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Abstract

Data-driven building energy performance assessment
techniques have proven to be a viable solution at the urban
scale and are driven by the availability of consistent, reli-
able, and heterogeneous building-related data. However,
the data-driven performance assessments so far have often
been limited in terms of scope, scale and lacked key pa-
rameters for predicting the potential building energy per-
formance. This paper proposes a workflow to integrate
building archetypes’ simulations, parametric analysis, and
ensemble-based machine learning techniques to accurately
predict individual building energy performance at an ur-
ban level. The result presented focuses on Irish residential
buildings by generating a synthetic dataset using paramet-
ric analysis of crucial features of semi-detached building
archetypes. The results show that the ensemble method
gives higher-quality prediction when compared to tradi-
tional machine learning algorithms. The proposed study
aims to assist stakeholders, including energy policymak-
ers and urban planners, in making informed decisions for
the development of long-term renovation strategies.

Introduction

The operation of buildings accounted for 40% of global en-
ergy consumption and 27% of greenhouse gas emissions
(GHG)(EU-Energy, 2022) in 2022. According to the In-
ternational Energy Agency, these consumption statistics
correspond to 8% GHG emissions and 19% indirect GHG
emissions from the production of electricity and heat used
in buildings. The EU member states have established a leg-
islative framework to boost sustainable strategic planning
and improve the energy performance of buildings. The
framework includes the Energy Performance of Buildings
Directive (EPBD) 2010/31/EU and the Energy Efficiency
Directive 2012/27/EU. The members of this directive pro-
mote policies directed towards implementing measures to
achieve a highly energy-efficient and decarbonized build-
ing stock by 2050 (Benjamin, 2022).

Long-term renovation strategies are required to achieve a
higher level of sustainability and decarbonize the building
stock. However, prior knowledge about the energy per-
formance of existing buildings is often needed to imple-
ment major renovations on a large scale. As a result, urban
planners and energy policymakers face a significant hur-
dle when analyzing such renovations. At the same time,
estimating building energy performance remains challeng-
ing due to multiple variable factors that impact energy use,
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such as building envelope, occupants’ behavior, building
geometry, heating and cooling systems, and weather con-
ditions.

Generally, building energy performance can be estimated
using physical or data-driven models (Ali et al., 2021).
Physical models are based on detailed building physics and
are analyzed using simulation tools, for instance, Energy-
Plus, ESP-r, and TRNSYS (Reinhart and Davila, 2016).
These simulation tools require detailed building character-
istics, geometric and non-geometric information about any
building (Hong et al., 2020). Similarly, a massive amount
of data is needed for each building energy modeling to sim-
ulate an entire urban area. On the other hand, a data-driven
approach predicts energy usage based on historical infor-
mation using statistical or machine learning algorithms
(Ahmad et al., 2018). This approach does not require de-
tailed knowledge about the building compared to the phys-
ical modeling approach. As the data-driven method is used
to predict and estimate building energy consumption with
limited available building information, these approaches
have earned a lot of attention in the building energy sector
during the past few years (Amasyali and El-Gohary, 2018).
In recent data-driven building energy studies, machine
learning algorithms have been widely used compared
to traditional statistical techniques. Generally, machine
learning algorithms are further divided into two main cat-
egories: classification algorithms and regression (Sina
et al., 2022). A classification algorithm predicts discrete
class labels, such as energy rating or building type. Clas-
sification algorithms include the nearest neighbor, naive
Bayes, rule induction, deep learning, Support Vector Ma-
chines (SVM), and neural networks (Ali et al., 2021). On
the other hand, regression algorithms predict a contin-
uous quantity, such as energy consumption. The most
common regression algorithms include generalized lin-
ear models, deep learning, decision tree, random for-
est, gradient-boosted trees, and support vector machines
(Robinson et al., 2017; Abbasabadi et al., 2019; Ali et al.,
2021).

Recent studies have extensively used machine learning-
based modeling to predict building energy. For instance,
Rahman et al. (2018) used deep recurrent neural networks
models to predict medium to long-term electricity con-
sumption for commercial and residential buildings. Robin-
son et al. (2017) proposed a machine learning methodol-
ogy to determine commercial building energy consump-
tion using national data from the Commercial Buildings



Energy Consumption Survey (CBECS). Ngo et al. (2022)
used ensemble ML models to forecasting the 24-hour en-
ergy consumption of buildings. Abbasabadi et al. (2019)
proposed a framework that uses a recursive partitioning
(Classification and Regression Tree (CART)) and stochas-
tic frontier analysis model urban building and transporta-
tion energy. Wurm et al. (2021) proposed a workflow for
building stock heat demand modeling at an urban scale us-
ing deep learning-based algorithms. Finally, Kontokosta
and Tull (2017) proposed statistical models to calculate the
electricity and natural gas energy use of 1.1 million build-
ings in New York City.

This study employs ensemble machine-learning tech-
niques to accurately predict building energy performance
at an urban scale, as opposed to the traditional approach
of utilizing a single model. Ensemble techniques are of-
ten used in machine learning to improve the model’s ac-
curacy by reducing overfitting and increasing the model’s
generalizability. In addition, ensemble learning provides
more stable and accurate predictions than the traditional
single model-based method by benefiting model comple-
mentarity. For instance, Wang et al. (2018) used the en-
semble learning approach to support building energy use
prediction using meteorological, occupancy, and temporal
data. Ngo etal. (2022) proposed a machine learning model
for an ensemble approach to forecasting energy consump-
tion in non-residential buildings. Mohammed et al. (2021)
proposed a new machine-learning technique to evaluate
heating load and cooling load using eight input parame-
ters (surface area, relative compactness, wall area, over-
all height, roof area, orientation, glazing area distribution,
and glazing area) of the residential buildings.

However, existing studies using the data-driven approach
focus on a single building energy use prediction (Chen
et al., 2022). One of the main reasons is the lack of high-
quality and reliable data at a large scale. Furthermore,
existing studies used only a few parameters for forecast-
ing the potential building energy consumption (Olu-Ajayi
et al., 2022). Only a few studies investigate parameters
such as U-values, type of HVAC systems, presence of re-
newable energy systems, etc., to estimate building energy
performance using a machine learning algorithm (Olu-

Ajayi et al., 2022; Ngo et al., 2022; Wurm et al., 2021).
This paper introduces a methodology to predict building
energy performance at an urban scale using ensemble ma-
chine learning techniques. The aim of this paper is to use
machine learning approaches and parametric simulations
to predict building energy performance at an urban scale.
This research introduces novelty through model formu-
lations that use key-building features and improve model
prediction accuracy using an ensemble learning technique.
The paper is organized as follows: Section 2 provides a
detailed discussion of the devised methodology for resi-
dential building energy performance prediction. Section 3
discusses the Irish building stock case study and compares
different machine learning algorithms in terms of predic-
tion performance. Finally, conclusions are discussed in
Section 4.

Methodology

Predicting building energy performance at a large, urban
scale poses a significant challenge for urban planners and
policymakers. Accurately energy consumption prediction
and identifying opportunities for energy efficiency are cru-
cial for the sustainable development of cities.

Therefore this study proposes a methodology that uses ma-
chine learning algorithms to predict building energy con-
sumption (Figure 1). The overall idea of this research is
to find the optimal ensemble learning model by testing
and comparing all possible combinations of base machine
learning models. The methodology starts with data col-
lection and archetype development, followed by paramet-
ric feature selection, parametric simulation, and terminates
with ensemble machine learning modeling.

Data Collection

The data collection process involves collecting several
data inputs, including weather, building geometry, and
non-geometry building data (Reinhart and Davila, 2016).
These are listed as follows:

Weather Data

Building thermal energy simulations require historical
hourly weather datasets (Ali et al., 2019). The most com-
mon hourly weather datasets, known as Typical Meteoro-
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Figure 1: Methodology for building energy use prediction at an urban scale using an ensemble machine learning technique
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logical Year data (TMY), have been available for several
years (Wang et al., 2021). Similarly, weather data in Ener-
gyPlus Weather format (EPW) files are available online for
more than 2100 locations from 20 sources under funding
from the US Department of Energy.

Building Geometry Data

The geometry input data required for modeling comprises
building envelopes, shapes, number of stories, build type,
geometry, geospatial position, and walls or window open-
ing ratios (Johari et al., 2020). Generally, geometric build-
ing data is gathered from the national building stock, en-
ergy performance certificates, and geographic information
systems (GIS) city model databases, for instance, TAB-
ULA, EPISCOPE, and building typology (Loga et al.,
2016a).

Non-Geometric Building Data

The non-geometric building properties are also required
for modeling, including user occupancy, usage patterns,
equipment loads, and HVAC systems. However, one of the
significant challenges is the availability of non-geometric
building information for modeling at such a large scale.
Typically, non-geometric building data is gathered through
the building archetypes approach using existing available
national census databases, statistical surveys, and energy
performance certificate data.

Archetypes Development

Several buildings often possess similar characteristics in a
large building stock and can be represented by building
archetypes. The parametric simulation framework uses
each building archetype as a base model. In addition, the
building’s geometric and non-geometric data is required
to simulate any building archetype. These data can be ex-
tracted from existing building national stock databases, for
instance, TABULA (Loga et al., 2016b).

Parametric Feature Selection

The selection of parameters is essential in performing
parametric simulation-based modeling to generate a syn-
thetic dataset. Each selected parameter in this step affects

the overall accuracy of the building energy model. The pa-
rameter values include all the variations required for syn-
thetic data generation. The selection of key parameters
and their variations can be easily found in existing litera-
ture surveys of specific climate environments (Egan et al.,
2018; Ali et al., 2020). The most common construction
parameters include wall, window, floor, and roof charac-
teristics. In addition, internal gains, occupancy density,
and heating or cooling systems are also crucial parameters
used in the parametric simulation process.

Parametric Simulation

Parametric simulation offers the optimal solution, espe-
cially when a sparse data set is available for energy mod-
eling. In order to perform complex parametric simula-
tions on multiple parameters, a parametric tool runs nu-
merous simulations using a simulation model (Zhang and
Korolija, 2010). This paper uses JEPlus as a paramet-
ric tool for energy simulations. Furthermore, JEplus uses
EnergyPlus for simulation and design-builder templates
to integrate different parameter values. However, due to
the complexity introduced by many parameters, generating
the simulated data for all parameters is almost impossible.
Therefore, synthetic data is generated by sampling meth-
ods such as Simple Random Sampling (SRS) and Latin
Hypercube Sampling (LHS). These methods help gener-
ate desired sample data containing a combination of all
parameters.

Ensemble Machine Learning Modeling

In the ensemble machine learning modeling process, the
first step involves pre-processing the synthetic building
stock data generated in the parametric simulation step to
prepare the input of the machine learning algorithms. Be-
fore implementing machine learning algorithms, the data
is split into two subsets to avoid overfitting; a training
dataset (the portion of data used to train the model) and
a test dataset ( the subset of data that is tested in the final
trained model ). Furthermore, data splitting helps evaluate
a machine learning model and test its performance. Gener-
ally, data splitting uses one of two methods: random data
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Figure 2: Methodology for ensemble machine learning modeling to predict Energy Use Intensity (EUI)
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splitting and cross-validation.

In random data splitting, data is randomly split so data
sets can have high training data. Generally, data is split
at an 80-20% split ratio of training vs. testing data. How-
ever, the random data splitting approach may have issues
concerning the uneven distribution of data. On the other
hand, cross-validation is the most common method to gain
a balance between minimal bias and variance in the train-
ing model. In cross-validation, the input data is first split
into k subsets of data and then trained a model on all but
one (k-1) of the subsets. This paper uses the k-fold cross-
validation algorithm for data splitting to avoid underfitting
or overfitting the model.

The workflow then formulates regression machine learn-
ing models to predict the building energy performance in
terms of Energy Use Intensity (EUI). Instead of the tradi-
tional single-machine learning approach, this paper further
implements ensemble methods to test multiple learning al-
gorithms and obtain better predictive performance (Figure
2). There are two major ensemble learning techniques that
differ mainly by the kind of models, data sampling, and de-
cision function. Therefore, ensemble learning techniques
can be classified as stacking and voting techniques. The
stacking method, also known as Stacking Generalization
and was introduced by Wolpert (1992). The goal is to re-
duce the generalization error of different machine learning
models. The final Meta-Model comprises the predictions
of a set of “n” number of machine learning-based models
through the k-fold cross-validation technique. On the other
hand, the voting ensemble method is one of the most intu-
itive and easy to understand. The voting ensemble method
comprises a number “n” of machine learning models, and
the final prediction is the one with “the most votes” or the
highest weighted and averaged probability.

Generally, ensemble learning techniques use multiple best-
prediction performance machine-learning models such as
Linear Regression (LR), Neural Network (NN), Decision
Tree (DT), Random Forest (RF), K-Nearest Neighbor’s
(KNN) Support Vector Regression (SVR), and Gradient
Boosting (GB). Linear regression trains the model with
coefficients to minimize the residual sum of squares be-
tween the observed output in the dataset and the output pre-
dicted by the linear approximation. Neural Network, also
known as Multi-layer Perceptron regressor, uses artificial
neural network architectures. Decision tree builds regres-
sion models as tree-like structures in which each node rep-
resents a splitting rule for one specific attribute. Random
forest is a meta-estimator that trains several classifying de-
cision trees on various sub-samples of the dataset and uses
averaging to improve predictive accuracy. The k-nearest
neighbor’s algorithm is a simple, easy-to-implement that
can solve classification and regression problems. SVR is a
type of Support Vector Machine (SVM) that supports lin-
ear and non-linear regression. SVM uses a subset of train-
ing points in the decision function.

The Gradient Boosting model is also a regression-based
tree model and is one of the effective machine learning
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algorithms that use a flexible non-linear regression pro-
cedure using forward stage-wise methods to improve the
accuracy of trees. There are different implementations
of gradient-boosted machine learning algorithms, such as
XGBoost (Extreme Gradient Boosting), Histogram-Based
Gradient Boosting (HGB), and LGBM (Light Gradient
Boosted Machine). These algorithms perform well when
used for energy forecasting and prediction, as evident from
previous studies (Chen et al., 2022; Sun et al., 2020).
Adopted performance indices such as R-Squared (R2),
Mean Absolute Error (MAE), and Root Mean Squared Er-
ror (RMSE) (Sun et al. (2020)) are used to examine the ef-
fectiveness of each machine learning model. A machine
learning model exhibiting the lowest RMSE, and MAE
values, and R-Squared closer to 1 is considered the best
among all models. RMSE, MAE and R? are computed as
follows:

RMSE represents the sample standard deviation of the dif-
ferences between predicted ¢; and observed c; values (1).
MAE is the mean absolute deviation of the prediction from
the actual value (2). R-Squared (R?) is a statistical measure
representing the proportion of the variance for a dependent
variable explained by an independent variable (3). (3).

(1)
1 N
MAE = 5} | ci=¢i]| 2)
i=1
d sion (SSR
RP—1_— sum squared regression ( ) 3)

total sum of squares (SST)

Finally, the predicted value of EUI (kW h/m? /yr) is con-
verted into an Energy Performance Certificate (EPC) label
or rating to calculate the model’s accuracy (4). Further-
more, precision and recall are important metrics used to
analyze each class in detail. Precision measures the accu-
racy of the positive predictions made by the model, while
recall measures the model’s ability to identify all positive
instances in the dataset.

TP+TN 4

- TP+FP+FN+TN &
Where True Positives (T'P) are the cases correctly pre-
dicted positive, and are indeed true. True Negatives (T'N)
are the cases correctly predicted negative, and are indeed
true. False Positives (F P) are the cases predicted positive,
but are false. False Negatives (F'N) are the cases predicted
negative but are false. ¢ is the actual output values, and ¢
is the predicted output values.

Case Study

The main objective of this paper is to develop a building
energy performance model for urban planners and energy
policymakers. The proposed methodology is applied to
the Irish residential building stock. The experiment fo-
cuses on Dublin city by developing a synthetic building
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dataset using parametric simulations on key variables of
semi-detached building archetypes. According to the 2022
GeoDirectory Residential Buildings report, there were
more than 2,087,638 residential building records (GeoDi-
rectory, 2022). In this paper, we analyzed semi-detached
building archetypes that represent 24.7% of the entire Irish
building stock.

Figure 3: 3D model visualization of Irish semi-detached
building archetype for EnergyPlus simulations

The initial step identifies the non-geometric and geometric
parameters associated with the existing building stock of
Dublin City to perform a parametric simulation using the
archetypes. The commonly used non-geometric parame-
ters are determined based on existing building energy per-
formance databases and literature surveys. For instance,
the building physics parameter values (window, wall, roof,
and floor u-values) and their ranges are extracted from the
publicly available Irish Building Energy Performance Cer-

tificate (EPC) data by Sustainable Energy Authority of Ire-
land (SEAI, 2022). Similarly, studies by Egan et al. have
identified other relevant non-geometric parameters that in-
fluence the energy performance of the Irish building stock
(Egan et al., 2018).

Building Energy Rating
kWh/m2/s
MOST EFFICIENT

Carbon Dioxide (CO,)
Emissions Indicator
kgCO,/m2/yr

BEST

0

>175

>225

The less CO, produced,
the less the dwelling
contributes to global
warming.

LEAST EFFICIENT

Figure 4: Irish EPC building energy and CO, emissions rating
chart used to determine the building energy performance

Therefore, we extend the parameters determined by these
studies to perform a detailed HVAC system analysis. Some
parameters added include HVAC systems, primary heat-
ing factor, and renewable parameters. The 18 parame-
ters needed for the parametric simulation of archetypes
are listed in Table 1. Similarly, geometric information
on archetypes is also collected from existing literature by
Egan et al. (2018) (Figure 3).

Finally, the target parameter in this study is Energy Use In-
tensity (EUI), also known as the final primary energy use
per unit floor area per year (kW h/m? /year). The Irish EPC

Table 1: Parameters needed for parametric simulation of archetypes

Number Parameters Unit Range
Pl Wall U-value W /m>K 0.09 - 2.4
P2 Window U-value W /m?K 0.73-5.7
P3 Floor U-value W /m?K 0.15-1.23
P4 Roof U-value W /m*K 0.07-2.3
P5 Door U-value W /m*K 0.81-5.9
Po6 Orientation North Axis {deg} 0-315
P7 Lighting density W/m? 1-9
P8 Occupancy Person(s) 1-6
P9 Equipment density W/m? 1-21
P10 Heating setpoint °C 18-23
P11 Heating setback °C 10- 14
P12 HVAC efficiency %o 45 - 400
P13 Renewables boolean yes/no
P14 DHW 1/m?*/day 0.5-3.5
P15 ACH Air changes per hour 0.35-8
P16 Window-to-wall ratio %o 10-70
P17 Heating factor numeric 1.1/2.08
P18 Electricity factor numeric 2.08
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Table 2: Performance result for each model to predict building energy performance EUI (kWh/ m? /year) and energy rating

Model RMSE (EUI) MAE (EUI) R-squared (EUI) Accuracy (Rating)
XGB 9.93 5.52 0.994 0.86
LGBM 9.29 5.61 0.993 0.85
HGB 9.59 5.79 0.993 0.85
GB 9.83 5.91 0.993 0.85
RF 33.76 22.37 0.921 0.48
NN 41.95 30.56 0.877 0.35
DT 54.63 36.16 0.791 0.34
LR 69.42 41.81 0.664 0.29
KNN 102.78 71.31 0.265 0.16
SVM 121.16 76.46 0 0.14
Voting 8.54 4.63 0.994 0.88
Stacking 8.17 4.49 0.995 0.89

data contains the building’s energy performance or certifi-
cate rates in terms of EUI (kWh/m? /year) and is further
represented on an A1l to G rating scale. An A+ rated build-
ing has the highest energy efficiency and tends to have the
lowest energy consumption and CO, emissions. On the
other hand, a G-rated building is the least energy-efficient
building rating (Figure 4).

We implemented the Latin hypercube sampling (LHS)
method to generate the sample data of 75,000 buildings
for the developed machine learning model (Figure 5). The
sampling results demonstrate that the distribution closely
resembles that of the Irish Energy Performance Certificate
(EPC) data, with a high number of C-rated buildings. The
data is split into two subsets to create training and testing
data using a cross-validation algorithm.

10000

8000 1

6000

4000

Number of Buildings

2000 1

0-AIAZAHBIBZBECIC2C3D1D2E1EZFG
Building Energy Rating
Figure 5: Distribution of 75,000 buildings in terms of the Irish
building energy rating labels

Ensemble Machine Learning Modeling Results

Before implementing the ensemble learning techniques to
combine the models, the developed building stock data
is trained and compared using different machine learning
models. Values closer to zero for RMSE or MAE represent
an excellent learning model. In contrast, values closer to
one for R? produce the best results. We also convert the
final predicted EUI into energy rating based on Figure 4.
Finally, the model’s performance was further tested using
an accuracy of estimated energy rating. The higher accu-
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racy model is considered the best learning model for this
study.

In this study, XGBoost emerged as the most efficient
model for predicting building energy performance in terms
of EUI The results show that the top four models rep-
resent different implementations of gradient-boosted ma-
chine learning algorithms, including XGBoost, LGBM,
HGB, and GB (Table 2). RMSE is less than nine in all
these algorithms, and accuracy is greater than 85%. Fur-
thermore, results show that the gradient-boosted trees al-
gorithm can most efficiently capture the complex relation-
ship between building energy performance and building
site specifications. On the other hand, SVM and KNN
models perform worst in this case study. Although SVM
and KNN algorithms are pretty good based on existing
studies for building energy prediction, however, in this
case study the RMSE is much higher than 100 with 14-
16% accuracy by using algorithms.

Finally, the single machine learning models (i.e., GB,
SVR, and KNN) and an ensemble machine learning model
are implemented and compared to predict the building en-
ergy performance. The ensemble ML model is constructed
by combining four single models of the XGBoost, LGBM,
HGB, and GB models. The proposed ensemble-based
learning model retains the advantage of each of the single
(i.e., GB, SVR, and KNN) learning models. In addition,
this paper uses two ensemble machine learning methods,
such as voting and stacking regressors. A voting regressor
method is an ensemble meta-estimator that trains four base
regressors (XGBoost, LGBM, HGB, and GB), each on the
entire dataset. This method then averages the individual
predictions to form a final prediction of EUI. The stacking
regressor method stacks the predicted EUI of an individ-
ual estimator (XGBoost, LGBM, HGB, and GB) and uses
a final regressor to compute the final EUI prediction. This
method allows utilizing the strength of each individual es-
timator by using their output as input of a final estimator.
The results show that voting RMSE is 8.54 and stacking
RMSE is 8.17, with an accuracy of energy rating of 88%
and 89%, respectively. Therefore, the highest accuracy is
achieved by using a stacking ensemble learning model.



Furthermore, the results show that the precision scores
range from 0.61 to 0.96, demonstrating that the model’s
positive predictions are highly accurate, with the lowest
score being for an A1 building rating and the highest for
G. Similarly, the recall scores range from 0.57 to 0.97, in-
dicating that the model’s ability to detect all positive in-
stances in the dataset varies across different categories,
with the lowest recall score being for an Al building rat-
ing and the highest for G. The best precision and recall
scores are for the B, C, and D building ratings. Overall, the
precision and recall scores highlight the model’s ability to
predict positive instances across various building ratings
accurately.

Conclusions and Future Work

The identification of building energy consumption pat-
terns and future trend prediction has become an essen-
tial issue in building energy performance assessment. En-
semble learning has received increasing attention in data-
driven building energy prediction research to significantly
improve the predictive performance of machine learning
through the effective integration of multiple prediction
models. This paper attempts to identify the optimal het-
erogeneous ensemble learning model for building energy
performance prediction using different machine learning
algorithms combined with the voting and stacking regres-
sor methods.

The findings of this paper demonstrate the feasibility of
heterogeneous ensemble learning to optimize the predic-
tion accuracy of its base models. The results presented fo-
cus on Dublin city through developing a synthetic building
dataset using parametric analysis on identified key vari-
ables of semi-detached building archetypes. The compari-
son between different machine learning algorithms shows
that the different variations of the Gradient Boosting al-
gorithm (XGBoost, LGBM, HGB, and GB) give a better
prediction when compared to other algorithms. The op-
timal ensemble learning model found by the stacking re-
gressor method can improve the rating prediction accuracy
by 3.4% compared with the most accurate base model in
the model testing stage. The accurate prediction of build-
ing energy performance allows stakeholders such as energy
policymakers and urban planners to make informed deci-
sions when planning retrofit measures at a large scale.
The results further corroborate that an ensemble learning
model with all alternative base models might not relate
to the most accurate predictive performance. Moreover,
such ensemble models composed of different subset model
combinations do not necessarily improve the performance
prediction accuracy. These findings prove the necessity of
searching for the optimal heterogeneous ensemble learn-
ing model when researchers have determined the alterna-
tive base models.

The paper provides an essential reference for building en-
ergy prediction research to effectively utilize base model
resources and optimize heterogeneous ensemble learning
performance. Future research will focus on the influence
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mechanism of different base models on the predictive per-
formance of the heterogeneous ensemble learning model.
Future work will also consider cloud computing paramet-
ric simulation and the application of hyperparameter opti-
mization of machine learning algorithms.
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