferred cases shows, in general, which 
of the two prediction methods is preferred. It is presented 
as a percentage of total projects. This percentage indicates 
whether the prediction should be performed with the 
CatBoost model or by the expert.

Implementation Details

For programming, we used Google Colab and the 
following libraries: TensorFlow (1.14.0), keras-
applications (1.0.6), CatBoost (0.24.3), and shap (0.37.0). 
The data set is split into a training and test set with a ratio 
of 80/20. The variable k=3 is chosen for cross-validation.

To optimize the hyperparameters, a grid search is done. 
The results show a training with a maximum of 100 trees 
and a maximal depth of three. 

Experimental Results and Discussion
In this section, we first compare the performance of 
predictions for durations in the predesign phase by experts 
and a trained CatBoost model. Second, we show relevant 
drivers to select the situation with the best outcomes.  

Evaluation of Expert Intuition and CatBoost 
In the following, we present the results of our model when 
comparing the prediction accuracy of expert intuition with 
that of CatBoost. For a detailed comparison, we further 
divided the dataset for the CatBoost in four subsets. These 
subsets contain the features of changes (total budget and 
duration change) and the external data describing the 
economic and political situation:

Sub-dataset 1: with information about project 
changes and without external data
Sub-dataset 2: with information about project 
changes and with external data
Sub-dataset 3: without information about project 
changes and without external data
Sub-dataset 4: without information about project 
changes and with external data

By comparing the prediction accuracy with and without 
these features, the preference of the CatBoost in the initial 
planning as well as using it for updates during the project 
execution can be analyzed. Second, the influence of 
external data on the prediction accuracy can be identified. 
Table 4 demonstrates the results of the prediction error 
using the MAE. 

Table 4: Prediction Error (MAE) in days of Expert Intuition 
and CatBoost for the project duration (1: with information 
about project changes and without external data, 2: with 

information about project changes and with external data, 3: 
without information about changes and without external data, 

4: without information about project changes and with external 
data; best results in bold for each row)

Expert 
Intuition

CatBoost

1 2 3 4

Average 528 290 212 486 253

Standard 
deviation

653 427 278 491 271

Minimum 0 1 0 2 2

0.25-
Quantil

0 94 73 171 94

Median 365 191 157 357 184

0.75-
Quantil

833 336 263 595 319

Maximum 4.528 3.976 3.986 3.625 3.182



The results show the high-level planning fallacies of the 
expert’s intuition. Each of the four CatBoost models 
performs regarding the average prediction error better 
than the expert. Here, especially the models containing 
external data indicate better results (CatBoost models 2
and 4). The information about changes also seems to 
influence the prediction accuracy slightly when 
comparing CatBoost models 1 and 2 to 3 and 4. Still, also 
the expert intuition shows, with the minimal and its 
0.25quantile prediction error, better results in these 
categories than the CatBoost model. This high mismatch, 
once of very high planning errors and once of very good 
prediction, we also demonstrate in Table 5. 
Table 5 represents the percent of cases in which the expert 
or the CatBoost should be preferred.

Table 5: Preferred Cases in percent of Expert Intuition and 
CatBoost for the project duration (1: with information about 

project changes and without external data, 2: with information 
about project changes and with external data, 3: without 
information about changes and without external data, 4: 

without information about project changes and with external 
data; preference in bold)

1 2 3 4

CatBoost 57,49 59,12 44,96 40,05

Expert 
Intuition

42,50 40,87 55,05 59,95

Even if Table 3 demonstrates the high planning fallacies 
of expert intuition, Table 4 shows the close results when 
distinguishing the preferred cases for each decision-
making process. As a maximum, the difference in dataset 
4 between the preferred cases of expert intuition and 
CatBoost is only 19.90 %. And the number of cases in 
which CatBoost is preferred is not that clear. Even though 
the results are close together, we can detect a preference 
for CatBoost when changes about project information are 
available. In contrast, the expert’s intuition is preferred for 
the initial prediction when project changes are so far 
unknown. 
Comparing the results of Table 3 with Table 4, experts 
show higher outliers than the CatBoost where the ‘internal 
view’ distorts the understanding of the situations. These 
situations must be better understood to support in these 
the expert by the CatBoost.

Evaluation of relevant drivers 
To identify relevant drivers for a preference of expert 
intuition or CatBoost, the results are further used for a 
classification model. If the prediction error for expert 
intuition is lower than the CatBoost a new target column 
is inserted with ‘0’ (expert is preferred). Otherwise, if the 
prediction error for expert intuition is higher than the 
CatBoost, the target column is ‘1’ (CatBoost is preferred).
With this new target column, a SHAP framework is 
trained. The SHAP (SHapley Additive exPlanations)
framework is a unified approach to explain the output of 
any machine learning model. It uses Shapley values, a 

concept from cooperative game theory, to assign 
importance scores to the input features of a model and 
explain how they contribute to the final prediction
(Shapely 1953). The framework can be used for both 
global and local feature importance analysis, and has been 
shown to provide reliable and consistent explanations 
across different models and datasets. Therefore, SHAP
support the interpretability of AI models (Lundberg 2018) 
and can be used to explain complex black-box models. 
We conclude with the SHAP three main insights. First, 
CatBoost is preferred to predictions during the project’s 
realization. This insight is already displayed with the 
datasets 1 and 2. For datasets 3 and 4 in contrast, this trend 
can also be confirmed when analyzing the columns ‘phase 
at the beginning’ and ‘current phase’. For early 
documented projects (phase at the beginning: ‘design’)
and a late current phase (phase ‘construction realization’),
also prefer a CatBoost as this gap also indicates changes. 
Second, in an instable market environment, CatBoost is 
preferred. This instable environment is displayed in the 
datasets with a high unemployment rate, fewer capital 
investments, or high fiscal freedom. Kahneman and Klein 
(2009) as well as Agor (1986) confirm this fact. They 
argue that experts should make predictions in a stable 
environment, in which they have a good understanding of 
existing dependencies and influencing factors. 
Third, we identify single features that are relevant for a 
distinction. These should be determined individually for 
each dataset. Exemplary, for the project category ‘water 
supply’, CatBoost is favored. Further on, the involved 
organizations or the area of the construction site can be 
relevant features to be analyzed.

Implications for Practitioners
Our work confirms the fact that there are planning 
fallacies in construction projects. With situational biases,
experts show on average higher prediction errors than 
analytical models. However, comparing the number of the 
cases in which analytical models should be preferred is 
not statistically significant. Based on these results, we
conclude with suggestions for research and practice.
Researchers are so far concentrating on the stand-alone 
use of analytical models. They should rather concentrate 
in the future on the collaboration of experts and an
analytical model. Therefore, interesting topics are the 
interpretability of those models and the consequent 
reaction of the expert based on the gained insights.
Documenting this reaction can serve as the basis for a 
continuous improvement of the analytical model.
Also, for construction purposes, collaboration is 
recommended. With the analytical model, the expert can 
check his intuitive predictions and adjust them. 
Especially, in an instable market environment and during 
project realization, analytical models should be weighted 
higher for prediction. Further on, to build up this 
collaborating system, a high focus on data management 
practices should be set. For the regression model as well 
as the classification model, relevant drivers must be 
identified. These drivers should have a central role in the 



database and be documented accurately. Also, the 
scheduler’s programming skills must be increased to 
develop and evaluate analytical models. The management 
must understand the general benefits of supporting the 
schedulers in the use of analytical models, but also know 
about the barriers to not holding schedulers accountable
for prediction errors.

Conclusions
In this paper, we evaluate and compare the prediction 
performance of expert intuition and a CatBoost for the 
project duration in the predesign phase for a targeted use 
of both. CatBoost is trained on an exemplary real-world 
dataset of historical construction projects. We compare 
with two evaluation metrics, the expert’s intuition to the 
trained CatBoost. These are the prediction errors of each 
decision-making process as mean absolute error (MAE) 
and the percentage of cases in which each is preferred. 
The comparatively higher prediction error of the expert 
displays the fallacies of planning. Still, comparing the 
number of cases, one should be preferred; a collaboration 
is recommended rather than a clear stand-alone use. We 
further analyze drivers that are relevant for weighting the 
decision power of both. Here, an instable market 
environment, updating predictions during the project 
realization, and single - or location-specific features 
support predictions by the CatBoost. 
Thus, our work sets the basis for a new research area and 
has implications for schedulers in practice. With these
implications, planning fallacies should be reduced in the 
future to generate high benefits for the AEC industry.
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