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Abstract

Lighting is responsible for 17% of the total electricity
consumption in commercial buildings in the United
States. Investigating the lighting energy load provides the
potential for more energy-saving in commercial
buildings. Nonetheless, the development of lighting load
prediction models has received limited attention in extant
literature. This study proposes a framework to predict the
lighting schedule and load in office buildings by
integrating an agent-based model into an artificial neural
network model. A small office building is used as a case
study to simulate lighting load based on occupancy
information using an agent-based model. Then, an
artificial neural network model is developed to predict the
simulated lighting energy load. The results illustrated that
the accuracy of the prediction model could be as high as
92.8%. The developed model can be used by facility
managers and engineers to accurately predict the lighting
energy load in office environments.

Introduction

Buildings account for 72% of the energy used in the
United States, where more than 80% of a building’s life-
cycle energy consumes during the occupation phase
(Menassa, 2011). According to the U.S. Environmental
Protection Agency (EPA), commercial buildings
consume half of the total energy (Green, 2012).
Specifically, lighting contributes to 17% of electricity use
in commercial buildings, while in office buildings, it is as
significant as 20% to 45% of total electricity consumption
(EIA, 2017). Lighting is a crucial determinant of indoor
environmental quality in buildings, as it significantly
influences occupant satisfaction levels (Vosoughkhosravi
et al., 2022). Predicting the lighting energy load in office
buildings is necessary for improving energy efficiency
and increasing energy saving (de Bakker et al., 2017).

It has also been stated that using occupancy sensors can
reduce the lighting energy load by 20% to 60% in office
buildings (Chung and Burnett, 2001). Although various
studies investigated the lighting energy load and the
feasibility of implementing occupancy sensors in specific
buildings, a neglectable discrepancy between the actual
and predicted lighting energy consumption has been
observed due to underestimating the impact of occupant
behavior (Hong et al., 2016). Various methods and
approaches have been used to simulate occupant behavior
and its impact on building energy performance (Ardabili
et al, 2022). The agent-based modeling (ABM)
simulation has gained more attention due to its capability
to simulate the occupants’ stochastic behavior (Kwok and
Lee, 2011; Dong et al., 2021). For instance, Liao et al.

738

(2012) developed an ABM simulation model of
occupancy dynamics with an unspecified number of
occupants. Although their simulation model was effective
in predicting occupancy schedules, it was only applicable
to single-occupant office layouts. In another study, Azar
and Menassa (2012) created an ABM model to predict the
occupants’ interaction with various energy use
preferences. Also, Yang and Wang (2013) proposed a
multi-agent-based model to optimize the building energy
and provide thermal comfort for occupants in the
building. In a recent study, Dziedzic et al. (2020)
proposed a high-resolution, data-driven movement engine
for occupants based on ABM that can simulate occupants’
behavior and their different actions. In another study,
Ding et al. (2019) investigated the energy behavior of
occupants in shared university resident buildings. Since
student—student and student-building system interactions
are complicated, this study developed an agent-based
simulation model regarding students as heterogeneous
individuals focusing on simulation parameters such as
students’ basic information, the presence status in dorms,
and appliance-using behaviors. This study concluded that
occupancy is the most significant factor for dorms’ energy
consumption, and reducing the time of air conditioner use
has the most significant impact on energy-saving.

Furthermore, Malik et al. (2022) conducted research to
formalize the level of detail (LoD) required for occupant
behavior representation in agent-based environments.
This framework aimed to select the needed details in
describing occupants in agent-based models and consider
different occupants’ characteristics in LoD to improve
ABM simulation. Also, more information about agent-
based modeling and simulation can be found in a study
conducted by Stieler et al. (2022). They provided a
systematic literature review, which indicates a
classification for agent-based modeling and simulation
(ABMS) in architecture using the individual entities being
modeled as agents. In this regard, in each of the agent-
based models uncovered in the selected literature, the
representation of the entity of an agent in the model was
proposed. Thus, a comprehensive classification for ABMs
in architecture was provided in this research.

Besides, with the advancement of computational tools,
Artificial Neural Network (ANN) models are getting have
gained attention in predicting occupancy schedules and
energy consumption based on historical data. For
example, in a study by Deng and Chen (2019), occupant
behavior was simulated by integrating an ANN model
with building energy simulation tools to predict the
HVAC energy consumption in an office building. In
another study, Lee et al. (2019) investigated occupancy



schedules to predict the energy consumption of single-
person households in South Korea. They considered
occupants’ characteristics, such as age, gender,
occupation, income, educational level, and occupancy
period, to model energy consumption based on the ANN
method. Their results represented a correlation between
user characteristics and energy usage. Also, Amasyali and
El-Gohary (2021) developed a predictive energy
consumption model based on various machine learning
algorithms. They concluded that ANN has a high
performance in predicting the energy load. In addition,
Chen et al. (2021) conducted a study to predict office
building electricity demand using ANN. This study
introduced an approach using ANN and fuzzy logic
techniques to fit the building baseload, peak load, and
occupancy rate with multi-variables of weather variables.
They also verified their model with a case study of the
University of Glasgow. Their results highlighted that the
ANN with fuzzy model reduces the average RMSE by
42%, compared with the traditional power demand
prediction models.

Predicting the occupancy schedule and its impact on
building energy consumption is challenging. In this
regard, the building energy consumption and energy
saving potentials can vary case by case due to a high level
of uncertainty (Abraham, Anumba, and Asadi, 2018).
Therefore, case studies can play an essential role in
simulating occupancy behavior and its impact on building
energy consumption. However, it is difficult to generalize
and apply the design principles from one case study to
another. In addition, regarding predictive models, data-
driven approaches such as ANN usually require a large set
of input data that is usually unavailable during the design
phase. Finally, developing lighting load prediction
models, particularly in office spaces, has received limited
attention in extant literature. Consequently, there is a
pressing need for a precise lighting load model to
effectively analyze energy consumption attributable to
lighting.

To address these gaps, this study aims to predict lighting
energy load in office buildings, considering occupant
behavior, by integrating ABM and ANN models. First, an
agent-based model is developed to simulate the
occupancy schedule regarding lighting energy load based
on three main occupant behavior of presence, movement,
and interaction with the lighting system (i.e., turning
lights on or off) in two scenarios: with or without having
occupancy sensors. Then, an ANN model is trained based
on the time series of the simulated occupancy schedules
to predict lighting energy load in different scenarios based
on three main inputs: time of the day, day of the week,
and room number. A small office layout is used as a case
study to evaluate the accuracy of the proposed model in
different scenarios. This study contributes to the body of
knowledge by providing researchers and professionals
with a modeling and simulation tool to better understand
occupancy schedules, lighting energy load, and
occupancy sensors in office buildings. Practitioners can
use the results of this study to integrate occupancy
schedules into building energy simulation to accurately
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model building energy performance and potential energy
savings.

Methodology

This study proposes a framework to simulate occupancy
schedules and use it in predicting lighting energy load by
integrating ABM and ANN models. To investigate the
applicability of the proposed model, an example case
study of a small rectangular shape office building is used.
The office contains five single-occupancy offices, two
bathrooms, one meeting room, and one lounge area, as
well as a hallway. The schematic view of this office is
shown in Figure 1.
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Figure 1: Office building layout for the case study

Several simplifying assumptions were considered for the
example case. For example, all the rooms are the same
size (except the meeting room, which is two times bigger)
and have the same type of lighting fixture. In addition,
natural lighting is not considered in this case study (i.e.,
rooms have no windows or blinds). Finally, only one type
of occupancy pattern was considered in this study.

The lighting energy load predictive framework is
demonstrated in Figure 2. In the first step, an ABM
simulation model is developed based on occupant
behavior parameters (i.e., number of occupants,
occupants’ presence, and occupants’ movement) and
building parameters (i.e., occupancy sensor status,
lighting status, and building layout).

The ABM is designed to simulate occupant behavior by
utilizing a range of predefined parameters. These
parameters encompass the number of occupants for each
type of occupancy, a probabilistic model for estimating
the arrival and departure times of occupants within each
occupancy category, a probabilistic model for
determining the spatial positioning of occupants
throughout the building for each occupancy type, and the
interaction between occupants and the building itself,
such as the likelihood of neglecting to turn off lights upon
exiting a room. By incorporating this model with the
building’s layout and lighting characteristics, the result is
a more accurate prediction of lighting energy
consumption within the building, taking into account the
influence of occupant behavior. The model can simulate
the dynamic occupancy schedule in different scenarios:
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Figure 2: The proposed lighting energy load predictive framework

e Scenario 1: three occupants were considered to use

the office building without any occupancy sensor;

Scenario 2: three occupants were considered to use

the office building with occupancy sensors installed;

e Scenario 3: five occupants were considered to use the
office building without any occupancy sensor; and

e Scenario 4: five occupants were considered to use the
office building with occupancy sensors installed.

The study employs four distinct scenarios to examine the
effects of two critical variables on the ultimate models: 1)
the number of occupants and 2) the implementation of
occupancy sensors. It should be mentioned that in
scenarios without any occupancy sensor, occupants might
forget to turn off the lights with a predefined probability
when they leave a room. Therefore, the lights might stay
on until another occupant enters the room and turn them
off when leaving. In scenarios with occupancy sensors
installed, the lights will be turned off automatically when
the room is unoccupied after a predefined time period. In
both scenarios, occupants turn the lights on when entering
a room.

In the second step, an ANN model is trained based on the
simulated dynamic lighting schedule (as the developed
ABM simulation output) to predict the building lighting
energy load based on a time series function. In this regard,
the cumulative total number of lighting features that
remain on at each time step is computed for an entire day
in order to determine the daily lighting energy load. The
daily lighting energy consumption is then determined
depending on the type of bulb utilized in each lighting
fixture. The model is applied to the lighting status to find
the lighting energy load in the example office building.

The two elements of the proposed lighting energy load
predictive framework are as follows:

ABM simulation model

An ABM simulation model was developed to simulate the
lighting energy use in the example office building
considering different occupant behavior parameters. In
this study, three key parameters of occupant presence,
movement, and interaction with the lighting system were
used to simulate the lighting schedule in the office
building (Chen, Hong, and Luo, 2018; Micolier et al.,
2019; Norouziasl, Jafari and Wang, 2020; Khodabandelu
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and Park, 2021). The ABM model was simulated in
NetLogo, an open-source software that visually simulated
the agents and the environment (in which the agents were
used to simulate the occupants while the environment was
used to simulate the building). Various probabilistic and
stochastic models were integrated into the ABM model to
simulate these occupant behavior parameters based on
predefined rules. For instance, the Markov Chain
modeling technique was used to simulate the occupants’
movement behavior. In the Markov Chain model, the
probability of occurring an event is only dependent on the
previous event (Wang, Yan, and Jiang, 2011), making it
suitable for modeling the movement of occupants
between different rooms. In addition, Gaussian
distribution (Gilani et al., 2016) functions were developed
to model the occupants’ arrival and departure events,
meeting events, and lunch breaks. Besides, probabilistic
models were used to simulate the occupants’ interaction
with the lighting system, such as turning the lights on/off
and the forgetting probability of turning off the lights
while leaving the room (Norouziasl, Jafari, and Wang,
2019).

ANN predictive model

Neural networks have been applied to many interesting
problems in various areas of science, medicine,
mathematics, and engineering, and in some cases, they
provide state-of-the-art solutions (Krogh, 2008). In the
current domain, an ANN Predictive Model can be used to
determine the evolution of occupant interactions over
time regarding the building systems (Jain, Mao, and
Mohiuddin, 1996). In this study, the ANN was utilized to
model the lighting schedule of an office building. In this
regard, the simulated lighting schedule resulting from the
ABM model was used to train the ANN model. The output
of the ABM model represents the lighting status in each
room based on the day of the week and the time of day.
As was mentioned, the lighting status is marked by binary
numbers; if the light is off, the lighting status is 0, while
it is 1 when the light is on. The lighting configuration in
the proposed office layout is contingent upon both the
temporal aspects and the spatial positioning of the lighting
fixtures. This implies that the illumination of the space is
influenced by factors such as the time of day and the
precise location of each lighting instrument, thereby



affecting the overall lighting conditions and energy
consumption within the office environment. Therefore,
the ANN model was fed by three inputs: time of the day,
day of the week, and the location of the room, in three
layers: input layer, hidden layer, and output layer. For
each scenario, the ANN model was trained by 80% of the
data to predict lighting schedules to analyze the lighting
status of different rooms in the office building and model
a prediction for dynamic lighting schedules.
Subsequently, the models were tested by 20% of the data.
To indicate the performance of each model, different
performance indexes, such as accuracy score, F1 score,
and confusion matrixes, were provided. The models can
predict the lighting status of each room based on binary
numbers using the room ID and date and time
information.

Model Inputs

The ABM model was developed based on two inputs:
building features to simulate the example case study and
occupant behavior parameters to model occupancy
schedules. For the building features, the inputs were:

e Building area: The total area of the building was 1350
ft? (125.4 m?), with 500 ft> (46.5 m?) for the office
and 500 ft*> (46.5 m?) for the bathrooms, meeting
room, and break room

o Lighting fixtures: The required illuminance for office
areas is 300—lumens per square meter. Considering
that each 100-Watt incandescent lamp produces 1500
lumens, three lamps would be needed to provide the
required illuminance of 2700—4600 lumens.
Therefore, it was assumed that each lighting fixture
had three 100-Watt incandescent bulbs.

e Occupancy sensor: Lighting occupancy sensors
switch the lights off automatically once the occupant
leaves a specific zone after a short delay. This study
assumed a 60-second delay for each lighting
occupancy sensor.

For the occupant behavior parameters, the inputs were:

e Arrival and departure time: An 8-hour working day
was assumed, in which the occupants arrive at 8:00
a.m. and depart the building at 5:00 p.m. (one-hour
lunch break) with 30 minutes variation using a
Gaussian distribution.

e Meeting events: The probability of meeting

occurrence was assumed to be 20% each day, with a

start between 9:00 and 11:00 a.m. and with a duration

of 30—60 min that follows a uniform distribution.

Lunch break: The lunch break’s start time was

assumed to be 1:00 p.m. on average, with a standard

deviation of 15 min, using a uniform distribution.

e Occupants’ staying time: We assumed occupants
would spend 65% of their time in their office, 8% in
the bathroom, 5% in the other offices, 10% in the
lounge, 7% in the meeting room, and 5% in the hall.

e Occupants’ movement: The transition probability
matrix that is assumed in this study based on the
Markov Chain model is illustrated in Table 1. Since
the occupants are not allowed to immediately re-enter
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the room they were previously occupying, the
probability of moving from each room to the same
room is equal to zero (diagonal of the matrix).

e Lighting switch forgetting probability: The
probability of forgetting to switch off the lights when
leaving the room was assumed to be 11%, according
to a short survey performed by the authors.

Table 1: Transition probability matrix for the case study

Own  Other  Break Bathroom Meeting
office offices room room
Own office 0% 35% 15% 50% 0%
Other 250, 0% 10%  15% 0%
offices
Break room  75% 15% 0% 10% 0%
Bathroom  75% 10% 15% 0% 0%
Nﬁf;‘g 70%  10%  10%  10% 0%

The number of occupants and the application of
occupancy sensors were changed based on the designed
scenarios. After defining the input parameters, the
simulation model was run to simulate the lighting
schedules for each scenario. The simulation model was
run for 20 business days from May 2, 2022, to May 27,
2022 (weekends were excluded from the simulation
period). The size of the simulation time step was assumed
to be one minute. For each scenario, the occupancy
schedule and lighting status were extracted for each room
based on the simulated time and date. Finally, the ANN
model was trained to predict dynamic lighting schedules
based on the simulation results. The ANN model
contained three layers: the input layer, the hidden layer,
and an output layer, connected through nodes. The model
assumed a time series function for each room as input,
while the output was the predicted lighting status.

Results and discussion

The ABM simulation results contain the lighting status of
nine different rooms in 20 business days. The lighting
energy load of the building was calculated by summing
up the lighting energy load of each room. Finally, the
ANN model is trained to predict the lighting energy load
of the building for each of the four scenarios. Table 2
shows the results of these models.

Table 2: Dynamic Lighting Schedule Models

Scenario  Accuracy Fl Confusion Matrix
Score 0 1

1 84.4%  722% 353’7127512 126,950?3 (1)

2 92.8%  81.0% 410:7‘1224 3095 (1)
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As it is shown in Table 1, the trained model has an
accuracy of higher than 82% (F1 score of higher than
72%) in all four scenarios. In addition, the second
scenario (i.e., three occupants with occupancy sensors
installed) has the highest accuracy (92.8%), while the
third scenario (i.e., five occupants without any occupancy
sensor) has the lowest accuracy (82.0%). As is shown, the
developed model has a higher prediction accuracy in
scenarios with occupancy sensors installed compared to
scenarios without occupancy sensors. It is due to the fact
that the use of occupancy sensors can automate the
process of switching lights on/off, resulting in more
predictable patterns by eliminating stochastic human
behavior. According to Table 2, although the models with
occupancy sensors installed show more accurate
prediction results, the other models without any
occupancy sensor also indicate acceptable performance,
highlighting their high applicability in office buildings to
predict lighting load energy.

Figure 3 illustrates the lighting status of two selected
rooms (Lounge and office number 4) during the first three
days of the simulation (from 5/2/2022 to 5/4/2022). Also,
Figure 4 shows the lighting status of two selected rooms
(Bathroom number 2 and office number 1) during the first
three days of the simulation (from 5/2/2022 to 5/4/2022)
in order to better visualize the results of the predictive
model. The simulated values are shown in blue, while the
predicted values are highlighted in red. According to the
results, it can be realized that shared rooms, such as the
lounge and bathroom, had lighting switches on during
short time intervals (such as lunchtime), while office
rooms had this status for long periods of time. It confirms
the similarity between ABM simulation and the real
behavior of occupants. In addition, the results indicate that
ANN models have better performance in modeling the
lighting status of occupied rooms, such as office buildings
and meeting rooms.
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Figure 4: Dynamic Lighting Schedule of Bathroom 2 and
Office 1 during the first 3 days

As mentioned, the required energy for each lighting
fixture was estimated to be 300 Watts to provide enough
illumination in each room. The ABM simulation results
of the dynamic lighting schedule were used to calculate
the simulated and predicted lighting energy load based on
kilo Watt hour (kWh). Figure 5 shows the total lighting
energy load of each room during the 20 working days.
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Figure 5: Total lighting energy load of different rooms

According to the results, the predicted lighting energy
load pattern in each scenario follows the simulated
lighting energy load pattern, which confirms the accuracy
of dynamic lighting schedule models. Moreover, the
meeting room has the highest lighting energy load in each
scenario. It can be because of the number of lighting



fixtures in the meeting room due to its size (which is twice
of other rooms). Also, bathrooms have the lowest lighting
energy load in each scenario. It could be because
bathrooms were not used as frequently as in other rooms
by occupants. Also, a lower lighting energy load was
observed in all rooms in the scenarios with occupancy
sensors installed (scenarios 2 and 4) compared to
scenarios without any occupancy sensor (scenarios 1 and
3).

Figure 6 shows the total lighting energy load of each
scenario. The results show that in scenarios with
occupancy sensors installed, the lighting energy
consumption was around 75% lower compared to
scenarios without any occupancy sensor. It highlights the
crucial role of occupancy sensors in minimizing lighting
energy consumption in office buildings. In addition, as
expected, by increasing the number of occupants from 3
to 5, the lighting energy consumption has increased by
15%.
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Figure 6: The total lighting energy load

Based on the results, the second scenario has the lowest
amount of predicted lighting energy consumption during
20 working days (479.1 kW), while the fourth scenario
has the highest amount of predicted lighting energy
consumption (518.2 kW). Also, the lowest difference
between the simulated lighting energy load and predicted
lighting energy load is related to the second scenario (28.9
kW). The proposed lighting energy prediction framework
has shown higher accuracy when the number of occupants
is lower, and occupancy sensors are installed.

Conclusion

Accurately predicting lighting energy load can help
control energy consumption and save energy in office
buildings. This study introduced a framework to predict
dynamic lighting schedules and lighting energy load in
office buildings by integrating ABM and ANN models.
The framework used an ABM model to simulate dynamic
lighting schedules, and an ANN model to predict lighting
energy load based on a time series function. A small office
building was used as a case study to evaluate the accuracy
of the proposed framework. The results showed an
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accuracy of 82.0% to 92.8% for predicting lighting energy
load in different scenarios. In addition, it highlighted the
essential role of occupancy sensors in reducing lighting
energy consumption.

The proposed prediction framework can be used by
practitioners to predict dynamic lighting schedules and
lighting energy load in office buildings to on occupant
behavior parameters, the building features data, and time
and date. Such a framework can help reduce lighting
energy consumption and save energy in office buildings
by predicting the impact of installing occupancy sensors
in reducing energy consumption.

Limitations and Future Works

A primary limitation of the present study is the relatively
brief simulation time frame, which spans only 20 business
days. Expanding the simulation’s duration could yield
more accurate results, particularly in the context of
lighting, where seasonal variations and natural light play
significant roles. Consequently, future research may
benefit from extending the simulation period to
encompass multiple seasons, thereby enhancing the
overall modeling.

Another objective for subsequent research endeavors
involves the development of a lighting load prediction
model grounded in real-world data from Louisiana State
University. To generate a more accurate representation of
real-world lighting load modeling, the intention is to
collect and incorporate lighting energy consumption data
from a shared office. This data will then be utilized as
input for the lighting load model, fostering a more realistic
portrayal of the environmental factors at play.
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