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Abstract

Construction projects are often subject to scheduling
errors caused by uncertainty and systematic planning
fallacies. In the research, different statistical and
predictive models were tested to predict the duration of a
construction project. However, the results of these
predictions were not yet been compared with the
estimations derived by a human expert. This paper
evaluates the prediction accuracy of CatBoost and expert
intuition to predict the duration of public construction
projects in the predesign phase. The authors use a dataset
of the city of New York (USA) with 367 projects. Both
expert intuition and CatBoost are compared with the
performance indicators Mean Absolute Error (MAE) and
absolute preference. The results show high outliers in the
expert intuition, while the CatBoost indicates more
consistent predictions. From a practical perspective,
especially in uncertain situations, the CatBoost has
advantages.

Introduction

Time schedules of construction projects are planned
according to the work break-down structure. With this, the
project is hierarchically broken down in its subtasks,
resulting in schedules of different granularities. The first
schedule defining project phases is the basis for the
following schedules and has therefore a significant
importance to the project’s success. In the predesign
phase, not much information about the corresponding
project is available. Consequently, experts often plan the
duration based on their knowledge and experiences in
individual project phases.

During their realization, many real-world projects show
that the milestones of the planned construction phases
cannot be met (Potts 2005; Magnussen and Olsson 2006).
These deviations result in time pressure, increased costs,
quality loss, conflicts, and claims (Braimah and Ndekugri
2008). To reduce the deviations between the planned and
realized durations, analytical models are a highly
investigated topic in research. However, the results of
their prediction were not yet juxtaposed with the
estimations derived by a human expert. This is necessary
to demonstrate the added value of analytical models to
practitioners and to show a targeted use of analytical
models as well as expert intuition. According to
Kahneman and Tversky (1977) experts often tend to
underestimate durations. They merely use an ‘internal
view’ rather than looking back at historic projects
finalized in the past. The target of analytical models’ is to
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predict the durations of project phases objectively based
on historical data to reduce time deviations.

In the first project stage, when not much information is
available, the question arises whether analytical models
yield a higher prediction accuracy than experts’ intuition.
Based on a real-world dataset we compare the prediction
accuracy of both expert intuition and CatBoost. CatBoost
is a tool for gradient boosting on decision trees that can be
used for machine learning and predictive analytics.
Lauble (2022) shows the promising prediction accuracy
of a CatBoost in comparison to other decision trees for
predicting durations in construction projects. The higher
accuracy and better performance are due to the ability to
handle categorical features more efficiently, its
implementation of an ordered boosting technique, and its
effectiveness in dealing with imbalanced datasets. In
general, decision trees use a tree-like model of decisions
and their possible consequences to classify input data into
one or more categories.

In the next step, we identify situations in which experts or
analytical models should be preferred. With these
situational drivers’ managers and their schedulers can
make use of the best decision-making process, expert
intuition, or analytical model in the right situation. To
compare and evaluate both decision-making processes,
the following paper relies on five parts.

First, we summarize related work defining expert intuition
and analytical models. Further on, relevant analytical
models to predict construction project durations during
the predesign phase are identified and categorized.
Second, we develop an approach that compares the
prediction accuracy of expert and analytical models as
well as identifies situational drivers.

Third, we execute this approach on a real-world dataset
and analyze the results with two performance metrics: the
mean absolute error (MAE) and the number of cases in
which one of the two decision-making processes is
preferred. We further train a classification model that
distinguishes the two decision-making processes to
identify situational drivers for both.

Fourth, we summarize the experimental results and derive
implications for practitioners based on these results. Here,
we first show the high number of outliers in the
predictions by the experts. In contrast, when comparing
the number of cases for a preference, we can show a much
smaller gap between both. To better understand the
situations in which expert intuition fails in comparison to
the CatBoost model and in which the Catboost shows its
advantages, we train and evaluate a classification model.



This model presents a preference for a CatBoost in cases
of high project changes and in an unstable environment.
Fifth, we derive a conclusion. The results of the first part
conclude a collaboration of model and expert to reduce
the planning fallacies of the expert. Lastly, we address a
higher weighting of the CatBoost for the mentioned
specific situations.

Related Work

In the following, we elaborate on relevant work regarding
the advantages of expert intuition and analytical models
in general, as well as analytical models for predictions in
the predesign phase.

Expert Intuition and Analytical Models

In general, it can be differentiated into two types of
decision-making processes, intuitive and analytical.
Intuition follows unknown and not controllable thinking
behaviors based on experts’ experiences and knowledge
(Braun and Benz 2015). Analytical models, in contrast,
result from known and rational structures (Kahneman
2003).

With intuition, experts can deal with ambiguity (Scherm
et. al 2016). Multiple authors plead for using intuition,
especially in situations with high uncertainty, to get a
rough understanding of the solution with minimal effort
(Huang 2019, Jakoby 2019).

However, intuitive decisions are subject to the risk of
situational bias. The ‘self-serving bias’ states, that past
achievements are overestimated. According to the
‘confirmation trap’ information that is not consistent with
one's beliefs is excluded from the decision. Lastly,
individuals cannot assess whether their experience is
based on a small sample with unreliable data. They would
rather trust small samples with unanimous data than small
sample sets with non-unanimous data. This results in a
wrong understanding of patterns in data (the
‘overconfidence effect’). (Kahneman 1977)

Therefore, multiple authors choose intuitive decisions
only if there is not enough information available and quick
decisions have to be made (Kahneman 2003, Bonabeau
2003, Davenport 2007, Huang 2019). In situations where
a lot of information is available, individuals often do not
have the capabilities to optimally analyze this
information. However, computational capabilities can
execute this and assist in an objective decision-making
especially in complex situation. This research area is
summarized under data-driven analytics. For data-driven
analytics, good data management structures are necessary.
The better the database is, the better the resulting solutions
are. Davenport and Harris (2007) differentiate between
four sequential levels of data analytical models: statistical
analysis, extrapolations, predictive models, and
optimizations. In all these levels, correlations are made to
gain an objective result and thereby reduce the situational
bias. With its levels, more insights are gained, which
results in a higher competitive advantage for the company
using these analytical methods.
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Analytical Models to Predict Durations in the
Predesign Phase

In Table 1, we summarize the identified analytical
methods to predict durations for the predesign phase with
exemplary references. The references are categorized
according to the levels of Davenport and Harris (2007).
Optimizations are left out in Table 1 (e.g., Zheng (2004)
with a genetic algorithm, Kalhor (2011) with an ant
colony model, Jung (2016) with a tabu search, or Kumar
(2011) with simulated annealing). These models are based
on more detailed information that was not available in the
predesign phase.

Table 1: Analytical methods to predict construction project

durations (Lauble and Haghsheno 2022)

Level Method and Reference
Statistical Relativ Importance Index
analysis (Meng 2012)

Correlations (Walker 1995)
Linear Regressions
(Bromilow 1969)
Fuzzy systems (Wu 1994)
Box Jenkins (Agapiou 1998)
Monte Carlo Simulation
(Moret 2016)
Artificial Neural Networks
(Lam 2016, Bhoka 1999)
Decision Trees (Lauble 2022)
Al ensemble (Erdis 2013)

Zheng (2004) exemplary work concentrates on time-cost
optimizations for the process steps for the structural
works. Following the level of the highest competitive
advantage are predictive models.

The Australian researcher Bromilow developed in 1969
one of the first models to predict the construction
duration. His linear regression equation is:

T=Kx*CE

Extrapolations

Predictive
models

D

T describes the time (in working days), K is a constant
describing the general level of time performance, C are
the costs of the project according to the contract (in a
million USD), and B is a constant reflecting the sensitivity



of time to cost. Linear regression in general is a statistical
modeling technique that aims to find the linear
relationship between a dependent variable and one or
more independent variables. Based on this equation, other
models with limited variables were developed. These
models are therefore easy to simulate and interpret.

In contrast, Artificial Neural Networks (ANNs) show
better results by analyzing even weak correlations in big
datasets compared to linear regressions (Chen and Huang
2006; Dissanayaka et al. 1999; Lam and Olalekan 2016;
Petruseva et al. 2012; Wang et al. 2016). ANNSs are a type
of machine learning model that is inspired by the structure
and function of biological neurons and can be used to
learn complex patterns and relationships in data.
However, the results of ANNs are generally not
comprehensible to the scheduler and his clients, as they
follow a ‘black box’ approach.

Lauble (2022) shows with an experiment on two real-
world datasets that decision trees as part of machine
learning perform better in comparison to linear
regressions and ANNSs. Especially the prediction accuracy
of the CatBoost model can be highlighted. Here, for a
dataset of residential buildings in San Francisco (USA),
the MAE (see formula 2) is for the linear regression 16
days and for the ANN 150 days higher as the MAE of the
CatBoost model. The decision tree not only performs
better, but it also shows advantages regarding
explainability and opening the ‘black box’ to its users. In
general, decision trees can handle missing attributes well
(Sheh 2017), include categories in the prediction, and
show good results even with limited data. Therefore, in
the following, the authors train the model with CatBoost.

Approach

In the following, we outline our approach which consists
of a distinction between expert intuition and a machine
learning model, the CatBoost. Figure 1 displays an
overview of the entire process pipeline to identify cases
and drivers for a preference.

To determine the error by the expert and CatBoost the raw
dataset is filtered. To determine the quality of expert
intuition, the first project version displays the prediction
by the expert as starting point of the planning. We assume
this estimation is done by humans. Then the first project
version is compared with the final project version to
measure the error of prediction by the expert. To train the
CatBoost model, the last version of each project is used.
This data is splitted with a ratio of 80/20. 80 percent of the
data serves to train the model with the target of regression.
The test dataset (20 percent) serves as the basis for
analyzing the prediction accuracy of CatBoost. Further
on, a cross-validation of k=3 was chosen. Cross-
validation is done to assess the generalizability and
robustness of a machine learning model by testing its
performance on multiple independent subsets of the data.
The prediction error of CatBoost is the difference between
the predicted duration of the training model and the
realized duration. Now, the prediction error of the
CatBoost model and expert intuition can be compared.
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Figure 1: Pipeline of the experimental setup

Further on, now situations can be distinguished in which
expert intuition or the CatBoost model is preferred. By
documenting this per prediction, a classification model is
trained to automatically differentiate in both situations.
With this model, a prediction should be made about which
mode (expert or CatBoost) should be chosen to select the
prediction with the smallest error. Based on this model,
drivers are identified that support the classification. These
identified drivers can serve as assessment standards to
consult a CatBoost model and weight predictions of
expert intuition and the CatBoost.

Experimental Setup

In the following, we describe the experimental setup with
the used dataset, evaluation metrics, and details on the
implementation.

Data

Our experiment is based on real-world industry data for
the city of New York, United States of America (USA).
The full data set is available online (City of New York).
The dataset consists of 2,400 public construction projects
with 14 comparable project features, including the start of
design and the realized or expected finalization of the
project. The projects are documented at different time
stamps, starting at the design phase and ending at the
handover to the client. The first project version was
documented in 1993, and the last expected finalization is
in 2032. Therefore, the first and last project versions are
filtered. The first project version reflects the expert’s
intuition, and the last version serves as the basis for the



model’s training. After filtering, the data set consists of Table 3: Integrated external features to describe the economic

367 projectS. The 14 project features are: andpolitical situationfor the dataset (F-] to F-]2fr0m OECD

. d F-13 to F-65 from Global Ec
e Documentation date (date) a ¢ Jrom Global Economy)

e Project category (name, e.g., streets and roadways,

schools, parks) N Feature
® Municipality of construction site (name) F-1 Investment in fixed assets % of gross fixed
e Administrative authority (name) capital formation (GFCF)
e Client agency (name) F-2 Real GDP forecast annual growth rate (%)
® Phase at the beginning (name) F-3 Employment in construction thousand persons
° Curl.‘ent phase (name) F-4 Hours worked hours/worker
e Design start (date) .
e Budget prediction (in USD) F-5 Inflation (CPI) annual growth rate (%)
e Last budget change (in USD) F-6 Prices of houses long-term average = 100
e Total budget changes (in USD) F-7 Built-up area square meters per capita
e Predicted realization (date) F-8 Consumer confidence index (CCT) (0-200)
e Last change of the predicted duration (in days) F-9 Business confidence index (BCI) (0-200)
e Total duration changes (in days) F-10 Population millions
We further present the main properties of the feature “total F-11 Employed population millions of people
duration” in Table 2. F-12 Price level index OECD = 100
Table 2: Description of the predicted duration F-13 Capital investment billion USD
F-14 Exchange rates Units of local currency per USD
Initial Final -F-15 Unemployment rate percent
prediction realization
F-16 Employment rate percent
?;Z?EE 2.291 days 2.723 days F-17 Government spending billion USD
Standard 1.153 days 1.250 days F-18 Investment forecast Ratio of total invest to GDP
deviation of F-19 Competitiveness - WEF Index (1) 1-7
the duration F-20 Competitiveness - WEF index (2) 0-100
Minimum 476 days 656 days F-21 Shadow economy Percent of GDP
0.25-Quantil 1,584 days 1,902 days F-22 Co.n‘trol of c?@Ption -2.5 weak; 2.5 strong
F-23 Political stability index -2.5 weak; 2.5 strong
Median 2.241 days 2.447 days F-24 Short-term political risk 1=low, 7=high
F-25 Medium/long-term political risk 1=low, 7=high
0.75-Quantil 2.558 days 3.172 days F-26 Internet users, percent of population percent
Maximum 8.830 days 10.049 days F-27 Quality of roads 1=low, 7=high
F-28 Innovation index 0-100
By comparing the initial prediction with the realized F-29 Information technology exports, % of exports
duration, planning fallacies can be identified. In all F-30 Bank loans % of GDP
measuring points, the initial prediction is underestimated. F-31 Number of listed companies Number
The.average ipitial duration differs, by 4.3 1. days frorp the F-32 Innovation index 0-100
reghzed duratl.on. Als.o, the standard deviation gets higher £33 Index of property rights 0-100
with the ongoing project status. L
The dataset is further enriched with 65 external data points F-34 Freedom from corruption index 0-100
each. These data points were selected with the goal of F-35 Fiscal freedom index 0-100
describing the economy and politics in New York, USA. F-36 Entrepreneurial freedom index 0-100
Among other things, these include key figures on F-37 Labor freedom index 0-100
inflation, corruption, the innovation index, and the F-38 Monetary freedom index 0-100
nymber of building permits. The full list of features is F-39 Trade freedom index 0-100
displayed in Table 3. F-40 Trade freedom index 0-100
F-41 Financial freedom index 0-100
F-42 Economic freedom, total index 0-100
F-43 Health expenditure per Kop USD per inhabitant
F-44 Death rate per 1000 persons
F-45 Poverty Percent of Population
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F-46 Public expenditure on education percent of GDP
F-47 Globalization index 0-100

F-48 Economic globalization index 0-100

F-49 Political globalization index 0-100

F-50 Social globalization index 0-100

F-51 Percentage of world population

F-52 Percentage of world GDP Percent

F-53 Percentage of world exports Percent

F-54 Percentage of world imports Percent

F-55 Value added by industry billion USD

F-56 Value added by services billion USD

F-57 Quantity index of local suppliers 1=low, 7=high
F-58 Happiness index O=unhappy, 10=happy
F-59 Human development index 0 - 1

F-60 Land area square kilometers

F-61 House price index % change; base year = 100
F-62 Building permits Number

F-63  Real residential property prices, annual % change
F-64 Consumer price index (CPI) percentage change
F-65 Government spending

These features are integrated for the year the design of the
construction project started to include the economic and
political starting situations. It is assumed that this will be
included in a consideration. In total, this results in a total
of 79 features per project.

Evaluation Metrics

We evaluate the experiment with two metrics, the number
of preferred cases for a prediction by expert intuition or
the CatBoost model and the mean absolute error (MAE)
to measure the prediction error.

The MAE serves as a metric to compare the absolute
prediction error. It is more robust to outliers than other
metrics such as Mean Squared Error (MSE) or Root Mean
Squared Error (RSME). This is because MAE measures
the average absolute difference between predicted values
v and actual values y (Hyndmann et al. 2006), rather than
the squared or square root of the difference, which can
give more weight to larger errors.. The MAE measures
absolute quality.

MAE = -3 1y; = 9| 2)
The number of preferred cases shows, in general, which
of the two prediction methods is preferred. It is presented
as a percentage of total projects. This percentage indicates
whether the prediction should be performed with the
CatBoost model or by the expert.

Implementation Details

For programming, we used Google Colab and the
following libraries: TensorFlow (1.14.0), keras-
applications (1.0.6), CatBoost (0.24.3), and shap (0.37.0).
The data set is split into a training and test set with a ratio
of 80/20. The variable k=3 is chosen for cross-validation.
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To optimize the hyperparameters, a grid search is done.
The results show a training with a maximum of 100 trees
and a maximal depth of three.

Experimental Results and Discussion

In this section, we first compare the performance of
predictions for durations in the predesign phase by experts
and a trained CatBoost model. Second, we show relevant
drivers to select the situation with the best outcomes.

Evaluation of Expert Intuition and CatBoost

In the following, we present the results of our model when
comparing the prediction accuracy of expert intuition with
that of CatBoost. For a detailed comparison, we further
divided the dataset for the CatBoost in four subsets. These
subsets contain the features of changes (total budget and
duration change) and the external data describing the
economic and political situation:
e Sub-dataset 1: with information about project
changes and without external data
e Sub-dataset 2: with information about project
changes and with external data
e Sub-dataset 3: without information about project
changes and without external data
e  Sub-dataset 4: without information about project
changes and with external data
By comparing the prediction accuracy with and without
these features, the preference of the CatBoost in the initial
planning as well as using it for updates during the project
execution can be analyzed. Second, the influence of
external data on the prediction accuracy can be identified.
Table 4 demonstrates the results of the prediction error
using the MAE.

Table 4: Prediction Error (MAE) in days of Expert Intuition
and CatBoost for the project duration (1: with information
about project changes and without external data, 2: with
information about project changes and with external data, 3:
without information about changes and without external data,
4: without information about project changes and with external
data; best results in bold for each row)

Expert CatBoost
Intuition
1 2 3 4
Average 528 290 212 486 253
Standard 653 427 278 491 271
deviation
Minimum 0 1 0 2 2
0.25- 0 94 73 171 94
Quantil
Median 365 191 157 357 184
0.75- 833 336 263 595 319
Quantil
Maximum 4.528 3976 3986  3.625  3.182




The results show the high-level planning fallacies of the
expert’s intuition. Each of the four CatBoost models
performs regarding the average prediction error better
than the expert. Here, especially the models containing
external data indicate better results (CatBoost models 2
and 4). The information about changes also seems to
influence the prediction accuracy slightly when
comparing CatBoost models 1 and 2 to 3 and 4. Still, also
the expert intuition shows, with the minimal and its
0.25quantile prediction error, better results in these
categories than the CatBoost model. This high mismatch,
once of very high planning errors and once of very good
prediction, we also demonstrate in Table 5.

Table 5 represents the percent of cases in which the expert
or the CatBoost should be preferred.

Table 5: Preferred Cases in percent of Expert Intuition and
CatBoost for the project duration (1: with information about
project changes and without external data, 2: with information
about project changes and with external data, 3: without
information about changes and without external data, 4:
without information about project changes and with external
data; preference in bold)

1 2 3 4
CatBoost 57,49 59,12 4496 40,05
Expert 42.50 40,87 55,05 59,95
Intuition

Even if Table 3 demonstrates the high planning fallacies
of expert intuition, Table 4 shows the close results when
distinguishing the preferred cases for each decision-
making process. As a maximum, the difference in dataset
4 between the preferred cases of expert intuition and
CatBoost is only 19.90 %. And the number of cases in
which CatBoost is preferred is not that clear. Even though
the results are close together, we can detect a preference
for CatBoost when changes about project information are
available. In contrast, the expert’s intuition is preferred for
the initial prediction when project changes are so far
unknown.

Comparing the results of Table 3 with Table 4, experts
show higher outliers than the CatBoost where the ‘internal
view’ distorts the understanding of the situations. These
situations must be better understood to support in these
the expert by the CatBoost.

Evaluation of relevant drivers

To identify relevant drivers for a preference of expert
intuition or CatBoost, the results are further used for a
classification model. If the prediction error for expert
intuition is lower than the CatBoost a new target column
is inserted with ‘0’ (expert is preferred). Otherwise, if the
prediction error for expert intuition is higher than the
CatBoost, the target column is ‘1’ (CatBoost is preferred).
With this new target column, a SHAP framework is
trained. The SHAP (SHapley Additive exPlanations)
framework is a unified approach to explain the output of
any machine learning model. It uses Shapley values, a
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concept from cooperative game theory, to assign
importance scores to the input features of a model and
explain how they contribute to the final prediction
(Shapely 1953). The framework can be used for both
global and local feature importance analysis, and has been
shown to provide reliable and consistent explanations
across different models and datasets. Therefore, SHAP
support the interpretability of Al models (Lundberg 2018)
and can be used to explain complex black-box models.
We conclude with the SHAP three main insights. First,
CatBoost is preferred to predictions during the project’s
realization. This insight is already displayed with the
datasets 1 and 2. For datasets 3 and 4 in contrast, this trend
can also be confirmed when analyzing the columns ‘phase
at the beginning’ and ‘current phase’. For early
documented projects (phase at the beginning: ‘design’)
and a late current phase (phase ‘construction realization’),
also prefer a CatBoost as this gap also indicates changes.
Second, in an instable market environment, CatBoost is
preferred. This instable environment is displayed in the
datasets with a high unemployment rate, fewer capital
investments, or high fiscal freedom. Kahneman and Klein
(2009) as well as Agor (1986) confirm this fact. They
argue that experts should make predictions in a stable
environment, in which they have a good understanding of
existing dependencies and influencing factors.

Third, we identify single features that are relevant for a
distinction. These should be determined individually for
each dataset. Exemplary, for the project category ‘water
supply’, CatBoost is favored. Further on, the involved
organizations or the area of the construction site can be
relevant features to be analyzed.

Implications for Practitioners

Our work confirms the fact that there are planning
fallacies in construction projects. With situational biases,
experts show on average higher prediction errors than
analytical models. However, comparing the number of the
cases in which analytical models should be preferred is
not statistically significant. Based on these results, we
conclude with suggestions for research and practice.
Researchers are so far concentrating on the stand-alone
use of analytical models. They should rather concentrate
in the future on the collaboration of experts and an
analytical model. Therefore, interesting topics are the
interpretability of those models and the consequent
reaction of the expert based on the gained insights.
Documenting this reaction can serve as the basis for a
continuous improvement of the analytical model.

Also, for construction purposes, collaboration is
recommended. With the analytical model, the expert can
check his intuitive predictions and adjust them.
Especially, in an instable market environment and during
project realization, analytical models should be weighted
higher for prediction. Further on, to build up this
collaborating system, a high focus on data management
practices should be set. For the regression model as well
as the classification model, relevant drivers must be
identified. These drivers should have a central role in the



database and be documented accurately. Also, the
scheduler’s programming skills must be increased to
develop and evaluate analytical models. The management
must understand the general benefits of supporting the
schedulers in the use of analytical models, but also know
about the barriers to not holding schedulers accountable
for prediction errors.

Conclusions

In this paper, we evaluate and compare the prediction
performance of expert intuition and a CatBoost for the
project duration in the predesign phase for a targeted use
of both. CatBoost is trained on an exemplary real-world
dataset of historical construction projects. We compare
with two evaluation metrics, the expert’s intuition to the
trained CatBoost. These are the prediction errors of each
decision-making process as mean absolute error (MAE)
and the percentage of cases in which each is preferred.
The comparatively higher prediction error of the expert
displays the fallacies of planning. Still, comparing the
number of cases, one should be preferred; a collaboration
is recommended rather than a clear stand-alone use. We
further analyze drivers that are relevant for weighting the
decision power of both. Here, an instable market
environment, updating predictions during the project
realization, and single - or location-specific features
support predictions by the CatBoost.

Thus, our work sets the basis for a new research area and
has implications for schedulers in practice. With these
implications, planning fallacies should be reduced in the
future to generate high benefits for the AEC industry.
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